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Abstract

Evolutionary timescales can be inferred from molecular sequence data using a Bayesian phylogenetic approach. In these methods,

the molecular clock is often calibrated using fossil data. The uncertainty in these fossil calibrations is important because it determines

the limitingposteriordistributionfordivergence-timeestimatesas thesequence lengthtends to infinity.Here,we investigatehowthe

accuracy and precision of Bayesian divergence-time estimates improve with the increased clock-partitioning of genome-scale data

into clock-subsets. We focus on a data set comprising plastome-scale sequences of 52 angiosperm taxa. There was little difference

among the Bayesian date estimates whether we chose clock-subsets based on patterns of among-lineage rate heterogeneity or

relative ratesacrossgenes,orby randomassignment. Increasing thedegreeofclock-partitioningusually led toan improvement in the

precision of divergence-time estimates, but this increase was asymptotic to a limit presumably imposed by fossil calibrations. Our

clock-partitioning approaches yielded highly precise age estimates for several key nodes in the angiosperm phylogeny. For example,

when partitioning the data into 20 clock-subsets based on patterns of among-lineage rate heterogeneity, we inferred crown

angiosperms to have arisen 198–178 Ma. This demonstrates that judicious clock-partitioning can improve the precision of molecular

dating based on phylogenomic data, but the meaning of this increased precision should be considered critically.
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Introduction

Evolutionary timescales can be estimated from molecular se-

quence data using phylogenetic methods based on the mo-

lecular clock. In practice, most data sets exhibit substantial

rate heterogeneity among lineages. These “lineage effects”

can be caused by variation in life-history traits, generation

time, or exposure to mutagens (Smith and Donoghue 2008;

Gaut et al. 2011; Lanfear et al. 2013). Among-lineage rate

variation can be taken into account using Bayesian relaxed-

clock models, in which the rates can be assumed to be either

correlated between neighboring branches (Thorne et al.

1998; Kishino et al. 2001) or drawn independently from a

chosen distribution (Drummond et al. 2006; Rannala and

Yang 2007).

A number of factors can cause rates to vary across loci in

the genome (Wolfe et al. 1987). These “gene effects” can be

taken into account by allowing each locus to have a distinct

relative rate. Less certain is the best way to deal with inter-

actions between gene effects and lineage effects, which can

be caused by differences in selective pressure and other pro-

cesses (Gaut et al. 2011). In this case, the extent and patterns

of among-lineage rate heterogeneity vary across genes or

other subsets of the data. This form of rate variation can be

captured by assigning separate clock models to different sub-

sets of the data (Ho and Duchêne 2014), a process that we

refer to here as clock-partitioning.

Appropriate clock-partitioning can improve the precision of

Bayesian date estimates (as measured by the associated 95%

credibility intervals), but it is rarely done in practice. This is also

despite widespread adoption of partitioning schemes for sub-

stitution models (Lanfear et al. 2012). The most likely explana-

tion is that the use of clock-partitioning in Bayesian

phylogenetics greatly increases the risk of overparameteriza-

tion, and thus to reduced Markov chain Monte Carlo perfor-

mance. Overparameterization has been previously addressed

in light of the bias-variance trade-off, which is well established

in statistical theory (Burnham and Anderson 2003). Compared

with a complex, parameter-rich model, a simple model that
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underfits data is expected to have low accuracy (high bias) but

high precision (low variance). Conversely, a parameter-rich

model that overfits the data is likely to have higher accuracy,

but this comes at the cost of reduced precision. The best

model is an intermediate one that simultaneously maximizes

accuracy and precision (Wertheim et al. 2010)

It is useful to consider the bias-variance trade-off in the

context of molecular dating with partitioned clock models.

Patterns of among-lineage rate variation are likely to differ

across genes (Muse and Gaut 1994), so increasing the num-

ber of relaxed clocks will better capture these patterns of rate

heterogeneity and should lead to more accurate age esti-

mates (Duchêne and Ho 2014). However, each clock-subset

has parameters that need to be estimated, including a distinct

set of branch rates. As a consequence, increasing the degree

of clock-partitioning should lead to a widening of the poste-

rior distributions of parameters.

Contrary to the expectations of the bias-variance trade-off,

increasing the degree of clock-partitioning tends to improve

the precision of Bayesian age estimates (Zhu et al. 2015). One

possible explanation for this lies in the treatment of the un-

certainty in the estimates of genetic branch lengths. The ac-

curacy and precision of evolutionary rate estimates depend on

the accurate inference of branch lengths (in substitutions per

site). In the case of molecular dating, branch rates for each

clock-subset are combined with node times to give the branch

lengths. Therefore, as the number of clock-subsets increases,

the node times in the chronogram are estimated from an

increasing number of data points, leading to increasing pre-

cision. Although branch-length estimation generally improves

as the amount of sequence data increases, branch lengths can

be estimated with reasonable accuracy even with fairly small

amounts of sequence data (Yang and Rannala 2006). This

suggests that for a data set of a (large) fixed size, increasing

the number of clock-subsets should lead to improved preci-

sion in divergence-time estimates until the amount of se-

quence data in each clock-subset decreases to a critical point.

