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The tilt illusion arises from an efficient reallocation of

neural coding resources at the contextual boundary

Ling-Qi Zhang1, 2, Jiang Mao2, Geoffrey K. Aguirre3, and Alan A. Stocker2

1Janelia Research Campus, Howard Hughes Medical Institute
2Department of Psychology, University of Pennsylvania
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Abstract

The tilt illusion — a bias in the perceived orientation of a center stimulus induced by an oriented

surround — illustrates how context shapes visual perception. While the tilt illusion has been the

subject of quantitative study for over 85 years, we still lack a comprehensive account of the phe-

nomenon that connects its neural and behavioral characteristics. Here, we demonstrate that the

tilt illusion originates from a dynamic change in neural coding precision induced by the surround

context. We simultaneously obtained psychophysical and fMRI responses from human subjects

while they viewed gratings in the absence and presence of an oriented surround, and extracted

sensory encoding precision from their behavioral and neural data. Both measures show that in

the absence of a surround, encoding reflects the natural scene statistics of orientation. However,

in the presence of an oriented surround, encoding precision is significantly increased for stimuli

similar to the surround orientation. This local change in encoding is sufficient to accurately predict

the behavioral characteristics of the tilt illusion using a Bayesian observer model. The effect of

surround modulation increases along the ventral stream, and is localized to the portion of the vi-

sual cortex with receptive fields at the center-surround boundary. The pattern of change in coding

accuracy reflects the surround-conditioned orientation statistics in natural scenes, but cannot be

explained by local stimulus configuration. Our results suggest that the tilt illusion naturally emerges

from a dynamic coding strategy that efficiently reallocates neural coding resources based on the

current stimulus context.
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Introduction

Human perception is significantly influenced by sensory context. A classic demonstration is the

tilt illusion, in which the perceived orientation of a center stimulus is altered by the orientation of

a surround1. Previous investigations of the tilt illusion have mainly focused on how surround con-

text alters the response characteristics of individual neurons. For example, orientation-selective

neurons in early visual cortex both suppress their responses close to, and shift their tuning pref-

erences away from, the contextual orientation2,3,4,5. The non-classical receptive field (RF) is a

closely related phenomenon in which neural responses evoked by stimuli within the RF exhibit

complex dependencies upon content outside the RF6,7. These surround-dependent changes in

neural response have been attributed to divisive gain control8, which removes redundancies in

neural signals by a normalization mechanism4,9.

Connecting these observations at the level of single neurons to perceptual behavior, however, is

challenging. Doing so requires specific assumptions regarding how sensory information is both

represented (i.e., encoded) and interpreted (i.e., decoded) by neural populations at different pro-

cessing stages across the sensorimotor stream. Practically, it also requires the difficult task of

recording from large populations of sensory neurons under contextual modulation. Therefore,

previous modeling work has approached this problem by relying on simulated neural population

responses instead10,11. Generally, we lack a coherent theoretical framework that provides a func-

tional and teleological account of the tilt illusion at the level of the observer, and quantitatively

connects empirical measures of neural population responses and behavior.

Here, we provide this synthesis by studying orientation perception with simultaneous measure-

ments of psychophysical behavior and neural activity using functional Magnetic Resonance Imag-

ing (fMRI). We analyzed these data within an information-theoretic framework. Specifically, we

extracted the Fisher information (FI) of orientation encoding as a measure of encoding accuracy

from both behavioral responses and neural activity patterns. We computed “behavioral FI” based

on a lawful relationship between FI and the bias and variance of psychophysical stimulus esti-

mates12,13. We also obtained “neural FI” for early visual areas by fitting voxel-wise probabilistic

encoding models to the fMRI data14,15. Within this framework, behavioral and neural measures of

encoding accuracy can be directly compared to each other, and (via the efficient coding hypoth-

esis) to orientation priors measured from natural scenes16,17. Furthermore, we can leverage the

retinotopic organization of occipital cortex to determine where potential changes in neural encod-

ing accuracy arise relative to the spatial structure of the stimulus.

Our results show that neural and behavioral measures of encoding accuracy are qualitatively sim-
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ilar across all conditions tested. In the absence of an oriented surround, orientation encoding pre-

cision reflects the orientation statistics of natural scenes. However, in the presence of a spatially

oriented surround, encoding accuracy significantly increases at the surround orientation in a way

consistent with the conditional orientation statistics of spatially adjacent regions of natural scenes.

The changes in encoding, however, cannot be explained by local effects of stimulus configuration

(i.e., “vignetting”). We further demonstrate that the change in encoding precision measured at the

neural level is sufficient to fully predict observer perceptual reports of the tilt illusion based on a

Bayesian observer model of orientation estimation18. Finally, we find that the change in neural

encoding occurs at the boundary between the center and surround of the stimulus, with its magni-

tude increasing along the ventral visual hierarchy. Our results support the notion that the tilt illusion

arises from an efficient reallocation of coding resources based on stimulus context.

Results

We conducted a delayed orientation estimation task inside the fMRI scanner while measuring

blood-oxygen-level-dependent (BOLD) activity (Fig. 1A). Trials began with a 1.5 second presen-

tation of a grating stimulus. The grating was presented within an annular surround consisting of

either non-oriented noise (baseline), or a grating with one of two fixed orientations (± 35 degrees

off vertical). Following a brief, blank delay, a probe stimulus (line) appeared, and subjects were

asked to rotate the probe using a two-button response pad to report their perceived orientation of

the grating. Every block of the fMRI acquisition consisted of 20 trials in one of the three fixed sur-

round conditions. The order of surround conditions was randomized and counterbalanced across

acquisitions. Each subject completed a total of 1,200 trials across six sessions of data collection.

Behavioral measure of orientation encoding accuracy

We first examined the perceptual behavior of subjects in the non-oriented surround (baseline)

condition. Fig. 1B depicts the estimation bias b(θ) as a function of the target orientation. Estimates

exhibited a well-known oblique bias, i.e., the perceived orientation of the grating was biased away

from cardinal (i.e., vertical and horizontal) orientations20,21,22,13. For example, when the target was

slightly rotated clockwise (positive) from the vertical, the bias was positive, indicating that subjects

perceived the orientation to be even more clockwise. Additionally, the standard deviation (SD) of

the estimates σ(θ) was higher at cardinal compared to oblique orientations (Fig. 1C).

We took advantage of the Cramer–Rao Lower Bound (CRLB) to quantify encoding accuracy based

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2024. ; https://doi.org/10.1101/2024.09.17.613538doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.17.613538
http://creativecommons.org/licenses/by-nd/4.0/


4

−90 −45 0 45 90
Orientation (deg)

−10

−5

0

5

10

8

10

12

0.1

0.2

0.3

ve
rti

ca
l

B C D

−90 −45 0 45 90
Orientation (deg)

−90 −45 0 45 90
Orientation (deg)

Cramer-Rao
Lower Bound

Orientation Estimation
[3.5 - 4.5] sec

Stimulus (1.5 sec) Blank Delay
[4.0 - 5.0] sec

A
Non-oriented 

Surround
Oriented Surround 

(± 35 deg)

Bi
as

 (d
eg

)  
 

S.
D

. (
de

g)
Bias b(θ) S.D. σ(θ) Behavioral FI 

Fi
sh

er
 In

fo
. 

