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Abstract: 
 In severe viral pneumonia, including Coronavirus disease 2019 (COVID- 19), the viral replica-
tion phase is often followed by hyperinflammation, which can lead to acute respiratory distress 
syndrome, multi- organ failure, and death. We previously demonstrated that alpha- 1 adrenergic 
receptor (⍺1- AR) antagonists can prevent hyperinflammation and death in mice. Here, we conducted 
retrospective analyses in two cohorts of patients with acute respiratory distress (ARD, n = 18,547) 
and three cohorts with pneumonia (n = 400,907). Federated across two ARD cohorts, we find that 
patients exposed to ⍺1- AR antagonists, as compared to unexposed patients, had a 34% relative risk 
reduction for mechanical ventilation and death (OR = 0.70, p = 0.021). We replicated these methods 
on three pneumonia cohorts, all with similar effects on both outcomes. All results were robust to 
sensitivity analyses. These results highlight the urgent need for prospective trials testing whether 
prophylactic use of ⍺1- AR antagonists ameliorates lower respiratory tract infection- associated hyper-
inflammation and death, as observed in COVID- 19.
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Introduction
Each year, approximately 300 million people develop pneumonia (GBD 2016 Lower Respiratory 
Infections Collaborators, 2018), which usually results in appropriate, self- limiting immune responses 
and clearance of the bacterial or viral pathogen. In some cases (Figure 1), the pathogen overwhelms 
host defenses, causing massive lung damage and compromising other organs. In other patients, 
however, pathological immune activation (‘hyperinflammation') occurs in the lungs and systemi-
cally (Hay et al., 2017), resulting in immune- mediated end- organ damage that can compromise gas 
exchange. Dysregulated immune responses may lead to acute respiratory distress syndrome (ARDS), 
need for mechanical ventilation, and failure of other organ systems, contributing to the global pneu-
monia death toll of 3 million per year (The top 10 causes of death, 2021). The clinical picture is similar 
in Coronavirus disease 2019 (COVID- 19) caused by SARS- CoV- 2; hyperinflammation compromises 
organ function in the lungs and systemically, causing high morbidity and mortality (Zhou et al., 2020; 
Ruan et al., 2020; Qin et al., 2020; Huang et al., 2020).

Disease- modifying strategies for COVID- 19 include targeting the virus and treating (or ideally 
preventing) secondary hyperinflammation with immunomodulatory or immunosuppressive drugs. 
Here, we propose an approach using the latter strategy of hyperinflammation prevention (Flierl et al., 
2007; Shaked et al., 2015). Immune cells communicate with each other by secreting peptides called 
cytokines and chemokines, which initially amplify the response and later restore homeostasis after the 
threat has receded. However, in hyperinflammation, production of cytokines is dysregulated, forming 
a ‘cytokine storm’ that can damage healthy tissue and overwhelm the host.

COVID- 19- associated hyperinflammation is characterized by profound elevation of many pro- 
inflammatory cytokines (Ruan et  al., 2020; Huang et  al., 2020; Mehta et  al., 2020; McGonagle 
et al., 2020; Pedersen and Ho, 2020; Chen et al., 2020). Several immunosuppressive treatment 
approaches are being studied or used in clinical practice to ameliorate hyperinflammation- associated 
morbidity in patients who have already developed severe complications of COVID- 19, including 
blocking specific cytokine signaling axes (e.g., IL- 6, IL- 1, or TNF- alpha) and broader immunosuppres-
sive approaches (e.g. dexamethasone or baricitinib) (Investigators et al., 2021; RECOVERY Collabo-
rative Group, 2021; Huet et al., 2020; Rosas et al., 2021; Salama et al., 2021; Stone et al., 2020). 
Dexamethasone is one of few drugs that have shown a mortality benefit in hospitalized patients with 
COVID- 19 who require oxygen or mechanical ventilation, but glucocorticoids may not be beneficial 
- and may even be harmful - when given earlier in the disease course (RECOVERY Collaborative 
Group, 2021; Gianfrancesco et al., 2020). Conflicting data on tocilizumab and other inhibitors of 
IL- 6 signaling in patients with severe COVID- 19 suggests that immunosuppressive strategies may be 
of limited benefit once end- organ damage has developed (Investigators et al., 2021; Rosas et al., 
2021; Salama et al., 2021; Stone et al., 2020; Lescure et al., 2021; Della- Torre et al., 2020), and 
highlight the importance of identifying drugs that can prevent dysregulated immune responses and 
immune- mediated damage.