Zhu et al. (2015) explain this phenomenon in their “finite

sites” theory, although they use the term “loci” to refer to

clock-subsets. Even with sequences of infinite length, there

will still be uncertainty in the age estimates, corresponding to

the uncertainty in the fossil calibrations (“infinite-data limit”;

Yang and Rannala 2006; dos Reis and Yang 2013). As the

number of clock-subsets (L) increases, the finite-sites theory

suggests that the uncertainty in age estimates decreases to

the infinite-data limit at the rate of 1/L (Zhu et al. 2015). This

property has important consequences for analyses of

genome-scale data sets, whereby many genes are analyzed

concurrently. Therefore, it is important that both the

finite-sites theory and the bias-variance trade-off are tested

comprehensively on a genome-scale data set with clock-

partitioning.

Persistent uncertainty in molecular date estimates is per-

haps best exemplified by studies of the origins of flowering

plants (angiosperms) (Foster 2016). The earliest unequivocal

angiosperm fossils are tricolpate pollen grains from the

Barremian–Aptian boundary, from approximately 125.9 Ma

(Hughes 1994). Older pollen grains from the Hauterivian pro-

vide some evidence of crown-group angiosperms, and are

usually accepted as belonging to this group, albeit with less

confidence than for the tricolpate pollen grains (Herendeen

et al. 2017). Patterns of diversification in the broader fossil

record suggest that angiosperms are unlikely to have arisen

much earlier than this time (Magall�on et al. 2015; Sauquet

et al. 2017). The majority of molecular dating analyses tell a

vastly different story, with most recent analyses inferring an

origin within the Triassic (Foster et al. 2017). Estimates of the

angiosperm evolutionary timescale appear to be largely robust

to the source of genetic markers, despite the choice between

chloroplast-derived markers or nuclear-derived markers po-

tentially affecting the deep nodes of the angiosperm phylog-

eny (Wickett et al. 2014; Zeng et al. 2014). However, the

uncertainty surrounding the age of the angiosperm crown

node is large, often spanning an interval of many tens of

millions of years, unless strong age constraints are placed

on the node. This uncertainty could be masking any interest-

ing biological processes driving the age estimates for deep

nodes. Improving the accuracy and precision of estimates of

the age of crown angiosperms thus represents a key goal of

molecular dating.

In this study, we use a Bayesian phylogenetic approach to

investigate the impact of clock-partitioning on the precision of

divergence-time estimates. We also investigate whether the

criteria used to assign genes to different clocks has an impact

on estimation error. To do so, we infer the evolutionary time-

scale of angiosperms using a plastome-level data set. In anal-

yses with clock-partitioning schemes comprising up to 20

clock-subsets, we allocate genes to clock-subsets based on

patterns of among-lineage rate heterogeneity or relative sub-

stitution rate, or through random assignment. In all cases, we

confirm that increasing the degree of clock-partitioning can

lead to vast improvements in the precision of Bayesian date

estimates.

Materials and Methods

Data Sets and Clock-Partitioning

We obtained full chloroplast genome sequences for 52 an-

giosperm taxa and two gymnosperm outgroup taxa from

GenBank (supplementary table S1, Supplementary Material

online). Each angiosperm taxon was chosen to represent a

different order, with our sampling designed to include as

many as possible of the 63 angiosperm orders recognized

by the Angiosperm Phylogeny Group (2016). We extracted

all 79 protein-coding genes from the chloroplast genomes,

although some genes were missing from some taxa. We ini-

tially translated all genes into amino acid sequences using

VirtualRibosome (Wernersson 2006) and aligned them using
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MAFFT v7.305b (Katoh and Standley 2013). We then trans-

lated the aligned amino acid sequences back into nucleotide

sequence alignments using PAL2NAL (Suyama et al. 2006),

made manual adjustments, and filtered out any sites in the

alignment at which a gap was present in�80% of the taxa.

Our total core data set consisted of 68,790 nucleotides, of

which only 7.54% sites were gaps or missing data (see

supplementary file S1, Supplementary Material online).

Our primary strategy for clock-partitioning based on pat-

terns of among-lineage rate heterogeneity was to analyze the

genes using ClockstaR v2 (Duchêne et al. 2014). ClockstaR

takes predefined subsets of the data, along with the esti-

mated gene tree for each subset, and determines the optimal

clock-partitioning scheme for the data set. This involves iden-

tifying the optimal number of clock-subsets (k), as well as the

optimal assignment of the data subsets to each of these clock-

subsets. We used the partitioning around medoids (PAM) al-

gorithm within ClockstaR for this purpose, which identifies k

objects (medoids) that are centrally located within clusters

(Kaufman and Rousseeuw 2009). In our case, this strategy

identifies groups of genes that have the most similar patterns

of among-lineage rate heterogeneity for increasing numbers

of clusters (clock-subsets). Comparison of clock-partitioning

schemes is done by comparing the patterns of among-lineage

rate heterogeneity across the gene trees and clustering the

gene trees according to the gap statistic (Gapk) (Tibshirani

et al. 2001). The gap statistic method evaluates the

goodness-of-clustering for each value of k by comparing

the mean within-cluster dispersion of the data with that of

bootstrap reference data sets. Higher values for Gapk indicate

a better statistical fit, and the optimal number of clusters

(clock-subsets) is selected as the smallest value of k that yields

a peak in Gapk (Tibshirani et al. 2001). ClockstaR can also

determine the optimal clock-partitioning scheme for any value

of k. In our case, each of the 79 protein-coding genes was

considered as a separate data subset for the ClockstaR

analysis.