OR

Figure 1: Experimental design and behavioral data analysis. A) Subjects (n = 10) performed a

delayed orientation estimation task across 1,200 trials during fMRI. Target (center) gratings were

presented within an annular surround of either non-oriented, spatially filtered noise pattern, or

one of two fixed grating orientations (±35 degrees off vertical). B) - D) Behavioral data for the

combined subject in the non-oriented surround condition; see Supplementary Fig. 6 for individual

subjects. B) Estimation bias b(θ) as a function of stimulus orientation. C) Standard deviation

σ(θ) of the estimates as a function of stimulus orientation. D) Fisher Information (square root,

normalized; denoted as J̃(θ)) quantifying orientation encoding precision, derived from estimation

bias and variance using the Cramer-Rao Lower Bound19,13 (see Methods). Shaded areas indicate

±SEM.

on behavioral data19. The CRLB describes the bounded, lawful relationship between estimation

bias b(θ) and variance σ2(θ) of an estimator, and the FI J(θ) of its sensory encoding as follows

(also see Methods):

J(θ) ≥ [1 + b′(θ)]2

σ2(θ)
. (1)

We have previously demonstrated13 that equating this lower bound with FI requires only the weak

and common assumption that the estimator and the subsequent response process (i.e., motor

control) are not corrupted by stimulus-dependent noise. Therefore, Eq.1 allows us to extract en-

coding accuracy in terms of FI from subject responses without the need to assume a specific

decoding model.
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We extracted this behavioral FI from the bias and variance data. We found that orientation encod-

ing in the non-oriented surround condition was non-homogeneous (Fig 1D): FI was highest at the

cardinal orientations, and lowest at the obliques. Because FI is inversely related to discriminabil-

ity11,23,12, our result is consistent with previous measurements of orientation discrimination thresh-

olds, which have consistently shown lower thresholds at cardinal than oblique orientations21,24.

Neural measure of orientation encoding accuracy

Next, we extracted neural measures of encoding accuracy from BOLD fMRI signals recorded dur-

ing the delay period. We defined regions of interest (ROIs) based on separately measured retino-

topic maps for each subject. Voxels from different visual areas within the visual eccentricity range

of the grating stimulus were selected. We first fit a voxel-wise probabilistic encoding model14,15

to the normalized BOLD activity, averaged between 4 and 8 seconds for each trial after stimulus

onset. Separate models were fit for each ROI, each subject, and each surround condition. The

encoding model describes the activity of each voxel as a weighted sum of responses from a set

of basis functions. Additionally, the model incorporates two sources of Gaussian noise: tuning-

dependent noise and voxel-wise residual noise. Collectively, this model defines a multivariate voxel

population encoding model p(m|θ) (Fig. 2A; see Methods, Eq. 11).

For any given pattern of voxel BOLD activity m, the encoding model defined a sensory log-

likelihood function l(θ) = log p(m|θ) (Fig. 2B). Previous studies have used the likelihood function

to decode both the stimulus and its associated uncertainty for orientation14, motion direction25,

and working memory content26 from BOLD activity. While not our main focus, we found that we

could reliably decode orientation from a range of visual areas, but not from two control (auditory

and motor) areas (Fig. 2C,D). Decoding performance was comparable between the three surround

conditions, but tended to be slightly higher for the oriented surround (Supplementary Fig. S1).

We used the orientation log-likelihood to derive neural FI. For each trial, we calculated the negative

second derivative of the log-likelihood function at the stimulus orientation (Fig. 2B). The neural FI

is the expected value of this negative second derivative. To compute the FI for the combined

subjects, we aggregated the results from individual participants and calculated the average within

a 25-degree window centered at various orientations (Fig. 2E; see Methods for details). Consistent

with behavioral FI (Fig. 1D), neural FI in the early visual cortex (V1 - V3) was highest around the

cardinal and lowest close to the oblique orientations, in the non-oriented surround condition.
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Figure 2: Neural data analysis. A) We described the voxel responses m using a population

encoding model14,15, denoted as p(m|θ). The normalized activity for each voxel mi was modeled

as a weighted sum of responses from a set of basis functions. We assumed that each basis

function was corrupted by channel noise ϵ. Additional variability of each voxel was modeled by

residual noise η. Model parameters were obtained by fitting the voxel data using a two-stage

procedure. B) The orientation log-likelihood of the model l(θ) = log p(m|θ) was obtained based on

hold-out trials. C) We could decode the orientation of the stimulus presented on each trial as the

orientation with highest likelihood, thus θ̂ = argmax l(θ). Here we show a scatter plot of the stimuli

orientation (x-axis) versus the decoded orientation (y-axis) from the early visual cortex (V1 to V3),

for all trials in the non-oriented surround condition from five subjects. D) Decoding correlation from

different ROIs in the visual cortex and two control ROIs (auditory cortex and primary motor cortex).

The box extends from the first to the third quartile of the average decoding correlation of all trials

across individual subjects, with the center line at the median. The whiskers indicate the farthest

data point. E) Fisher information (FI) of neural encoding was defined as the negative average

second derivative of the log-likelihood, J(θ) = −E[l′′(θ)]. Shown is the neural FI (normalized,

square root) of early visual cortex (V1 - V3) for the combined subject in the non-oriented surround

condition. Error bars indicate ±SEM. See Methods for details.
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Figure 3: Comparison between the orientation priors derived from photographic images, the be-

havioral FI, and the neural FI in the non-oriented surround condition. For all panels, we assumed

vertical symmetry and combined the data from corresponding counter-clockwise and clockwise

orientations. A) Orientation priors measured in different visual environments, reproduced from

Girshick et al. 28 . B) Behavioral FI calculated from the estimation data (same as in Fig. 1D). C)

Neural FI in the early visual cortex calculated from the voxel encoding model for our data (Fig. 2E),

and another dataset14. D) Neural FI for different visual areas. The data plotted are for the com-

bined subject, shaded area and error bars indicate ±SEM. All FI curves represent the normalized,

square root of Fisher information, J̃(θ).

Efficient encoding of orientation

In the previous sections, we demonstrated that in the non-oriented surround (baseline) condition

both behavioral and neural measures of FI show similar, non-uniform patterns as a function of

orientation. What is the origin of this non-homogenoues encoding pattern, and in particular, the

emphasis for cardinal orientations? The efficient coding hypothesis suggests that there is a direct

relationship between stimulus prior p(θ) and encoding FI for neural codes that aim for an optimal

stimulus representation given resource constraints16,17,27:

p(θ) ∝
√

J(θ). (2)

Thus, the normalized, square root of FI, J̃(θ), can be interpreted as the inferred orientation prior

assuming an efficient neural encoding29, which allows for a direct comparison with other estimates

of the orientation prior. For example, Figure 3A shows the statistics of local visual orientation

computed over large subsets of photographic images containing more or fewer natural objects28.

In both natural and human-made environments, the prior probability of cardinal orientations is

higher than that of oblique orientations.