Inhibition of catecholamine signaling has emerged as a promising approach to prevent hyper-
inflammation and related mortality. The catecholamine pathway, beyond its role in neurotransmis-
sion and endocrine signaling, is involved in immunomodulation of innate and adaptive immune cells. 
In mice, catecholamine release coincides with hyperinflammation and enhances inflammatory injury 
by augmenting cytokine production via a self- amplifying process that requires alpha- 1 adrenergic 
receptor (⍺1- AR) signaling (Staedtke et al., 2018). Catecholamine synthesis inhibition reduces cyto-
kine responses and dramatically increases survival after inflammatory stimuli. The ⍺1- AR antagonist 

Figure 1. Model of clinical progression of respiratory dysfunction from local infection to hyperinflammation. The timing and relation of 
hyperinflammation to specific organ manifestations of severe acute respiratory distress syndrome (ARDS) are areas of uncertainty and investigation.

https://doi.org/10.7554/eLife.61700
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prazosin (at clinically prescribed dosages)—but not beta- adrenergic receptor (β-AR) antagonists—
offers similar protection, providing in vivo evidence that this drug class can prevent cytokine storm 
(Staedtke et al., 2018). These preclinical findings provide a rationale for clinical studies that assess 
whether ⍺1- AR antagonists can prevent hyperinflammation and its sequelae associated with severe 
infection.

To date, no controlled trials have studied whether ⍺1- AR antagonism improves clinical outcomes 
in patients with lower respiratory tract infection (pneumonia, acute respiratory distress syndrome, 
or COVID- 19). Replicated retrospective cohort studies offer the highest level of evidence prior to 
prospective studies (Burns et  al., 2011). We thus conducted a series of five retrospective cohort 
studies, spanning different populations, age groups, demographics, and countries.

Our primary research question is whether ⍺1- AR antagonists (e.g., through its known modulation 
of hyperinflammation) can mitigate disease and prevent mortality. We operationalized this research 
question by testing the statistical hypothesis that patients exposed to ⍺1- AR antagonists, as compared 
to unexposed patients, have a reduced risk of adverse outcomes in lower respiratory tract infec-
tion. We considered two outcomes (mechanical ventilation, and mechanical ventilation followed by 
death) and three exposures (any ⍺1- AR antagonist, tamsulosin specifically, and doxazosin specifically). 
Tamsulosin is the most commonly used ⍺1- AR antagonist in the United States and demonstrates a 
‘uroselective’ binding pattern (predominantly inhibits ⍺1A- and ⍺1D- AR subtypes). In contrast, doxaz-
osin is a non- selective ⍺1- AR antagonist that demonstrates clinically significant inhibition of all three 
known ⍺1- AR subtypes, including antagonism on the ⍺1B- AR. This antagonism of ⍺1B- AR expressed 
in the peripheral vasculature is thought to mediate the antihypertensive effects of doxazosin and 
related drugs. Importantly, all three ⍺1- AR subtypes have been implicated in catecholamine signaling 
on immune cells, and signaling redundancy suggests a theoretical benefit for pan-⍺1- AR antagonists 
(e.g., doxazosin or prazosin) in preventing catecholamine signaling and hyperinflammation. Relatively 
few patients in our samples are prescribed doxazosin, so we are only able to study this drug in our 
much larger pneumonia cohorts (since there is insufficient statistical power to analyze the drug in ARD 
cohorts).

Results
The statistical analysis plan described in Materials and methods was fixed across all cohorts (to the 
extent possible) to limit researcher degrees of freedom and to emulate a prospective trial (Dickerman 
et al., 2019). We computed the probabilities of outcomes, relative risk reductions (RRR), odds ratios 
(OR), confidence intervals (CI), and p- values (p) using an unadjusted model as well as adjusted and 
matched modeling approaches that account for demographic and health- related confounders. We 
focus our discussion of reported results on the adjusted model comparing patients exposed to ⍺1- AR 
antagonists to unexposed patients. The adjusted model is an inverse propensity- weighted regression 
on a reduced sample satisfying propensity overlap; see Materials and methods for details.