ClockstaR requires all data subsets to share the same tree

topology. Since the chloroplast genome does not typically

undergo recombination (Birky 1995), all of its genes should

share the same topology. Therefore, we first inferred the phy-

logeny for the concatenated data set using maximum-

likelihood analysis in IQ-TREE v1.50a (Nguyen et al. 2015),

with node support estimated using 1000 bootstrap replicates

with the ultrafast bootstrapping algorithm (Minh et al. 2013).

We partitioned the data set by codon position using the edge-

linked partition model (Chernomor et al. 2016), and imple-

mented the GTRþC4 model of nucleotide substitution for

each subset. The best-scoring tree was very similar to previous

estimates of the angiosperm phylogeny based on chloroplast

data (Moore et al. 2010; Soltis et al. 2011), and we found

strong support for most nodes in the tree (supplementary fig.

S1, Supplementary Material online). We used this tree for

ClockstaR and optimized the branch lengths for each gene

alignment. Finally, we determined the optimal value of k, and

then created 12 clock-partitioning schemes using the optimal

assignment of genes to clock-subsets for values of k from 1 to

10, 15, and 20 (“PCSTAR” schemes).

As a means of comparison with the ClockstaR partitioning

schemes, we also chose clock-partitioning schemes based on

relative substitution rates across genes (dos Reis et al. 2012).

To do so, we focused on a subset of 20 taxa for which

sequences of all 79 protein-coding genes were available

(supplementary table S1, Supplementary Material online).

We then analyzed each gene using maximum likelihood in

IQ-TREE, in each case partitioning by codon position and

implementing the GTRþC4 model of nucleotide substitution

for each codon position. Using the tree lengths as a proxy for

the overall substitution rate of each gene, we created 11

partitioning schemes based on relative rates of substitution

(“PRATE” schemes), in which we assigned genes to clock-

subsets for values of k from 2 to 10, 15, and 20.

For an additional form of comparison, we generated clock-

partitioning schemes with genes randomly allocated to clock-

subsets. Genes were randomly sampled without replacement

in R v3.3.2 (R Core Team 2016) and assigned to clock-subsets

for values of k from 2 to 10, 15, and 20. We repeated this

process three times, resulting in a total of 33 clock-

partitioning schemes in which genes were randomly assigned

to clock-subsets (“PRAND” schemes).

Molecular Dating

We inferred the evolutionary timescale using MCMCTREE in

PAML v4.8 (Yang 2007) with the GTRþC4 model of nucle-

otide substitution. A key requirement of MCMCTREE is a fixed

tree topology, so we used the best-scoring tree that we esti-

mated from the total concatenated data set using IQ-TREE.

We primarily analyzed our data sets with the uncorrelated

lognormal (UCLN) relaxed clock (Drummond et al. 2006;

Rannala and Yang 2007), but replicated all analyses to check

for any differences under the autocorrelated lognormal

(ACLN) relaxed clock (Thorne et al. 1998; Kishino et al. 2001).

We estimated the overall substitution rate for each clock-

partitioning scheme by running baseml under a strict clock,

with a single point calibration at the root. We then used this

estimate to select the shape (a) and scale (b) parameters for

the gamma-Dirichlet prior on the overall substitution rate

across loci in the MCMCTREE analysis according to the for-

mulae a¼ (m/s)2 and b¼m/s2, where m and s are the mean

and standard deviation of the substitution rate, respectively.

For all analyses, we set the shape and scale parameters for the

gamma-Dirichlet prior on rate variation across branches to 1

and 3.3, respectively. The posterior distribution of node ages

was estimated with Markov chain Monto Carlo sampling,

with samples drawn every 103 steps across a total of 107

steps, after a discarded burn-in of 106 steps. We ran all anal-

yses in duplicate to assess convergence, and confirmed
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sufficient sampling by checking that the effective sample sizes

of all parameters were above 200.

We repeated the MCMCTREE analysis for all PCSTAR, PRATE,

andPRAND schemes.AnadvantageofMCMCTREE is theoption

to use approximate likelihood calculation, which is much faster

than full likelihood calculation (Thorne et al. 1998; dosReis and

Yang 2011). However, this precludes the calculation of mar-

ginal likelihoods using path sampling and similar methods,

which require the full likelihood to be computed. Instead, we

compared the means and 95% credibility intervals of the pos-

terior estimates of divergence times across our partitioning

strategies. We chose to focus on six nodes in the angiosperm

phylogeny: the crown groups of all angiosperms, magnoliids,

monocots, eudicots, campanulids, and Liliales. The first four of

these were chosen because they define major clades in the

angiosperm phylogeny. The other two nodes were chosen be-

cause they do not have explicit fossil-based calibration priors.

For each of the 12 numbers of clock-subsets, we sampled

from the joint prior by running the analysis without data. This

allowed us to compare the prior and posterior distributions of

node ages and to observe the influence of changing the num-

ber of clock-subsets. The PCSTAR, PRATE, and PRAND schemes are

all treated as identical because the sequence data are not

taken into account.