We found that the behavioral FI pattern in the non-oriented surround condition resembled these
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environmental priors (Fig. 3B), which is consistent with the efficient coding hypothesis. Similarly,

we observed the same qualitative match for the neural encoding accuracy (neural FI) in early visual

cortex (V1 - V3), which was confirmed by the same analysis of a previously reported dataset14

(Fig. 3C). Lastly, to assess whether the orientation prior was reflected across different visual areas,

we obtained the neural FI separately for three groups of ROIs, organized along the visual ventral

hierarchy (Fig. 3D). We found a strong cardinal emphasis in the neural FI of areas V2 and V3, and

hV4 and VO1/2; the neural FI in these areas was most similar to the orientation prior in natural

scenes.

Surround modulation of orientation encoding

We now consider the tilt illusion by examining the behavioral and neural data from the oriented

surround conditions (Fig. 4). As in the previous analysis, we assumed symmetry around the verti-

cal meridian and also aggregated the data measured from the two symmetric surround orientation

conditions (i.e., positive angles for the +35 deg condition and negative angles for the -35 deg con-

dition). We denote the 90-degree orientation range (vertical to horizontal) containing the surround

orientation as "near-surround", and the opposite range as "far-surround", respectively.

The oriented surround altered both the bias and variance of the orientation estimates of the center

grating, especially for orientations close to the surround (compare Figs. 1B,C and Fig. 4A). The

changes are consistent with well-known characteristics of the tilt-illusion1,30, showing a strong

repulsive bias near the surround orientation and a subtle attractive bias further away (see also

Supplementary Fig. S2A). We again used Eq.1 to extract behavioral FI from the estimation bias

and standard deviation shown in Fig. 4A. We found that the oriented surround leads to a significant

increase in encoding precision close to the surround orientation, while the overall FI pattern – in

particular for the "far surround" range – remains unchanged (Fig. 4B). This is particularly apparent

when plotting the behavioral FI for both the near- and far-surround range alongside the FI for the

non-oriented surround (baseline) condition (Fig. 4C).

This characteristic change in orientation encoding is also present at the neural level. We derived

the neural FI by fitting a separate set of voxel encoding models to the fMRI data collected in the

oriented surround condition. We found a significant effect of surround modulation on encoding

accuracy in several areas of early visual cortex. Consistent with the behavioral measure, neural FI

is substantially increased within a narrow window near the surround orientation as compared to the

non-oriented surround (baseline) condition (see Methods). The magnitude of this effect increases

along the visual ventral stream with an apparent peak in the combined area hV4/V01/V02 (Fig. 4D,
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Figure 4: Orientation encoding in the tilt illusion. We analyzed the behavioral and neural data in the

oriented surround condition in the same way as in the non-orientated condition before (combined

subject). A) Estimation bias b(θ) and standard deviation σ(θ) as a function of the orientation

of the center grating. The dashed line indicates the orientation of the surround. B) Behavioral

FI, calculated from estimation data. "Near-surround" refers to the 90-degree orientation range

(vertical to horizontal) on the side of the surround orientation, and "far-surround" refers to the 90-

degree range on the side opposite to the surround orientation. Gray-shaded area indicates a 25-

degree window (between 22.5 - 47.5 degree) centered at the surround orientation. C) Comparison

of the behavioral FI between near-surround and far-surround orientations in the oriented and non-

oriented (baseline) surround conditions. D) The relative percentage change in neural FI within the

gray-shaded area, for different ROIs in the visual cortex, and two control ROIs. E) Comparison of

neural FI along the visual ventral stream, between the near-surround side, far-surround side, and

the baseline condition. Shaded areas and error bars indicate ±SEM. See Supplementary Fig. S6

and Supplementary Fig. S7 for comparison of behavioral and neural FI of individual subjects.
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Figure 5: Surround modulation for ROIs at different stimulus eccentricities. A) Spatial configuration

of center-surround stimuli used in our experiment. The center (target) extends from 1.5 to 7

degrees of visual angle in radius. The surround extends from 7 to 12.5 degrees radius. The orange

area marks the center-surround contextual boundary (5 to 9 degrees). B) - C) Voxels from within

area V1 - V3 were selected based on the center and size of their pRFs (see Methods). B) Average

decoding correlation for all subjects using voxels with ROIs at different stimulus eccentricities. C)

The relative change in neural FI with respect to the baseline near the surround orientation for

different ROI eccentricities. Error bars indicate ±SEM.

Fig. S3A-B). Particularly in these latter areas, the encoding pattern (Fig. 4E) are remarkably similar

to the behavioral FI (Fig. 4C).

We further examined how the change in neural encoding precision depended upon which part

of the stimulus was encoded. We computed neural FI for different subsets of voxels with differ-

ent eccentricity ROIs based on the center and size of their population receptive fields (pRF; see

Methods). We found that encoding precision computed for voxels with pRFs exclusively within the

surround region did not exhibit any effect of surround modulation (Fig. 5C, > 9 and > 15). Similarly,

encoding precision extracted for voxels with pRFs strictly within the center remained unaffected by

the surround (Fig. 5C, < 5 and < 1.5). In contrast, encoding precision for voxels at the contextual

boundary were strongly modulated (Fig. 5C, 5 - 9). This suggests that changes in neural FI are

driven by modulation of the center encoding through interactions between center and surround re-

gions, and that these modulations are spatially localized to the area close to the center-surround

contextual boundary.
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Figure 6: Predicting the tilt illusion from the neurally measured encoding precision. A) We used the

extracted neural FI of areas hV4/VO1/VO2 in the non-oriented surround condition (baseline) and

oriented surround condition to predict subjects’ behavior (i.e., mean and standard deviation of their

orientation estimates) based on a recent state-of-the-art Bayesian observer model for orientation

estimation18. Data and predictions are for the combined subject. B) Predicted bias and standard

deviation. C) Measured estimation bias and standard deviation, replotted from Fig. 1 and Fig. 4.

Gray curves indicate the baseline and red curves indicate the oriented surround condition. Shaded

areas represent ±SEM.

Predicting the tilt illusion from neural encoding accuracy

So far, we have established a tight correspondence between behaviorally and neurally estimated

encoding accuracy. We have shown that the tilt illusion coincides with a consistent, characteristic

increase in encoding precision for orientations similar to the surround orientation. To demonstrate

a causal role of these encoding changes, we tested whether the observed neural changes in

FI can directly predict the psychophysical reports of the tilt illusion (Fig. 6A). We employed a

recently developed Bayesian observer model for orientation estimation18. The model assumes

that encoding is efficient (Eq. 2), which jointly constrains the model’s likelihood function and prior

distribution. Thus, for any given function of the encoding precision (e.g., measured as FI) the model

is tightly constrained and able to make quantitative predictions of subjects’ orientation estimates.

We set the encoding precision of the model to reflect the neural FI measured for areas hV4/VO1/2

(Fig. 4). We first used the data from the baseline condition to determine the remaining free global

parameters of the model (e.g., overall sensory noise). Then, we updated the modeled encoding
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precision to match the neural FI measured for the surround condition. The model output provided

predictions of the perceptual bias and standard deviation in the absence and presence of an

oriented surround (see Methods for more details.). As shown in Fig. 6B, the model successfully

recapitulated the pattern of estimation bias and standard deviation in the baseline condition (gray

lines), which confirms the result of the previous study18. Moreover, it accurately predicted the

detailed, characteristic changes in bias and standard deviation observed in the tilt illusion (red

lines). This included the repulsive bias near the surround orientation (as indicated by the positive

slope of the bias curve; one of the most prominent features of the tilt illusion), as well as the

accompanying increase in estimation SD (see also Supplementary Fig. S2).