Participants
We studied two cohorts of patients who were diagnostically coded with acute respiratory distress 
(ARD, a surrogate precursor state to ARDS) from two de- identified databases: the IBM MarketScan 
Research Database (which we refer to as MarketScan) and Optum’s Clinformatics Data Mart Database 
(OptumInsight, Eden Prairie, MN), a commercial and Medicare Advantage claims database (which we 
refer to as Optum). We further studied three cohorts of patients with pneumonia from the MarketScan, 
Optum, and Swedish National Patient Register (Patientregistret, 2021) databases. ICD codes were 
used to identify the first instance of inpatient admission for each patient in each cohort (see Materials 
and methods for details). Our main analysis employed federated analyses on the ARD cohort using 
pooled MarketScan and Optum results.

We limit the study to older men because of the widespread use in the United States of ⍺1- AR antag-
onists as a treatment for benign prostatic hyperplasia (BPH), a diagnosis clinically unrelated to the 
respiratory system or immune disorders. Focusing on men over the age of 45 facilitated examining a 
patient population in which a large portion of the exposed group faced similar risks of poor outcomes 
from respiratory conditions as the unexposed group, thus mitigating confounding by indication.

https://doi.org/10.7554/eLife.61700
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We allowed a maximum age of 85 years to reflect the ongoing clinical trials investigating these 
interventions (Prazosin to Prevent COVID- 19 (PREVENT- COVID Trial); https:// clinicaltrials. gov/ ct2/ 
show/ NCT04365257) . Figure 2 shows the CONSORT flow diagram for selecting patients from the 
four claims datasets (with slight modifications in the Swedish National Patient Register analysis to 
reflect different practices in that population); see Materials and methods for details. Focusing this 
study exclusively on older men limits the study’s internal validity to older men, and it would take addi-
tional assumptions to justify external validity claims including excluded demographic groups (e.g., 
women and younger patients). We nevertheless note that there is an important literature on demo-
graphic fairness with regard to clinical studies (Holdcroft, 2007; McMurray, 1991).

Cohort-specific results
We conducted the same statistical analysis in each of the five cohorts. In each cohort, we measured 
incidence and odds ratios (OR) for patients exposed to any ⍺1- AR antagonist, or tamsulosin specifi-
cally, as compared to unexposed patients, for each outcome. In the two largest pneumonia cohorts, 
we additionally consider doxazosin exposure. Our main analysis, described in the following section, 
involves pooling the results from individual cohorts. For the sake of completion, Figure 3—figure 
supplements 1–5 show results for each of the five individual cohorts. We generally found a positive 
RRR given any combination of exposure and outcome, and found that the adjusted model yielded 
ORs consistently less than 1. In all cohorts, the OR point estimates were robust to model changes, 
including other doubly robust approaches (Funk et  al., 2011) such as causal forests (Wager and 
Athey, 2018), each of which yielded similar results to those presented here.

Federated results
We employed federated causal methods to enable combining patient- level results while maintaining 
patient privacy and data usage agreement constraints; see Materials and methods for details. We 
pooled results across MarketScan and Optum for each of the ARD and pneumonia cohorts (the 
Swedish dataset used a different outcome because ventilation was not reliably coded, so we did not 
pool these results). For ARD patients (n = 18,547) exposed to any ⍺1- AR antagonist, as compared 
to unexposed ARD patients, we found for ventilation and death: RRR = 34%, OR = 0.70, 95% CI 
(0.49–0.99), p = 0.021; for pneumonia patients (n = 338,674) we found: RRR = 8%, OR = 0.86, 95% CI 
(0.82–0.91), p < 0.001 (Figure 3). The treatment effect was similar across the outcome of ventilation 
only, exposure to tamsulosin only, and other analysis methods (unadjusted and matched), with ORs 
consistently less than 1. Doxazosin, a non- selective ⍺1- AR antagonist hypothesized to have a greater 
efficacy than other ⍺1- AR antagonists, demonstrated a twofold stronger effect than tamsulosin, which 
blocks fewer ⍺1- adrenoreceptors.