Fossil Calibrations

Calibrations are the most important component of Bayesian

molecular dating, with critical impacts on posterior estimates

of divergence times. Therefore, we selected a set of 23 cali-

bration priors primarily based on recent studies that carefully

considered the phylogenetic affinities of angiosperm fossils

(table 1). We also applied two calibration priors to the gym-

nosperm outgroup. Fossils can strictly only provide a minimum

age for the divergence of lineages from their common ances-

tor, so we chose to implement fossil calibrations primarily as

uniform distributions with soft bounds. This approach assigns

an equal prior probability for all ages between specified min-

imum and maximum ages, with a 2.5% probability that the

age surpasses each bound (Yang and Rannala 2006).

We implemented two maximum age constraints: 1)

350 Ma for the divergence between angiosperms and gym-

nosperms (the root), a well accepted upper bound for this

divergence (Foster et al. 2017); and 2) 126.7 Ma for the origin

of crown eudicots, corresponding to the upper bound of the

Barremian–Aptian boundary (reviewed by Massoni et al.

2015a). The latter constraint is widely used and is justified

by the complete absence of tricolpate pollen before the latest

Barremian, yet some molecular dating results have suggested

Table 1

The Calibration Priors Used within This Study to Estimate the Angiosperm Evolutionary Timescale

Calibration Node Uniform Priors Gamma Priors Fossil References

Min. Age Cal. (Ma) Max. Age Cal. (Ma) a b

CG Alismatales 120.7 350 4332.8 3264.4 Mayoa portugallica Magall�on et al. (2015)

CG Angiospermae 136 350 5245.7 3507.2 Early Cretaceous pollen grains Magall�on et al. (2015)

CG Arecales 83.6 350 1992.0 2167.7 Sabolites carolinensis Iles et al. (2015)

CG Boraginales 47.8 126.7 806.6 1535.4 Ehretia clausentia Mart�ınez-Mill�an 2010

CG Brassicales 89.3 126.7 2530.9 2577.0 Dressiantha bicarpelata Magall�on et al. (2015)

CG Caryophyllales 70.6 126.7 1495.4 1926.2 Coahuilacarpon phytolaccoides Magall�on et al. (2015)

CG Cornales 89.3 126.7 2530.9 2577.0 Tylerianthus crossmanensis Magall�on et al. (2015)

CG Ericales 89.3 126.7 2530.9 2577.0 Pentapetalum trifasciculandricus Magall�on et al. (2015)

CG Fabales 55.8 126.7 897.6 1462.5 Paleosecuridaca curtissi Magall�on et al. (2015)

CG Fagales 96.6 126.7 2689.9 2532.0 Normapolles pollen Magall�on et al. (2015)

CG Gentianales 37.2 126.7 445.7 1086.9 Emmenopterys dilcheri Magall�on et al. (2015)

CG Magnoliales 112.6 350 4197.7 3390.7 Endressinia brasiliana Massoni et al. (2015b)

CG Myrtales 87.5 126.7 2534.2 2632.6 Esgueiria futabensis Magall�on et al. (2015)

CG Oxalidales 100.1 126.7 2918.4 2651.4 Tropidogyne pikei Chambers et al. (2010)

CG Pandanales 86.3 350 2289.8 2411.3 Mabelia connatifila Iles et al. (2015)

CG Paracryphiales 79.2 126.7 1926.6 2209.7 Silvianthemum suecicum Magall�on et al. (2015)

CG Ranunculales 112.6 126.7 3867.5 3124.8 Texeiraea lusitanica Magall�on et al. (2015)

CG Saxifragales 89.3 126.7 2530.9 2577.0 Microaltingia apocarpela Magall�on et al. (2015)

CG Zingiberales 72.1 350 1663.3 2096.8 Spirematospermum chandlerae Iles et al. (2015)

SG Buxales 99.6 126.7 3306.3 3019.9 Spanomera marylandensis Magall�on et al. (2015)

SG Cycadales 268.3 350 21939.8 7434.1 Crossozamia Nagalingum et al. (2011)

SG gymnosperms 306.8 350 28377.3 8408.2 Cordaixylon iowensis Clarke et al. (2011)

SG Platanaceae 107.7 126.7 3362.6 2837.3 Sapindopsis variabilis Magall�on et al. (2015)

SG Winteraceae 125 350 4738.5 3419.5 Walkeripollis gabonensis Massoni et al. (2015b)

NOTE.—“CG” and “SG” refer to the crown and stem groups, respectively, of the clade of interest.
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an earlier origin for eudicots (Smith et al. 2010; Foster et al.

2017; Zeng et al. 2017). Ranunculales, one of the earliest-

diverging eudicot orders, has a fossil record dating back to the

late Aptian/early Albian. Therefore, implementing the eudicot

maximum constraint results in a strong prior being placed on

crown-group eudicots appearing between �126.7 and

112.6 Ma. As a result, including the eudicot maximum con-

straint leads to the eudicot crown node being a useful exam-

ple of a heavily constrained node for downstream

comparisons of the uncertainty in posterior age estimates.

For comparison, we also performed analyses with our

PCSTAR schemes using gamma calibration priors and the

UCLN relaxed clock. In this case, the mean of each gamma

prior was set to the age of each fossilþ10%, with an arbitrary

standard deviation of 2 (table 1). This effectively brackets the

age estimates of calibrated nodes within a very narrow inter-

val. In such a calibration scheme, the precision of age esti-

mates is not expected to improve substantially with increased

clock-partitioning.