Note that a key assumption of the model is that orientation reports are the result of a holistic in-

ference process that jointly operates at low- and high-level representations of the stimulus (i.e.,

stimulus orientation, but also orientation categories, such as vertical and horizontal orientations).

Here, we assumed that subjects also treat the surround orientation as an implicit category bound-

ary. We verified that incorporating both the dynamic change in encoding precision and the cate-

gorical boundary at the surround are necessary for the model to make correct predictions of the

tilt illusion effect (see Supplementary Fig. S4).

Neural mechanism of surround modulation

We have demonstrated that the tilt illusion arises from changes in orientation encoding in the pres-

ence of an oriented surround context. What is the origin of these changes in encoding accuracy?

One possibility is that the addition of an oriented surround naturally leads to increased coding ac-

curacy near the surround orientation because of the nonlinear processing of the visual system. In

this case, there are no changes in the response properties of sensory neurons, and the observed

difference in encoding accuracy is purely due to the spatial configuration of the stimulus. Alter-

natively, the presence of a surround context actively alters the orientation response properties of

sensory neurons4,6, resulting in the observed increase in coding precision.

The potential effect of spatial configuration is closely related to the issue of “stimulus vignetting”32,33,

in which the arrangement of the stimulus and its aperture can result in additional signals for orien-

tation decoding. To quantify the changes in the measured encoding FI that arise solely due to dif-

ferences in stimulus configuration (i.e., random vs. oriented surround) in the absence of changes

in neural responses properties, we implemented an image-computable voxel encoding model33.

The model first applies a decomposition to the stimulus image, generating multiple bands of fil-

ter responses with varying orientations and spatial frequency selectivity (a steerable pyramid34).
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Figure 7: The effect of surround modulation cannot be explained by stimulus configuration, but is

consistent with natural scene statistics. A) We simulated a “retinotopic map” of voxel responses

f(θ) by averaging across different orientation channels and spatial scales in a steerable pyramid

decomposition r(c, s) (see Methods). B) Changes in encoding FI (∆J̃(θ)) between stimuli with

oriented surround compared to stimuli with random surround (baseline) condition based on the

steerable pyramid voxel encoding model. The two ticks on the x-axis denote the surround orienta-

tion (+35 deg) and the orientation orthogonal to the surround (-55 deg). C) Changes in behavioral

FI and neural FI with surround modulation compared to the baseline condition. D) Probability dis-

tribution of the angular difference in orientation between the center and surround regions of natural

images (adapted from Felsen et al. 31). Shaded area and error bars indicate ± SEM.

A map of voxel responses can then be obtained by averaging across these bands. While each

voxel in this construction is not orientation-selective, the pattern of responses across voxels as

the grating rotates can still provide information about grating orientation. We again quantify this

information using FI. (Fig. 7A, see Methods).

For stimuli with a non-oriented surround, the encoding FI was non-zero (Supplementary Fig. S5),

reflecting the vignetting effect reported by Roth et al. 33 . Note, however, that the FI is uniform

across orientation because any effect of stimulus configuration in the non-oriented condition is

isotropic by design. Next, we calculated the changes in FI for stimuli in the oriented surround
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condition (Fig. 7B). We found that the oriented surround elicited a broad increase in FI for the near-

surround orientations compared to the baseline condition. At the same time, it also caused a broad

decrease in FI for the far-surround orientations, with the lowest point at the orientation orthogonal

to the surround (-55 degrees). This pattern was unlike the changes in FI we observed in both our

behavioral and neural data (Fig. 7C): we observed an increase in FI that was limited to a small

range around at the surround orientations, while encoding accuracy for far-surround orientations

remained essentially unchanged. Thus, the effect of stimulus configuration cannot explain the

measured changes in encoding accuracy. Rather, additional surround-induced mechanisms must

be at work that dynamically adjust the neural representation of stimulus orientation, similar to what

has been observed at the single-cell level2,3,4,5,6.

But why should the visual system actively increase encoding precision close to the surround ori-

entation? Again, we turn to the efficient coding hypothesis, which suggests that the increase in FI

should correspond to a local increase in the probability of those orientations. Spatial structures in

adjacent regions of natural images are indeed correlated35. Therefore, the observation of a spe-

cific surround orientation indicates a marked increase in the probability of the center orientation

being similar to that of the surround (Fig. 7D). We found that the change in encoding FI closely re-

sembles the probability distribution of orientation difference between center and surround regions

in natural images. The effective range of surround modulation is similar to the width of this distri-

bution (compare Fig. 7C, D). We thus conclude that the effect of surround modulation is consistent

with a form of dynamic efficient coding, in which coding resources are actively reallocated based

on contextual information.

Discussion

Our study reveals the sensory origin of the well-known tilt illusion. Based on concordant mea-

sures of encoding precision from behavioral and neural data, we demonstrate that the presence of

an oriented surround causes a dynamic change in neural encoding precision, such that sensory

representations remain optimized for both the long-term as well as the local surround-conditioned

statistics of orientations found in natural scenes. The strength of the neural encoding change in-

creases along the visual ventral stream, and is spatially localized to the boundary between the

center and contextual surround. Furthermore, we show that the reported encoding change is suf-

ficient to predict subjects’ behavior in the tilt illusion using a state-of-the-art Bayesian observer

model of orientation estimation. Our findings support the notion that the tilt illusion is a mani-

festation of a sensory system that dynamically updates its encoding characteristics according to
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stimulus context in order to maximize information capacity10,36,37,38,39.

We use Fisher information as a common metric to quantify sensory encoding precision, which

offers several advantages. First, it allows us to extract sensory encoding characteristics from par-

ticipants’ reports in our psychophysical orientation estimation task using a lower-bound relation

between FI and estimation bias and variance13. It also allows us to directly compare our re-

sults with discrimination threshold experiments, which directly quantify encoding precision, since

discrimination thresholds are inversely proportional to FI11. Previous studies have reported dis-

crimination thresholds with40 and without21,24 spatial context that are well aligned with our results.

Finally, Fisher information enables a direct comparison of encoding accuracy derived from simul-

taneously recorded behavioral and neural data.

While the extracted Fisher information precisely quantifies how the precision of sensory encod-

ing changes in the presence of an oriented surround, it does not specify the underlying neural

mechanisms responsible for these changes41. Previous studies have documented a diverse set of

possible mechanisms at the level of neuronal tuning characteristics including changes in response

gain, tuning preference, and tuning width5,7,31,42,43. All these changes combined and accumulated

across a neural population, as well as potential noise correlations44,45, then determine FI at the

level that we have measured in our study. Thus, our results provide tight quantitative constraints

for identifying the underlying neural mechanisms and their interactions across the population. Fu-

ture research that involves recordings from large neural populations under contextual modulation

will be necessary to more definitely establish connections between mechanisms operating at the

individual neuron level and the population-wide changes in encoding precision we have found

here.