Discussion
The results of this retrospective clinical study extend preclinical findings to support the hypothesis 
that ⍺1- AR antagonists may reduce morbidity and mortality in patients at risk of hyperinflammation 
(Konig et al., 2020). A challenge resolved by our retrospective analysis is that patients exposed to 
⍺1- AR antagonists may differ from unexposed patients in ways that might also affect their outcomes 
from respiratory diseases. Individuals are often prescribed ⍺1- AR antagonists for chronic diseases, and 
we consider only patients who used the medications for at least 6 months in the year prior (i.e., for 
a medical possession ratio of at least 50%) to the index hospital admission for pneumonia or ARDS 
where we measure patient outcomes. This makes it less likely that the unmeasured severity of respira-
tory illness at time of admission for our patient population differs substantially between exposed and 
unexposed groups; however, we cannot rule out such differences. We refer to confounders as factors 
that vary between patients exposed and unexposed to ⍺1- AR antagonists and also relate to patient 
outcomes. One important confounder is age, which in turn is related to other health conditions. 
For this reason, our research design (outlined in more detail in the Materials and methods section) 
includes several approaches to adjusting for observed demographic and health- related confounders.

Given that older men were generally using ⍺1- AR antagonists for reasons unrelated to ARDS, 
it was feasible to balance the exposed and unexposed groups on a large set of prognostically 
important covariates, reducing concerns that differences in outcomes might be due to confounding. 

https://doi.org/10.7554/eLife.61700
https://clinicaltrials.gov/ct2/show/NCT04365257
https://clinicaltrials.gov/ct2/show/NCT04365257
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all subjects in database from 2004-2019
(nM = 15,665,160, nO= 62,883,828)

*M: ICD9 only, O: ICD9&10

pneumonia inpatient 
diagnosis & age ≥ 18

(nM = 621,612, nO= 847,947)

1 year continuous 
medical enrollment

(nM = 291,839, nO= 620,780)

age (45-85) & male
(nM = 108,956, nO= 252,708)

prior exposure to 
⍺-blockers

(nM = 5,509, nO= 33,439)

no prior exposure to 
⍺-blockers

(nM = 98,172, nO= 201,554) 

ventilated
(nM = 421,  nO= 3,601)

ventilated
(nM = 8,358, nO= 25,046)

died
(nM = 100, nO= 1,832)

died
(nM = 2,039, nO= 11,495)

ARD inpatient diagnosis & 
age ≥ 18 (excl. 2017-2018)

(nM = 68,945, nO= 22,967) 

1 year continuous 
medical enrollment

(nM = 33,933, nO= 16,846)

age (45-85) & male 
(nM = 13,125, nO= 6,534)

prior exposure to 
⍺-blockers

(nM = 652, nO= 837)

no prior exposure to 
⍺-blockers 

(nM = 11,811, nO= 5,247)

ventilated
(nM = 80, nO= 45)

ventilated
(nM = 1,804, nO= 474)

died
(nM = 14, nO= 26)

died
(nM = 451, nO= 207)

patients either exposed or 
unexposed to ⍺-blockers
(nM = 103,681, nO= 234,993)

patients either exposed or 
unexposed to ⍺-blockers

(nM = 12,463, nO= 6,084)

cohort overlap
nM = 5,100, nO= 2,778

Figure 2. CONSORT flow diagram for four claims datasets where M represents MarketScan and O represents Optum; ARD represents acute respiratory 
distress. Note that patients are considered exposed to ⍺1- AR antagonists if they have a medication possession ratio ≥50 % in the prior year, and are 
considered unexposed if they have not taken any amount of ⍺1- AR antagonists in the prior year. ARD inpatient visits are not considered between 
2017–2018 as ARD ICD- 9 codes were being phased out while ICD- 10 codes for ARD were not yet commonly used. Within a single dataset (MarketScan 
or Optum), there exists some patient overlap for the two cohort diagnoses (pneumonia and ARD): 5,100 patients in MarketScan and 2,778 in Optum. 
This diagram only presents four of the five cohorts studied; the fifth cohort (the Swedish National Patient Register) uses a different set of inclusion/
exclusion criteria (see section Sweden National Patient Register for criteria description, and Figure 3—figure supplement 1 for information on dataset 
characteristics).