Results

Angiosperm Evolutionary Timescale

Our ClockstaR analysis identified the optimal value of k to be

1, suggesting that a single pattern of among-lineage rate

heterogeneity is shared across protein-coding genes from

the chloroplast genomes. However, despite k¼ 1 being opti-

mal, the values of the gap statistic were still higher for all

values of k> 5 (fig. 1). Based on our analysis using the optimal

clock-partitioning scheme (k¼ 1) and the UCLN relaxed clock,

we estimated the time to the most recent common ancestor

of angiosperms to be 196 Ma (95% credibility interval 237–

161 Ma; fig. 2). We inferred that crown magnoliids first

appeared 171–115 Ma, and that crown monocots arose con-

temporaneously, 167–120 Ma. Crown eudicots were inferred

to have arisen 128–124 Ma, with this precise estimate reflect-

ing the strong calibration prior placed upon this node. Finally,

our estimates for the time to the most recent common

ancestors of campanulids and Liliales were 101–91 Ma and

108–91 Ma, respectively.

The true age of crown angiosperms is unknown, so we

cannot assess the absolute accuracy of our date estimates.

Instead, we consider the consistency of mean age estimates

across analyses (Hillis 1995). The mean age estimates for all

crown angiosperms, magnoliids, and monocots varied slightly

across values of k from 1 to 3, but estimates remained stable

across all other values of k. Mean age estimates for crown

eudicots only varied by approximately 2 Myr across all values

of k. Mean age estimates for crown Liliales were stable across

all clock-partitioning schemes. However, mean estimates for

crown campanulids steadily declined by approximately 10–15

Myr as the number of loci increased. We observed the same

broad trends in accuracy for all nodes of interest when using

the ACLN relaxed clock, although mean age estimates were

consistently slightly younger than in analyses with the UCLN

relaxed clock. In our analyses with the PCSTAR schemes and

with gamma calibration priors, mean age estimates for crown

angiosperms steadily increased with increasing numbers of

clock-subsets, but the mean estimates were stable for all

other nodes of interest.

Precision in Estimates of Divergence Times

We focus first on our results when using the UCLN relaxed

clock, uniform calibration priors, and with clock-partitioning

according to ClockstaR. We report improvements in the pre-

cision of node-age estimates by calculating the decrease in

95% CI width, which we standardized by dividing by the

posterior mean. The optimal clock-partitioning scheme was

inferred to be k¼ 1, matching the results of previous analyses

(Duchêne et al. 2016). However, increasing the number of

clock-subsets generally led to large increases in the precision

of node-age estimates. The impact of this is perhaps most

striking in the inferred age of crown angiosperms.

Increasing the number of clock-subsets from k¼ 1 to k¼ 2

led to a reduction in statistical fit (fig. 1), but also reduced the

width of the 95% CI for the inferred age of crown angio-

sperms from 77 to 46 Myr (an improvement in precision of

35.4%).

Greater clock-partitioning led to further improvement in

precision (fig. 3). For example, implementing a clock-

partitioning scheme with k¼ 20 reduced the width of the

95% CI for the inferred age of crown angiosperms to only

20 Myr, representing a 73.1% improvement in precision.

0 20 40 60 80
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Number of clock-subsets (k)
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FIG. 1.—Gap statistic values for different numbers of clock-subsets (k)

for the plastome-scale angiosperm data set, inferred using partitioning

around medoids in ClockstaR. The asterisk indicates the optimal number

of clock-subsets.
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However, the rate of improvement in precision declined rap-

idly for increasing numbers of clock-subsets (fig. 3).

An improvement in precision with the number of clock-

subsets can also be observed in the age estimates for both

magnoliids and monocots. For example, increasing k from 1

to 20 results in respective increases of 76.1% and 68% in pre-

cision in the age estimates for crown magnoliids and crown

monocots (fig. 3). When considering the nodes corresponding

to the crown groups of campanulids and Liliales, a similar trend

can be observed, albeit with a less drastic increase in precision.

Increasing the number of clock-subsets led to 29.7% and

37.7% increases in precision for the crown groups of campa-

nulids and Liliales, respectively. However, there is a vastly dif-

ferent trend in theageestimate for crowneudicots. In this case,

the age estimate for k¼ 1 is already precise (95% credibility

interval: 128–124 Ma) and increasing the number of clock-

subsets actually led to a slight decrease in precision of 0.02%.

Compared with the PCSTAR clock-partitioning schemes, very

similar trends in precision were observed for both the PRATE

scheme (fig. 4) and PRAND scheme (fig. 5). The only differences

were that there was less variation in mean age estimates for

smaller values of k compared with the ClockstaR partitioning

scheme, and standardized improvements in precision were

consistently slightly greater (supplementary table S2,

Supplementary Material online). For example, the widths of

the 95% CIs, and the mean age estimates, declined mono-

tonically in both classes of clock-partitioning schemes.

We observed the same broad trends across all clock-

partitioning schemes when using the ACLN relaxed clock.