Our results support converging lines of evidence suggesting that the sensory cortex forms efficient

representations of perceptual variables according to their long-term (prior) statistics in natural

scenes. For example, Harrison et al. 46 used electroencephalogram (EEG) measurements and

a forward encoding model to show that the tuning properties of cortical neurons can encode an

orientation prior. Similarly, based on single-unit recording data, Zhang and Stocker 29 illustrated

that a power-law, slow speed prior for visual motion is represented in macaque MT cortex via a

logarithmic encoding mechanism. What sets our results apart from these previous findings is that

they are obtained from a joint analysis of simultaneously recorded behavioral and neural data.

Whole brain fMRI recordings also allowed us to pinpoint and track the neural representation of

orientation priors across the representational hierarchy of human visual cortex.

Furthermore, we show that the context-induced changes in neural encoding ensure that the sen-

sory representation remains efficient with regard to the natural orientation statistics conditioned on
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the dominant surround orientation (Fig. 5). This offers a new normative understanding of context-

induced changes in neural encoding, and situate computational mechanisms such as lateral inhi-

bition and divisive gain control within a broader efficient coding framework9. Divisive normalization

is considered a fast mechanism that operates within local populations of sensory neurons4,7. This

is consistent with previous perceptual results showing that the tilt illusion follows dynamic changes

of the surround orientation up to 10 Hz47. It is also consistent with our finding that surround mod-

ulation is spatially confined to ROIs covering the center-surround stimulus boundary. Previous

behavioral studies of the tilt illusion further corroborate this by showing that stronger segmentation

cues at the center-surround boundary decrease the strength of the illusion48,49.

Although our study was focused on characterizing the changes in sensory encoding, we demon-

strate that these changes are sufficient to accurately predict subjects’ reports of their perceived

tilt illusion using a recently proposed Bayesian observer model18. The specific model currently

provides the most accurate quantitative descriptions of human behavior in orientation estimation

tasks. Its predictions support the causal role of the encoding changes in creating the tilt illusion.

It also suggests that the tilt illusion is not the result of sub-optimal inference processes but rather

reflects resource-rational behavior in a statistically structured environment. It is also worth noting

that the Bayesian observer model assumes that subjects’ reported orientation estimates are af-

fected by an ordinal/categorical assessments of the stimulus, i.e., whether the orientation of the

center stimulus is perceived to be clockwise or counter-clockwise of the surround orientation. This

suggests that in addition to modulating encoding, the surround stimulus also acts as a reference

in guiding subjects’ reports, which links the tilt illusion to contextual effects often referred to as

reference repulsion (e.g., Treue et al. 50). An implication is that the bias in reported orientation

estimates seen is in part non-perceptual, arising from downstream decision processes. As a re-

sult, the repulsive biases in subjects’ reported estimates may exaggerate the actual perceptual

distortions they experience with the tilt illusion.

Our results offer novel predictions regarding other aspects of contextual effects. In the case of the

tilt illusion, previous research has shown that different surround features — such as complex tex-

tures with a broader range of orientations51 — can also induce the illusion, although with different

magnitudes. We hypothesize that the perceptual characteristics of the illusion can be predicted

based on the shape of the conditional orientation distribution. For instance, a surround containing

a wider range of orientations is expected to predict a broader and more gradual increase in the

probability of the center orientation, resulting in weaker change in encoding and, consequently, a

smaller bias.

It is also worth considering the temporal homolog of the tilt illusion, i.e., the tilt aftereffect. In
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the tilt aftereffect, context is established temporally through a sequence of preceding stimuli with

fixed orientation52. The changes in orientation perception and neural tuning observed for the

tilt aftereffect are remarkably similar to those found in the tilt illusion10,53,39. Furthermore, the

conditional orientation distribution for temporally adjacent stimulus is very similar to that of spatial

contexts, also peaking at the dominant orientation of the context10,39. Therefore, we predict similar

changes in encoding precision for the tilt aftereffect as we have reported here for the tilt illusion.

We have recently shown that this is the case based on psychophysical threshold measurements39.

It will be intriguing to further validate this using fMRI data and to investigate the extent to which

the increase in contextual modulation along the visual ventral stream is also observed for the tilt

aftereffect.

Finally, our methods provide a general framework for understanding context effects across other

perceptual domains, including shape (e.g. the Ebbinghaus illusion54), motion55, color56,57, and

face perception58. Our results suggest that these phenomena all originate from context dependent

changes in sensory representation that reflect the context-conditioned statistics in natural visual

environments.
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Methods

Experiment

This study was approved by the University of Pennsylvania Institutional Review Board in accor-

dance with the Declaration of Helsinki, and all participants provided a written consent.
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Procedure

Subjects (n = 10) performed a delayed orientation estimation task conducted in the fMRI scanner.

All subjects had normal or corrected to normal visual acuity. On each trial, a 2 s initial delay

was followed by the presentation of an oriented grating stimulus for 1.5 seconds. The oriented

stimuli were presented within an annular surround of either non-oriented noise, or gratings with

one of two fixed orientations (± 35 degrees off vertical). After a blank delay period of 4-5 s, a

line probe appeared, and subjects used a two-button response pad to rotate the probe to report

their orientation estimates. The line probe remained on the screen for a duration between 3.5 and

4.5 s long (uniformly sampled). The blank delay period was configured such that the total time of

delay and response was 8.5 seconds. The visual stimulus and response task were created using

PsychoPy59.

Each fMRI acquisition consisted of 20 trials, with all trials within the acquisition using either the

non-oriented surround, or one of the two oriented surrounds. The assignment of surround con-

dition to acquisition order was counterbalanced within and randomized across subjects. Over six

sessions of fMRI scanning, subjects completed a total of 60 acquisitions, resulting in 1,200 trials

(400 trials for each surround condition).

Stimulus

Subjects viewed stimuli on an LCD monitor positioned at the end of the scanner bore via an

angled mirror mounted on the head coil. Each stimulus consisted of a mid-gray central region with

a radius of 1.5 deg, and a fixation dot of 0.35 degrees. An oriented grating target occupied the

area between 1.5 and 7 degrees radius, and had a spatial frequency of 1 cycle per degree. The

orientation was sampled uniformly between 0 and 180 degrees. Around the grating target was an

annular surround extending from 7 to 12.5 deg radius. It contained either non-oriented noise, or

one of the two fixed orientations (±35 deg), all with a spatial frequency matched to the center (1

cycle per degree). The entire stimulus was contrast-modulated at 1 Hz temporal frequency with a

peak contrast of 20%. See Fig. 5A for a schematic of the spatial configuration of the stimulus.
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Neuroimaging

MRI acquisition

Anatomical (T1w and T2w) and Blood Oxygen Level Dependent (BOLD) functional images were

acquired on a Siemens 3T Prisma scanner with a 64-channel head coil at the University of Penn-

sylvania. For T1w images, the tfl3d1 sequence was used with 0.8 mm isotropic voxels, TR = 2,400

ms, TE = 2.2 ms, and flip angle = 8 deg. For T2w images, the SPC sequence was used with

0.8 mm isotropic voxels, TR = 3,200 ms, TE = 563 ms, and flip angle = 120 deg. The functional

images were acquired with the spin echo imaging sequence epfid2d1, with 2 mm isotropic voxel

size, TR = 800 ms, TE = 37 ms, flip angle = 52 deg.