https://doi.org/10.7554/eLife.61700
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Nonetheless, there is an urgent need for randomized prospective trials to further test this hypothesis 
in patients with COVID- 19 and other lower respiratory tract infections. In such trials, early admin-
istration of ⍺1- AR antagonists prior to development of severe symptoms is preferred because the 
goal is to prevent, rather than treat, hyperinflammation- related damage. While this study could only 
examine medications received outside the inpatient environment due to dataset limitations, future 
work should attempt to address whether continued use of ⍺1- AR antagonists by hospitalized patients 
is important for preventing severe symptoms. Additionally, future work should consider whether the 
patients’ respiratory illness is community- or hospital- acquired (Whittle et al., 1997).
⍺1- AR antagonists with various receptor subtype characteristics have been used to treat millions of 

patients with BPH, hypertension, and other disorders. This history supports their safety profile (Yasu-
kawa et al., 2001), although caution is warranted in using any medication for the first time in a new 
disease such as COVID- 19. Given the poorly understood relationship between COVID- 19 severity and 
hypertension (Konig et al., 2020), it is important to note that nonselective (⍺1A=⍺1B=⍺1D) ⍺1- ARs (e.g., 
prazosin and doxazosin) are often primarily used to reduce blood pressure, whereas subtype- selective 
(⍺1A=⍺1D>⍺1B) ⍺1- ARs (e.g. tamsulosin) have fewer hemodynamic effects. However, given the known 
redundancy of catecholamine signaling (Grisanti et  al., 2011), we expect ⍺1- AR antagonists that 
inhibit all three ⍺1- AR subtypes (e.g. prazosin and doxazosin) to be more efficacious in the prevention 
of hyperinflammation.
⍺1- AR antagonists are inexpensive and administered orally, enabling widespread use if prospective 

trials support their efficacy and safety. Beyond COVID- 19 and other lower respiratory tract infections, 

Figure 3. Cohorts across datasets (MarketScan and Optum) associated with the same disease (ARD in top row, pneumonia in bottom row) were 
pooled using federated causal learning techniques described in Materials and methods. In each quadrant, we show: (left) plotted odds ratios (OR) 
with confidence intervals (CI), and (right) values for relative risk reductions (RRR), OR, CI, p- values (p), and sample sizes (n) for unadjusted, adjusted, 
and matched models, including any ⍺1- AR antagonists or specifically tamsulosin or doxazosin. We only study exposure to doxazosin in the pneumonia 
cohorts since there is insufficient statistical power to analyze the drug in ARD cohorts. Results are shown for outcomes of mechanical ventilation (left 
column) and mechanical ventilation leading to death (right column). In general, ⍺1- AR antagonists were associated with reducing risk of adverse events 
across exposures, outcomes, and modeling approaches. Each federated analysis yielded an OR point estimate below 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Patients from the Swedish National Patient Register with pneumonia.

Figure supplement 2. Patients from MarketScan Research Database with acute respiratory distress.

Figure supplement 3. Patients from Optum with acute respiratory distress.

Figure supplement 4. Patients from MarketScan Research Database with pneumonia.

Figure supplement 5. Patients from Optum with pneumonia.

https://doi.org/10.7554/eLife.61700
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⍺1- AR antagonists may also reduce hyperinflammation and their sequelae in adoptive cell therapy 
(‘cytokine release syndrome’) and autoimmune rheumatic disease.

Materials and methods
Study definitions
Patients were considered exposed if they were users of ⍺1- AR antagonists (doxazosin, alfuzosin, 
prazosin, silodosin, terazosin, or tamsulosin). ⍺1- AR antagonist usage is defined by having a medi-
cation possession ratio ≥50 % (i.e., a minimum prescribed supply covering six of the last 12 months) 
for a qualifying drug in the year prior to the first inpatient admission date for ARD or pneumonia. 
In additional analyses, we used the same definition to consider exposed patients who were taking 
tamsulosin or doxazosin. Patients are considered unexposed if they have never been prescribed 
the relevant drug class or drug within the year prior to the admission date. We exclude patients 
having a medical possession ratio greater than 0% and less than 50% of the relevant drug class or 
drug (equivalently, we exclude patients who do use ⍺1- AR antagonists, but for less than 6 months 
of the prior year). While all patients from the MarketScan, Optum, and Swedish National Patient 
Register (Patientregistret, 2021) databases were restricted to a 45–85 year age range, the Market-
Scan database only includes patients up to age 65 due to Medicare exclusion; we adjust for age in 
our analyses. The data used in this study do not include ⍺1- AR antagonist usage during the ARD or 
pneumonia admission.