With increasing numbers of clock-subsets, the uncertainty in

age estimates rapidly decreased, with the exception of the

age estimate for the eudicot crown node. Even with k¼ 1,

however, the precision of the age estimates was much greater

than in the corresponding analysis with the UCLN relaxed

clock. For example, when implementing the PCSTAR clock-

partitioning schemes, the 95% credibility interval of the age

estimate for crown angiosperms spanned 77 Myr when using

the UCLN relaxed clock, but only 59 Myr when using the

FIG. 2.—Chronogram depicting the evolutionary timescale of 52 angiosperm taxa and two gymnosperm outgroup taxa. The chronogram was estimated

using Bayesian analysis of 79 genes from the 54 taxa in MCMCTREE, implementing the optimal clock-partitioning scheme (k¼1) and the uncorrelated

lognormal relaxed clock. Tip labels indicate the taxa sampled in our study, with the orders they belong to in parentheses. Numbers in circles correspond to our

six nodes of interest, as follows: 1) Angiospermae, 2) Magnoliidae, 3) Monocotyledoneae, 4) Liliales, 5) Eudicotyledoneae, and 6) Campanulidae.
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ACLN relaxed clock. Additionally, age estimates for crown

eudicots became less precise as the degree of clock-

partitioning increased. We observed the same trend for the

other nodes of interest across analyses, and the apparent limit

to uncertainty appeared to be reached much more rapidly

than with the UCLN relaxed clock (supplementary figs. S2–

S4 and table S2, Supplementary Material online).

When using highly informative gamma calibration priors in

our additional analyses of the PCSTAR schemes, we found that

for the crown groups of angiosperms, monocots, and mag-

noliids, the increases in precision with greater clock-

partitioning were much lower than with uniform calibration

priors (supplementary fig. S5 and table S2, Supplementary

Material online). For example, an improvement of only

18.5% occurred in the precision of the age estimate for

crown angiosperms. The opposite trend occurred for the

crown nodes of eudicots, campanulids, and Liliales.

When we implemented uniform calibration priors, greater

clock-partitioning led to either no change or decreases in pre-

cision for age estimates of crown-group eudicots, but when

using gamma calibration priors the precision improved by

36% with greater clock-partitioning. For crown-group

Liliales, increasing k from 1 to 20 led to a 64.3% increase in

the precision of age estimates, the greatest improvement of

all six key nodes. However, it is worth noting that our age

estimates for all six nodes of interest were very precise even

when k¼ 1. Therefore, in terms of absolute time units, there

was generally little improvement in precision with increasing

numbers of clock-subsets.

In most cases, there is a clear difference between the pos-

terior and prior distributions for our six nodes of interest (sup-

plementary figs. S6–S8, Supplementary Material online).

Additionally, while the shapes of the prior distributions are

nearly identical with increasing values of k, the shapes of

the posterior distributions closely mirror the trends described

above based on 95% CIs, as expected.

Discussion

The goal of all molecular dating studies is to estimate the

evolutionary timescale with a useful degree of precision and

accuracy. We demonstrated that increasing the degree of

clock-partitioning leads to increasingly precise age estimates,

which has recently been shown in an independent study by

Angelis et al. (2017), and is predicted by the finite-sites theory

(Zhu et al. 2015). Additionally, clock-partitioning schemes

150

160

170

180

190

200

210

220

230

240 Angiospermae

N
od

e 
ag

e 
(M

a)

110

120

130

140

150

160

170 Monocotyledoneae

110

120

130

140

150

160

170

180 Magnoliidae

N
od

e 
ag

e 
(M

a)

123

124

125

126

127

128

129

130

131

132 Eudicotyledoneae

75

80

85

90

95

100

105

110
Campanulidae

Number of clock-subsets

N
od

e 
ag

e 
(M

a)

80

90

100

110

120

130
Liliales

Number of clock-subsets

1 2 3 4 5 6 7 8 9 10 15 20 1 2 3 4 5 6 7 8 9 10 15 20

1 2 3 4 5 6 7 8 9 10 15 20

1 2 3 4 5 6 7 8 9 10 15 20

1 2 3 4 5 6 7 8 9 10 15 20

1 2 3 4 5 6 7 8 9 10 15 20

FIG. 3.—Mean posterior age estimates and associated 95% credibility intervals for six nodes in the angiosperm phylogeny with increasing numbers of

clock-subsets (k), as inferred using an uncorrelated lognormal relaxed clock, clock-partitioning according to the optimal schemes identified in ClockstaR, and

uniform calibration priors.

Foster and Ho GBE

2758 Genome Biol. Evol. 9(10):2752–2763 doi:10.1093/gbe/evx198 Advance Access publication September 25, 2017

Deleted Text: in press


based on patterns of among-lineage rate heterogeneity or

relative substitution rates did not have any measurable advan-

tage over randomly assigning genes to clock-subsets, at least

in terms of the accuracy and precision of the resulting esti-

mates of divergence times.

The near-identical patterns of precision across all clock-

partitioning schemes stands in contrast with some previous

suggestions that the assignment of genes to clock-subsets is

more important than the number of clock-subsets (Duchêne

and Ho 2014). However, through simulations it has been

demonstrated that different partitioning schemes only tend

to have large impacts on the accuracy of posterior divergence

times when the molecular clock is seriously violated, when the

rate prior is misspecified, or when fossil calibrations are in

conflict or incorrect (Angelis et al. 2017). In such cases, it is

possible for increased clock-partitioning to yield highly precise

age estimates, but for the 95% CIs of these estimates to

exclude the true age. This goes some way to explaining

why we observed such consistent age estimates across nearly

all partitioning schemes, since we carefully chose appropriate

values for the rate prior and implemented appropriate fossil

calibrations that were not in conflict.