Retinotopic mapping

Each subject performed an additional scanning session devoted to retinotopic mapping. The stim-

ulus consisted of a black and white checkerboard pattern that contrast-reversed at 5 Hz temporal

frequency. This pattern was displayed against a mid-gray background within a circular aperture

21 degrees in diameter. The bar moved along both cardinal and oblique orientations, with the

sequence of bar positions played in reverse for the second half of the acquisition. Subjects were

instructed to focus on a central black fixation dot throughout the measurements and to respond

with a button press when the dot occasionally and briefly turned red. Each acquisition was 330

sec, and each subject completed 6 acquisitions. T1w and T2w anatomical images were also

acquired at the end of the retinotopic mapping session.

The retinotopic mapping data were analyzed using previously developed procedures60. Briefly, a

noise removal method based on independent component analysis was first applied to the func-

tional measurements61,62. Population receptive field (pRF) maps were then produced by fitting a

model that jointly estimates the voxel pRF and hemodynamic response function63,64. Lastly, the

pRF estimates were combined with the cortical surface topology derived from structural measure-

ments within a Bayesian framework to produce a final retinotopic map for each subject65. The

boundary of visual areas and the visual eccentricities of voxels were defined based on this map.
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MRI data preprocessing

We processed both the structural and functional data using the Human Connectome Project (HCP)

minimal processing pipeline66. This stage corrected for gradient nonlinearity, motion, and phase

encoding direction in volumetric images. Subsequently, voxels were mapped onto a cortical sur-

face template (fsaverage), with an additional 2 mm FWHM Gaussian surface smoothing applied.

The resulting time series was high-pass filtered with a cutoff of 150 sec to remove slow drifts in

the BOLD response, and linear regression against the motion regressors generated by the HCP

pipeline was used to further remove motion artifacts. To obtain the voxel activity pattern for each

stimulus presentation, the time series for each trial within a session was first aligned based on

stimulus onset, normalized (z-score) across the corresponding time point, and averaged between

4 and 8 seconds.

Region of interest

We defined regions of interest (ROIs) based on the retinotopic maps obtained using the procedure

described above. In our primary analysis, we selected voxels with pRF centers between 1 and

7 degrees of visual eccentricity, and from the following (groups of) visual areas: V1 + V2 + V3

(early visual cortex); V1 alone; V2 + V3; hV4 + VO1 + VO2; and V3A + V3B. Additionally, we

established two control areas, the auditory cortex (A1 + A2) and primary motor cortex (M1) based

on the cortical parcellation template produced by Glasser et al. 67 . In an alternative analysis, we

expanded the voxel pRF center to the range of 1 to 15 degrees of visual eccentricity, covering the

entire stimulus.

To understand the spatial profile of the surround modulation effect, we conducted an additional

analysis in which voxels within area V1 - V3 were chosen based on their pRF center c and size

σ in units of visual degrees (Fig. 5). To select voxels exclusively from within the center region,

we defined two ROIs using the criteria c + 2σ < 1.5, and 1.5 < c + 2σ < 5. To select voxels

exclusively from within the surround region, we defined two other ROIs with 9 < c− 2σ < 15, and

15 < c− 2σ < 30. Lastly, voxels at the center-surround boundary were selected as 5 < c < 9.

Theoretical framework

We modeled orientation perception as an encoding-decoding process68: Stimulus orientation θ is

encoded as a noisy neural measurement m, described by the encoding model p(m|θ). Perceptual
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estimates θ̂ are then formed through a decoding process θ̂(m) based on the neural measurement

m. The Fisher Information (FI) of the encoding is defined as:

J(θ) = −E[
∂2

∂θ2
log p(m|θ) | θ], (3)

and quantifies the encoding accuracy as a function of θ. For a neural population that encodes

information efficiently given limited encoding resources, there is a direct relationship between the

stimulus prior distribution p(θ) and encoding accuracy J(θ)16,17,69:

p(θ) ∝
√
J(θ). (2)

The goal of our analysis was to infer J(θ) independently from behavioral data (referred to as

behavioral FI) and neural data (referred to as neural FI). We elaborate on the methods we used to

derive these quantities in the sections below.

Behavioral data analysis

On each trial of the experiment, subjects produced an estimate θ̂ of the true stimulus orientation θ.

For a given θ across trials, those estimates formed a distribution p(θ̂|θ). We denote the bias b(θ)

and variance σ2(θ) of subjects’ estimates (Fig. 1) as

b(θ) = Ep(θ̂|θ)[θ̂]− θ (4)

and

σ2(θ) = Ep(θ̂|θ)[(θ̂ − E[θ̂])2]. (5)

Both are defined as a function of θ. To compute these quantities from response data, we applied

a sliding window analysis with a window size of 18 deg. The mean and variance were computed

within each window with the true θ being the center of that window.

Cramer-Rao lower bound

Given an encoding model p(m|θ) with FI J(θ), the Cramer-Rao Lower Bound (CRLB) states that

for an biased estimator θ̂(m) Fisher Information is bound from below19 as

J(θ) ≥ [1 + b′(θ)]2

σ2(θ)
. (1)
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Here b′(θ) denotes the derivative of the bias b(θ). Thus, the Cramer-Rao bound specifies a lawful

relationship between encoding accuracy and the bias and variance of an estimator13,12. To inter-

pret Eq. 1, we can denote g(θ) as the mean estimate Ep(θ̂|θ)[θ̂]. We have b(θ) = g(θ)− θ, and the

inequality Eq. 1 can be expressed as

J(θ) ≥ [1 + (g(θ)− θ)′]2

σ2(θ)
= (

g(θ)′

σ(θ)
)2 . (6)

For an unbiased estimator g′(θ) = θ′ = 1. In this scenario, there is an inverse relationship between

J(θ) and σ2(θ). When |g′(θ)| < 1, the estimator performs a local compression, leading to a

reduction in variance. Conversely, if |g′(θ)| > 1, the estimator expands the local space, causing an

increase in variance relative to 1/J(θ).

In our analysis, we assume the lower bound to be tight (or equally loose) for every θ. This allows us

to infer FI from the measured estimation bias and variance. We have previously shown that a wide

range of decoders, including those commonly used such as maximum likelihood and Bayesian

decoders, all attain the lower bound13. We independently applied CRLB to the estimation data

from the non-oriented and oriented surround conditions, obtaining two sets of behavioral FI curves

for the baseline (Fig. 1D) and the surround modulation condition (Fig. 4B), respectively. The

standard error (SEM) was estimated through a bootstrapping procedure that resampled the raw

data 500 times.