The first instances of ARD or pneumonia inpatient admissions for each patient were identi-
fied using ICD codes. Because the MarketScan database only includes United States patient data 
through fiscal year 2016, we only used ICD- 9 codes to identify diagnoses from this database. The 
Optum database includes United States patient data from fiscal year 2004 through 2019, allowing 
for use of both ICD- 9 and ICD- 10 codes to identify diagnoses. The Swedish data contained only 
ICD- 10 codes. To identify ARD, we used the ICD- 9 code 518.82 and the ensuing ICD- 10 code of 
R.0603, noting that the latter code was only available from 2018 onwards; hence, the Optum ARD 
cohort included only patients identified by their first inpatient admission for an ARD diagnosis 
occurring either from 2004 to 2015 or from 2018 to 2019. To identify pneumonia, we used the 
Agency for Healthcare Research and Quality (AHRQ) pneumonia category for both ICD- 9 and 
ICD- 10 codes.

We considered the following potential confounders: age, fiscal year, total weeks with inpatient 
admissions in the prior year, total outpatient visits in the prior year, total days as an inpatient in the 
prior year, total weeks with inpatient admissions in the prior two months, and comorbidities identified 
from healthcare encounters in the prior year: hypertension, ischemic heart disease, acute myocar-
dial infarction, heart failure, chronic obstructive pulmonary disease, diabetes mellitus, and cancer. 
All comorbidities were defined according to ICD code sets provided by the Chronic Conditions Data 
Warehouse (Condition Categories, 2020). The numeric confounders relevant to prior inpatient and 
outpatient visits were log- transformed; all confounders were de- meaned and scaled to unit variance.

The outcomes of interest in this study included mechanical ventilation and death. Mechanical venti-
lation was tabulated as an outcome for patients receiving a procedure corresponding to one of the 
following ICD- 9 codes (967, 9670, 9671, 9672) or ICD- 10 codes (5A1935Z, 5A1945Z, 5A1955Z). When 
tabulating death outcomes, we note a difference in death encoding among databases. From the 
MarketScan database, we identified death outcomes by in- hospital deaths noted in claims records. 
From the Optum database, in- hospital death data were unavailable, so we instead identified death 
outcomes by whether a patient’s month of death (if observed) was within 1 month of the relevant ARD 
or pneumonia inpatient visit month. For both databases, our analyses studied the outcome of death 
(as defined above) occurring along with mechanical ventilation during inpatient stay. The Swedish 
National Patient Register’s in- hospital deaths were tabulated in a similar manner to the MarketScan 
database. We focused on death associated with respiratory failure to avoid counting deaths due to 
other diseases (many of the patients were hospitalized for other reasons), but note that our findings 
are robust to outcomes defined instead by all- cause mortality, with OR <1. This analysis mirrored our 
prospective trial design (Prazosin to Prevent COVID- 19 (PREVENT- COVID Trial); https:// clinicaltrials. 
gov/ ct2/ show/ NCT04365257).

https://doi.org/10.7554/eLife.61700
https://clinicaltrials.gov/ct2/show/NCT04365257
https://clinicaltrials.gov/ct2/show/NCT04365257
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Unadjusted analysis
In our baseline unadjusted analysis, we used Fisher’s exact test to compare the probability of outcome 
occurrence with ⍺1- AR antagonist exposure versus without. Fisher’s exact test and the associated 
non- central hypergeometric distribution under the alternative provided the odds ratios, confidence 
intervals, and p- values (one- sided) reported for individual cohorts. We additionally computed the 
relative risk reduction (RRR).

Adjusted analysis
We nonparametrically estimated (using generalized random forests Athey et  al., 2019) propen-
sity scores and restricted analyses to those individuals with probabilities of being exposed (and of 
receiving the unexposed condition) between the maximum of the 1st percentiles and the minimum 
of the 99th percentiles of propensity scores across exposed and unexposed groups (Stürmer et al., 
2010). This (propensity score trimming) step prevents the comparison of individuals with an extremely 
low estimated chance of receiving one of the three exposures. We refer to this as our reduced sample. 
We note that our results are robust to different definitions of propensity score trimming, such as 
restricting to propensity scores between 0.01 and 0.99.

On the reduced sample, we then apply estimation techniques designed for causal inference to 
compare the probability of outcome occurrence with ⍺1- AR antagonist exposure versus without. 
Specifically, we invoke inverse propensity- weighting, which reweights the unexposed population 
such that on average, the reweighted population more closely resembles the exposed population in 
terms of observed characteristics. Doing so yields better balancing of covariates, as seen in the pre- 
and post- inverse- propensity- weighting comparison in Figure  3—figure supplement 2 (ii)–5(ii). To 
obtain an odds ratio, we fit an inverse propensity- weighted logistic regression model. This approach 
is ‘doubly robust’ in that it yields valid estimates of causal effects if we have (1) observed all relevant 
confounders and (2) either one of the logistic regression model or the propensity score model is 
correctly specified. To estimate confidence intervals we used a Wald- type estimator. To obtain one- 
sided p- values we invoked classical asymptotic theory.