Our results demonstrate that to improve the precision of

age estimates, one could simply increase the degree of clock-

partitioning by assigning genes to an arbitrarily large number

of clock-subsets, until the marginal benefit of increasing the

number of clocks is close to zero (Zhu et al. 2015). An obvious

consequence of this is that one must consider whether such

an increase is desirable or biologically meaningful. If there is

evidence that a data set conforms to a single pattern of rate

variation among lineages, an increase in precision from clock-

partitioning is not justifiable because the clock-subsets do not

constitute independent realizations of the process of rate var-

iation (Zhu et al. 2015). Our analysis using ClockstaR indicates

that within our data set, all genes exhibit the same pattern of

rate heterogeneity among lineages, such that they should be

analysed using a single clock model. In this case, increasing

the degree of clock-partitioning leads to a model that overfits

the data, does not appear to accurately predict the data, and

is insensitive to the sampled data. Normally this would be

expected to occur when a model underfits the data, but the

increasing sets of “independent” branch-rate estimates for

each clock-subset ensure that estimates of node times remain

precise.
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calibration priors.
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The uncertainty in posterior divergence times can be divided

into three components: 1) uncertainty in branch lengths due to

limited sequence length (N); 2) among-lineage rate variation

for each clock-subset, as well as the evolutionary rate variation

among clock-subsets; and 3) uncertainty in fossil calibrations

(Zhuet al. 2015). If thenumber of clock subsets (L) is large, then

the uncertainty caused by limited sequence length approaches

zero at the rate of 1/N. Additionally, the uncertainty attribut-

able to thesecondcomponentapproacheszeroat the rateof1/

L. As N!1 and L!1, the uncertainty in divergence-time

estimates should be wholly attributable to uncertainty in

the fossil calibrations (Zhu et al. 2015). For a data set of fixed

size, such as our angiosperm data set, increasing L will reduce

N, and vice versa. We found that partitioning the data set into

increasing numbers of clock-subsets led to improvements in

precision, which implies that increasing L has a larger impact

on precision than decreasing N has on reducing precision.

However, it is likely that for very small values of N, the

estimation error in branch lengths will grow rapidly.

An important exception to the overall trend was the age

inferences for the crown eudicot node. The most common

calibration strategy for this node has been to place a

maximum bound or a highly informative prior on the age of

this node, based on the absence of tricolpate pollen before

the Barremian–Aptian boundary (�126 Ma) (Magall�on and

Castillo 2009; Sauquet et al. 2012; Massoni et al. 2015a;

Foster et al. 2017). Additionally, many of the earliest-

diverging eudicot lineages have relatively old fossils dating

to the late Aptian (�113 Ma). These lines of evidence provide

a narrow age bracket for the eudicot crown, often causing

age estimates for the eudicot crown node to be necessarily

highly precise. As a result, the limit in uncertainty of the fossil

calibrations should be reached rapidly. Therefore, the age of

the eudicot crown node is useful to evaluate in light of the

finite-sites theory. We found that increasing the number of

clock-subsets had essentially no effect on the uncertainty in

the age estimate of this node. A very similar pattern was ob-

served when using tightly constrained gamma calibration pri-

ors, and we expect that the general trend extends to other

cases in which calibrated nodes have strongly constrained

ages, for example when lognormal or exponential priors are

chosen (Smith et al. 2010; Magall�on et al. 2015).

Our results are especially important for analyses of

genome-scale data sets. The size of phylogenomic data sets
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generally precludes molecular dating with computationally

intensive phylogenetic software, such as BEAST (Bouckaert

et al. 2014) or MrBayes (Ronquist et al. 2012), unless work-

around methods are employed (Ho 2014). For example, some

researchers have chosen to analyze each gene or data subset

separately and then take the average of the results (Zeng et al.

2017). However, this methodology effectively assigns to each

gene its own model of nucleotide substitution and its own

clock model. Not only does this run the risk of severe over-

parameterization, but it also raises the question of how the

estimates should be combined in a way that takes full account

of estimation error. Another method is to apply data filtering

to select only a subset of a data set, such as those that are the

most clocklike (Jarvis et al. 2014) or the most informative

(Tong et al. 2016).

In cases where data-filtering approaches are not feasible,

less computationally intensive methods can be employed,

such as the approximate-likelihood method of MCMCTREE.

There are also non-Bayesian alternatives to phylogenomic dat-

ing, such as penalized likelihood (Sanderson 2002), that have

been used to analyze large data sets (Zanne et al. 2014).

Additionally, a number of rapid dating methods that can ac-

count for among-lineage rate heterogeneity without an ex-

plicit statistical model of branch-rate variation have been

developed specifically for phylogenomic data sets (Kumar

and Hedges 2016). Although these methods appear to have

accuracy comparable to that of Bayesian methods, they can-

not produce reliable estimates of the uncertainty in the in-

ferred ages (Kumar and Hedges 2016). It is also unclear how

well the results of these analyses will conform to the finite-

sites theory.

In the context of clock-partitioning, an important final con-

sideration is that comparison of clock-partitioning schemes

only provides an indication of relative fit. It does not indicate

whether any of the partitioning schemes actually provides an

adequate description of the process that generated the data

(Duchêne et al. 2015). For example, even the most

parameter-rich clock-partitioning scheme might be an inade-

quate description of the data. There have been recent devel-

opments in methods for evaluating clock-model adequacy,

but these techniques involve thresholds that depend on the

lengths of the sequences across the clock-subsets (Duchêne

et al. 2015). Further refinement of methods for testing clock-

model adequacy will be required before they can be readily

applied to clock-partitioning schemes.