Lastly, unless stated otherwise, we report the normalized, square root of FI throughout this article

denoted as

J̃(θ) =

√
J(θ)∫

θ

√
J(θ)dθ

. (7)

This facilitates the comparison of FI measured for different conditions, but also highlights the rela-

tionship between encoding precision and prior distribution as proposed by efficient coding (Eq. 2):

J̃(θ) can be interpreted as the orientation prior for which the neural coding is most efficient. The

denominator,
∫
θ

√
J(θ)dθ, measures the amount of total encoding resources.

Neural data analysis

Voxel encoding model

We modeled the voxel activity pattern m based on a probabilistic encoding model developed pre-

viously in Van Bergen et al. 14 . We denote this model as p(m|θ). The model starts by assuming a
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set of basis tuning functions in orientation space:

fj(θ) = max[0, cos(π ∗ θ − ϕj

90
)]5, (8)

where θ is the stimulus orientation in degrees, ϕj denotes the orientation preference of the j-th

function. We use J = 8 in our analysis, with the preferred orientation spaced equally between 0

and 180 degrees.

The activity of each voxel mi was modeled as a weighted sum of the responses of the basis

function:

mi =
J∑

j=1

Wij(fj + ϵj) + ηi, (9)

where W is the weight matrix. The model incorporates two sources of noise: each basis function

is affected by independent channel noise ϵj with variance σ2: ϵj ∼ N (0, σ2); and the residual noise

in each voxel is modeled as η ∼ N (0, Ση). The residual covariance matrix is constructed as:

Ση(τ, ρ) = ρττT + (1− ρ)I ◦ ττT . (10)

The diagonal terms of Ση are τ2i , which represents the residual variance of each voxel i, whereas

ρ is a global correlation parameter such that the off-diagonal terms of are ρτiτj .

Together, this model defines p(m|θ) as a multivariate normal distribution:

p(m|θ;W,σ, τ, ρ) = N (m;µ(θ),Ω)

µ(θ) = W f(θ), Ω = σ2WW T +Ση(τ, ρ).
(11)

Model fitting

We fit separate encoding models to the voxel activity pattern obtained for every subject for each

surround condition, and at each ROI. Each surround condition had 400 trials, with the number of

voxels ranging from approximately 300 to under 2,000 depending on the ROI. A cross-validation

procedure was employed in all cases, where the 400 trials were divided into 20 folds. One fold

served as the hold-out data, while the model fitting was performed on the remaining folds. Orien-

tation decoding and Fisher information estimation were only conducted on the held-out data. This

process was iterated until each fold had become the hold-out data once. Lastly, to avoid poten-

tial biases introduced by the specific choice of basis function, four different encoding models with

phase-shifted tuning curves were fit, and results were obtained by averaging across them.
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The parameters of the encoding model were obtained using a two-step procedure14. The weight

matrix was first estimated through ordinary linear regression. Denote matrix X ∈ RN×J as the

responses of J basis functions across N trials, and matrix M ∈ RN×K as the activities of K voxels

across N trials, we have:

Ŵ = (XTX)−1XTM. (12)

In the second step, the remaining noise parameters σ, τ, ρ were estimated using a maximum like-

lihood produce given a fixed Ŵ :

σ̂, τ̂ , ρ̂ = argmax
σ, τ, ρ

N∑
i=1

log p(Mi|θi; Ŵ , σ, τ, ρ). (13)

The encoding model was implemented in PyTorch70, and the maximum likelihood was performed

using the sequential least squares programming algorithm in Scipy71. The model fittings are

computationally expensive, but can be sped up significantly on GPUs with PyTorch.

Fisher information

For each trial in the held-out data with true stimulus orientation θ∗ and voxel response m∗, the

orientation log-likelihood can be defined using the encoding model fitted to training data (Fig. 2B):

l(θ) = log p(m∗|θ; Ŵ , σ̂, τ̂ , ρ̂) . (14)

Orientation decoding was performed using the maximum likelihood decoder θ̂ = argmaxθ l(θ)

(see Fig. 2C - D). To obtain the neural Fisher information, we computed the negative second

derivative of the log-likelihood function evaluated at θ∗:

I(θ∗) = − ∂2

∂θ2
l(θ)|θ=θ∗ . (15)

This quantity I(θ∗) is called observed Fisher information72 (i.e., FI for a specific sample of m∗),

whereas the true Fisher information J(θ) is the expected value over I(θ): J(θ) = Em[I(θ)]. For

each condition in our experiment, we obtained 400 estimates of observed FI I(θ) across orienta-

tions. The values for J(θ) and its standard error (SEM) were calculated by averaging I(θ) within a

25-degree window centered at various orientations (e.g., Fig. 2E).

Consistent with the behavioral data analysis, we report the normalized neural FI J̃(θ) as defined in

Eq. 7. The only exception was the calculation of the surround modulation index in Fig. 4D, Fig. 5C,
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and Fig. S3A. In these cases, we computed the difference between surround and baseline in the

average, un-normalized I(θ) within a 25-degree window centered at the surround orientation (i.e.,

between 22.5 - 47.5 deg). This difference was then converted to a percentage change relative

to the average I(θ) across all orientations in the baseline. Statistical significance was assessed

using an unpaired t-test on the I(θ) samples within this 25-degree window.

Observer model for orientation estimation

We predicted bias and standard deviation of subjects’ perceived orientation reports using a re-

cently proposed Bayesian observer model18. In the following we provide a compressed description

of the model, and refer the reader to the original article for additional details.

The model assumes that orientation encoding is efficient based on the statistical (prior) distribution

p(θ) over orientation θ in the observer’s environment (Eq. 2). Moreover, it assumes that perception

and the downstream decision and control process operate holistically on all levels of the repre-

sentational hierarchy; here this includes a higher, categorical representation of orientation C (e.g.,

cardinal vs. oblique orientations) in addition to the feature level representation θ. Thus, the model

assumes that based on a sensory signal m the observer infers posterior beliefs at both levels

of the hierarchy, i.e., p(θ|m) and p(C|m), which then provide the information for the downstream

decision processes.

The orientation estimation task of our experiment requires the observer to adjust a probe stimulus

such that its orientation matches the perceived orientation of the center grating (test) (Fig. 1A).

The model assumes that the observer infers the posterior beliefs of both the orientation and the

category for each of the two stimuli, probe and test. As the observer adjusts the orientation

of the probe, they seek to report the probe orientation θp that minimizes the expectation of a

joint objective Ltot that reflects the mismatch between the two stimuli at both the feature and the

category level; hence

Ltot = (1− w)Lθ(θ, θp) + wLC(C,Cp) , (16)

where Lθ is defined as the cosine difference between the test and the probe orientation, and LC is

a fixed cost if test and the probe stimuli fall into different orientation categories but zero otherwise.

For the model simulations (Fig. 6, encoding precision and the orientation prior used for Bayesian

inference were determined by the neural FI of areas hV4/VO1/VO2 (Fig. 4) measured in the base-

line (non-oriented surround) and the oriented surround condition, respectively. In the baseline

condition, we closely followed the model specifications of the original study, assuming two orien-
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tation categories (clockwise and counterclockwise relative to vertical), and parameter values for

category overlap κcard and boundary noise κb similar to the values in Mao and Stocker 18 . The

encoding noise κi, the weight w of the categorical mismatch, and an additive motor noise κm were

adjusted so that the magnitude of the bias and standard deviation matched the data in the base-

line condition. We then predicted behavior in the oriented surround condition (tilt illusion) based on

this model, further assuming that the surround orientation created an additional category bound-

ary with relative sharp boundaries (high κsurr) as the surround is always present. The following

table list the values of all model parameters for simulating the tilt illusion:

Parameter Value

κi: sensory noise 10.5

κb: boundary noise 60

κcard: cardinal category overlap 2

κsurr: surround category overlap 24

w: categorical weight 0.72

κm: motor noise 48

Table 1: Model parameters used for the simulations shown in Fig. 6.