Matched analysis
An alternative approach comparing patients exposed to ⍺1- AR antagonists with unexposed patients 
who are as similar as possible—and thus mimicking a randomized controlled trial—involves statistical 
matching, where each exposed patient is compared to a set of ‘nearest neighbors’ measured in terms 
of characteristics. This approach avoids making specific functional form assumptions about the rela-
tionship between characteristics and outcomes (Stuart, 2010). Specifically, on the reduced sample, 
we performed a 5:1 matching analysis (Stuart, 2010), assigning five unexposed patients to each 
exposed patient (i.e., patients exposed to any ⍺1- AR antagonist or specifically tamsulosin or doxaz-
osin) and then comparing the outcome of the exposed patient to the average outcome for matched 
unexposed patients. We required an exact match on patient age and then used a greedy, nearest 
neighbor approach based on Mahalanobis distance with a caliper of 0.2 on the remaining covariates 
(Ho et al., 2011). We then used the Cochran- Mantel- Haenszel (CMH) test on this matched sample to 
provide the odds ratios, 95% confidence intervals, and p- values associated with the hypothesis of no 
effect.

To elaborate, the CMH test can be thought of as a generalization of the chi- square test for asso-
ciation (Mantel and Haenszel, 1959). Fisher’s exact test considers single 2 × 2 contingency tables 
containing the counts for two dichotomous variables, specifically an outcome indicator and an expo-
sure indicator (for the setting in this paper). In contrast, the CMH test applies to an array of k contin-
gency tables such that the 2 × 2 × k array of tables represents a stratification of the data into k groups 
or matched pairs that can be considered comparable (typically groups are defined by the realization 
of some set of categorical variables) aside from their outcome and exposure values. For each single- 
source (e.g., MarketScan or Optum) matched model we compiled 2 × 2 contingency tables for expo-
sure and outcome values for the matched pairs obtained exclusively from that database. We then 
conducted a CMH test on each array of 2 × 2 contingency tables separately. Let kM represent the 
number of such tables in the MarketScan data set and kO be the number of such tables in the Optum 
data set. In both cases k corresponds to the number of exposed observations for which suitable 
matches could be identified.

https://doi.org/10.7554/eLife.61700
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Federated analysis
Pooling the unadjusted models leveraged the CMH test by considering all observations from each 
data set to be ‘matched’ with other observations from the same data set according to one categorical 
variable: the source database. Thus, each database contributed a single 2 × 2 contingency table to 
form the 2 × 2 × 2 array evaluated by the CMH test.

To pool the MarketScan and Optum adjusted models, we calculated the pooled coefficient and 
variance of the exposure using inverse variance weighting (Hartung et al., 2011). Let  ̂βi  and  Var(β̂i)  
be the estimated coefficient and variance of the exposure on dataset i. The pooled coefficient of the 
exposure is

 
β̂pooled =

∑
i
β̂i/Var(β̂i)

∑
i

1/Var(β̂i)
,
  

and the pooled variance of the exposure coefficient is

 
Var(β̂pooled) = 1∑

i
1/Var(β̂i)

.
  

To pool the MarketScan and Optum matched models, we concatenated the 2 × 2 contingency 
tables for the matched pairs from MarketScan with the 2 × 2 contingency tables for the matched pairs 
from Optum. In this manner, we effectively pooled the two exposed populations and their matched 
unexposed populations without ever combining the raw data in any way. Of note, combining raw data 
was prohibited by both data use agreements. Matches for exposed patients came exclusively from 
each exposed patient’s source data set. The CMH test effectively processed a 2 × 2 × (kM+ kO) array 
of contingency tables.

Finally, we pooled the relative risk reductions (RRR) estimated from the two data sets using inverse 
variance weighting of the respective RRRs contributed from separate MarketScan and Optum anal-
yses. First let relative risk reduction (RRR) be defined as

 
R̂RR = p̂y−p̂x

p̂y
= 1 − p̂x

p̂y
,
  

where X corresponds to the exposed group and Y corresponds to the unexposed group. Next, the 
variance of the RRR estimate can be derived as the variance of a ratio of two binomial proportions:

 
Var(�RRR) = Var

(
p̂x
p̂y

)
= 1

nx

p̂x(1−p̂x)
p̂y

2 + 1
ny

p̂x
2·p̂y(1−p̂y)

p̂y
4 .