The primary aim of the present study was not to provide a

novel estimate for the angiosperm evolutionary timescale, but

it is still useful to consider our results in the context of previous

estimates. Our inferred origin for crown-group angiosperms

in the late Triassic to early Jurassic is consistent with most

modern molecular dating estimates (Bell et al. 2010;

Magall�on 2010; Clarke et al. 2011; Zeng et al. 2014;

Beaulieu et al. 2015; Foster et al. 2017). Similarly, our age

estimate for crown magnoliids of 171–115 Ma is very similar

to a previous estimate of 179–127 Ma based on the most

comprehensive molecular dating analyses of Magnoliidae

(Massoni et al. 2015a). Our estimate of 167–120 Ma for the

age of crown monocots is compelling, because a recent study

of monocots using the fossilized-birth–death model inferred a

very similar age of 174–134 Ma (Eguchi and Tamura 2016).

Our age estimate for crown eudicots of 128–124 Ma suggests

that there was not enough signal within the data to overcome

the strong calibration priors placed upon this node. Finally,

although our age estimate for the appearance of crown cam-

panulids 101–91 Ma is very similar to those of recent studies

(Magall�on et al. 2015; Foster et al. 2017), our age estimate of

108–91 Ma for the time to the most recent common ancestor

of Liliales was slightly younger than recent estimates.

Conclusion

In this study, we have demonstrated that the finite-sites theory

for molecular dating applies to a typical genome-scale data set

from angiosperms, with the exception of nodes that have

strong age constraints. In contrast with previous suggestions,

the choice of strategy for assigning genes to clocks does not

appeartobeimportant.Theseresults implythatthedatasetcan

be arbitrarily partitioned into a large number of clock-subsets,

up to the point at which there is little marginal benefit in in-

creasingthedegreeofclock-partitioning.However,wecaution

that allmolecular date estimates should be critically interpreted

to determine whether their precision is meaningful or not. To

thisend, thebestapproach is to identify thepatternsofamong-

lineage rate heterogeneity in a data set and to apply a clock-

partitioning scheme that appropriately captures this variation.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Acknowledgments

The authors acknowledge the facilities and the technical as-

sistance of the Sydney Informatics Hub at the University of

Sydney and, in particular, access to the high-performance

computing facility Artemis. This work was supported by an

Australian Government Research Training Program (RTP)

Scholarship to C.S.P.F., and the Australian Research Council

[grant DP110100383 to S.Y.W.H.].

Literature Cited
Angelis K, �Alvarez-Carretero S, Dos Reis M, Yang Z. 2017. An evaluation

of different partitioning strategies for Bayesian estimation of species

divergence times. Syst Biol. doi: 10.5061/dryad.d7839/1.

Angiosperm Phylogeny Group APG. 2016. An update of the Angiosperm

Phylogeny Group classification for the orders and families of flowering

plants: APG IV. Bot J Linn Soc. 181(1): 1–20.

Strategies for Partitioning Clock Models in Phylogenomic Dating GBE

Genome Biol. Evol. 9(10):2752–2763 doi:10.1093/gbe/evx198 Advance Access publication September 25, 2017 2761

Deleted Text: analyse
Deleted Text: analyse
Deleted Text: -
Deleted Text: s


Beaulieu JM, O’Meara B, Crane P, Donoghue MJ. 2015. Heterogeneous

rates of molecular evolution and diversification could explain the

Triassic age estimate for angiosperms. Syst Biol. 64(5): 869–878.

Bell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the

angiosperms re-revisited. Am J Bot. 97(8): 1296–1303.

Birky CW. 1995. Uniparental inheritance of mitochondrial and chloroplast

genes: mechanisms and evolution. Proc Natl Acad Sci U S A. 92(25):

11331–11338.

Bouckaert R, et al. 2014. BEAST 2: a software platform for Bayesian evo-

lutionary analysis. PLoS Comp Biol. 10(4): e1003537.

Burnham KP, Anderson DR. 2003. Model selection and multimodel infer-

ence: a practical information-theoretic approach. New York: Springer.

Chambers KL, Poinar G Jr, Buckley R. 2010. Tropidogyne, a new genus of

Early Cretaceous Eudicots (Angiospermae) from Burmese amber.

Novon 20(1): 23–29.

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data struc-

ture for phylogenomic inference from supermatrices. Syst Biol. 65(6):

997–1008.

Clarke JT, Warnock R, Donoghue PCJ. 2011. Establishing a time-scale for

plant evolution. New Phytol. 192(1): 266–301.

dos Reis M, et al. 2012. Phylogenomic datasets provide both precision and

accuracy in estimating the timescale of placental mammal phylogeny.

Proc R Soc Lond B Biol Sci. 279(1742): 3491–3500.

dos Reis M, Yang Z. 2011. Approximate likelihood calculation on a phy-

logeny for Bayesian estimation of divergence times. Mol Biol Evol.

28(7): 2161–2172.

dos Reis M, Yang Z. 2013. The unbearable uncertainty of Bayesian diver-

gence time estimation. J Syst Evol. 51(1): 30–43.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phyloge-

netics and dating with confidence. PLoS Biol. 4(5): e88.
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