Voxel encoding model based on steerable pyramid

We estimated the changes in the measured encoding FI that arise only due to differences in

stimulus configuration (i.e., non-oriented vs. oriented surround) in the absence of any potential

change in neural responses properties. We follow the approach of Roth et al. 33 to create an

image-computable model of voxel encoding (Fig. 7A). For a given stimulus image we use the

steerable pyramid34 to create filtered responses at different orientations (c) and spatial frequency

(SF) bands (s). We used a complex pyramid and combined the real and imaginary parts to obtain

single energy-like filter responses. This yielded multiple filtered images indexed by c and s: r(c, s).

These images can be thought of as representing V1-like neuronal responses at every location of

the visual space, each with different orientation and spatial frequency selectivity.

To simulate voxel activity f(θ), we combined responses across these orientation and SF bands

as f(θ) =
∑

c,s r(c, s). This produced a final “retinotopic map” of voxel responses. In general,

each band r can be weighted differently, resulting in voxel selectivity over orientation and spatial

frequency. Here, we used equal weights as we are only interested in the difference between two

stimulus conditions. The encoding FI is defined as J(θ) = ||df(θ)/dθ||22, which is the FI assuming
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independent Gaussian response noise with unit variance for each voxel.

In our case, a steerable pyramid with 6 orientation and 6 SF bands was constructed for each

stimulus image (using Pyrtools73). The final response map f(θ) was obtained by averaging

over all orientation bands and SF bands 3, 4, and 5, as these SF bands exhibit the largest

(worst-case) changes in FI. To combine different SF bands, we downsampled response maps

at finer scales to match the resolution of the coarser scale. To compute the changes in FI, we

first computed J(θ)base using stimulus images with non-oriented surround. Note that J(θ)base is

non-zero, representing the vignetting effect reported by Roth et al. 33 , and is also uniform, since

any effect of stimulus configuration in the non-oriented condition is isotropic by construction. We

then computed J(θ)surr using stimuli with oriented surround. The change in was is calculated as

∆J(θ) = J(θ)surr −J(θ)base, and the results are shown in Fig. 7B. See Supplementary Fig. S5 and

the associated text for a more extensive discussion on the issue of stimulus vignetting, including

FI calculated separately at each spatial scale.

Code and data availability

The behavioral data and the preprocessed fMRI data from this study can be accessed through the

Open Science Framework: https://osf.io/9uqbd. The raw fMRI data are available upon request.

The software code developed for data analysis is available through GitHub:

https://github.com/lingqiz/orientation-encoding.
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Supplementary figures
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Supplementary Figure 1: Orientation decoding performance. A) Same as Fig. 2C, scatter plot

of the stimuli orientation (x-axis) versus the decoded orientation (y-axis) from the early visual

cortex (V1 to V3), for the two oriented surround (± 35) conditions. B) Same as Fig. 2D, but with

decoding correlation plotted separately for each of the three surround conditions within each ROI.

C) Histogram of decoding errors from V1 - V3, for the combined subject across the three surround

conditions.
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Supplementary Figure 2: Effect of surround modulation on orientation estimation. A) Difference in

estimation bias between the non-oriented surround and the oriented surround condition. B) Dif-

ference in the standard deviation of the orientation estimates between the non-oriented surround

and the oriented surround condition. The shaded area indicates ±SEM.
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Supplementary Figure 3: Neural encoding across visual areas with expanded eccentricity ROI. We

repeated the same analysis as in Fig. 4D - E, but expanded the eccentricity selection to between

1 and 15 degrees to cover the entire stimulus. A) The relative change in neural FI with respect to

the baseline near the surround orientation across different visual cortex ROIs. B) Comparison of

neural FI along the visual ventral stream, between the near-surround side, far-surround side, and

the baseline condition. Error bars indicate ±SEM.
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Supplementary Figure 4: Both the dynamic change in sensory encoding and the categorical

boundary are necessary for the correct model prediction of the tilt illusion. Panels show the pre-

dicted estimation bias and standard deviation of the observer model in the surround condition:

Solid gray lines represent the model prediction without assuming a change in sensory encoding

(i.e. using the encoding pattern from the baseline condition), while the dashed gray lines represent

the model prediction without assuming the categorical boundary at the surround orientation. The

solid red lines represent the prediction based on the full model (same as in Fig. 6). Both mecha-

nism are required to correctly predicts the characteristic repulsive bias in the tilt illusion.
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Supplementary Figure 5: The effect of stimulus configuration on encoding FI.

The neural basis of orientation decoding using functional imaging has been the subject of ongoing

debate32,33,74, with recent findings challenging the notion that decoding is based on sensitivity to

columnar-level neural tuning. In one sense, our results are independent of the outcome of this

debate: Our neural measures of orientation encoding show strong consistency with behavioral

data, indicating that regardless of the precise source of the orientation signal, it is indeed utilized by

downstream processes and reflected in behavior. Furthermore, there are several notable features

in our data that cannot be fully explained by stimulus and aperture configuration (i.e., vignetting)

alone. In this analysis, we calculated the encoding FI of the voxel encoding model based on

steerable pyramid decomposition at different spatial scales. The model is identical to that shown

in Fig. 7A, except the voxel responses are averaged over orientation channels at a single scale.

The encoding FIs are qualitatively similar in all cases: flat for the baseline, with a broad increase for

near-surround orientations, and a broad decrease for far-surround orientations. There are at least

three aspects of our data that are inconsistent with this “vignetting only” model. First, we observed

an anisotropy in orientation encoding under the non-oriented surround condition. Given that the

stimuli were designed to be isotropic (gray line), this effect must arise from anisotropies inherent in

the neural representation of orientation. Second, we found that the effects of stimulus configuration

in the oriented surround condition are broad and symmetrical at the surround and orientation

orthogonal to it (orange and yellow line), inconsistent with the local changes we observed. Third,

the model fails to replicate the increased effects of surround modulation across the visual hierarchy,

as the effects of stimulus configuration remain similar across spatial scales. Therefore, while we

do not rule out the possibility that stimulus configuration partially contributes to the tilt illusion,

additional mechanisms in neural coding are necessary to fully explain our results.
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Supplementary data for individual subject
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Supplementary Figure 6: Behavioral data for individual subject. The bias, standard deviation of

the orientation estimates, and the normalized behavioral FI for individual subject (N=10).
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Neural FI
(Individual Subject, N = 10) 
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Supplementary Figure 7: Neural FI for individual subject. The unnormalized neural FI from two

visual area ROIs (between 1 - 7 degrees for V2/V3 and hV4/VO1/2) for individual subject (N=10).
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