  

Finally, multiple RRR estimates are pooled using inverse variance weighting:

 
R̂RRpooled =

∑
i
�RRRi/Var(�RRRi)

∑
i

1/Var(�RRRi)
.
  

Sensitivity analysis
To assess the robustness of our results to alternative approaches to estimating causal effects under 
the unconfoundedness assumption (Steegen et al., 2016), we explored methods including inverse 
propensity- weighted (IPW) averaging of outcomes as well as the (doubly robust) augmented inverse 
propensity- weighted (AIPW) estimator, where we used alternatives such as logistic regression and 
non- parametric causal forests (Wager and Athey, 2018). To assess invariance of our results to defini-
tional choices, we adjusted the definition of exposure to ⍺1- AR antagonists (e.g., requiring regular use 
of ⍺1- AR antagonists within the prior 3 months rather than 12 months, or excluding ⍺1- AR antagonist 
users who simultaneously take one of the 12 most common drugs appearing in the cohorts studied) as 
well as the definitions of certain confounders (e.g., combining three cardiovascular confounders into 
one indicator, including different metrics of prior inpatient or outpatient stays, including comorbidity 
severity indices, or including additional comorbidities such as HIV infection). The results using these 
alternate methods and definitions were consistent with those presented in the results section.

Further, we sought to observe the time course of health decline in the exposed and unexposed 
groups (quantified as the number of inpatient visits in the months prior to a patient’s target admission 

https://doi.org/10.7554/eLife.61700
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date). This analysis shows similar temporal trends for the exposed and unexposed groups, indicating 
that neither group was declining more rapidly than the other; see Figure 4.

Lastly, following Rosenbaum and Rubin, 1983, we assessed the sensitivity of our estimate of the 
treatment effect to the presence of an unobserved confounder. We estimated the E- value (Vander-
Weele and Ding, 2017), which represents ‘the minimum strength of association on the risk ratio scale 
that an unmeasured confounder would need to have with both the treatment and the outcome to 
fully explain away a specific treatment- outcome association, conditional on the measured covariates’ 
(VanderWeele and Ding, 2017). The ORs (and corresponding confidence interval) are defined by 
the relative odds of occurrence of an outcome (we focus on ventilation and death) given exposure to 
⍺1- AR antagonists. We calculated the E- value on both the OR point estimate and confidence interval, 
each of which has its own interpretation. The minimum odds ratio necessary for an unmeasured 
confounder (equally associated with both alpha- blocker exposure and the outcome) to move the 
estimated treatment effect to the null (i.e., OR = 1) is 2.2 for the federated ARD cohort and 1.6 for the 
federated pneumonia cohort; our findings could not be fully explained by a weaker confounder. The 
minimum odds ratio necessary for an unmeasured confounder to yield a confidence interval including 
1 is an E- value of 1.1 for the federated ARD cohort and 1.4 for the federated pneumonia cohort; we 
continue to reject the null of no treatment effect in the presence of weaker confounding.

Figure 4. We plot the proportion of exposed and unexposed patients having any inpatient admissions a certain number of months prior to the first ARD 
or pneumonia admission date, and present corresponding confidence intervals. Both exposed and unexposed groups had similar trends of declining 
health leading up to the target admission date, where health decline is defined as having more frequent inpatient visits.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. We plot the average residuals of inpatient visits after controlling for age effects (as well as age squared and age cubed) for 
exposed and unexposed patients having inpatient admissions a certain number of months prior to the first ARD or pneumonia admission date, and 
present corresponding confidence intervals.

https://doi.org/10.7554/eLife.61700
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Sweden National Patient Register
The Swedish National Patient Register differed from the MarketScan and Optum databases in several 
key ways that motivated slight modifications to the analysis. First, we had access to data from 2006 
to 2012, during which time the US used ICD- 9 and Sweden used ICD- 10. Second, in Sweden, ventila-
tion is not often coded, so we instead only considered the outcome of in- hospital death, which likely 
underestimates the effect size due to deaths from other causes. Nonetheless, the basic results are 
preserved in this complementary data set. Results are reported in Figure 3—figure supplement 1.
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