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LncRNA NEAT1 controls the lineage fates of BMSCs during
skeletal aging by impairing mitochondrial function and

pluripotency maintenance
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Aged bone marrow mesenchymal stem cells (BMSCs) exhibit aberrant self-renewal and lineage specification, which contribute to
imbalanced bone-fat and progressive bone loss. In addition to known master regulators of lineage commitment, it is crucial to
identify pivotal switches governing the specific differentiation fate of aged BMSCs. Here, we profiled differences in epigenetic
regulation between adipogenesis and osteogenesis and identified super-enhancer associated IncRNA nuclear-enriched abundant
transcript 1 (NEAT1) as a key bone-fat switch in aged BMSCs. We validated that NEAT1 with high enhancer activity was
transcriptionally activated by ATF2 and directed aged BMSCs to a greater propensity to differentiate toward adipocytes than
osteoblasts by mediating mitochondrial function. Furthermore, we confirmed NEAT1 as a protein-binding scaffold in which
phosphorylation modification of SOX2 Ser249/250 by CDK2 impaired SOX2/0CT4 complex stability and dysregulated downstream
transcription networks of pluripotency maintenance. In addition, by sponging miR-27b-3p, NEAT1 upregulated BNIP3L, BMP2K, and
PPARG expression to shape mitochondrial function and osteogenic/adipogenic differentiation commitment, respectively. In
extracellular communication, NEAT1 promoted CSF1 secretion from aged BMSCs and then strengthened osteoclastic differentiation
by extracellular vesicle delivery. Notably, Neat1 small interfering RNA delivery induced increased bone mass in aged mice and
decreased fat accumulation in the bone marrow. These findings suggest that NEAT1 regulates the lineage fates of BMSCs by
orchestrating mitochondrial function and pluripotency maintenance, and might be a potential therapeutic target for skeletal aging.
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INTRODUCTION

Age-related osteoporosis is characterized by net bone loss, a
proinflammatory microenvironment, and excessive adipose tissue
accumulation [1-3]. Adipocyte-enriched bone marrow during
skeletal aging is primarily attributed to dysfunctional self-renewal
and pluripotent differentiation of bone marrow mesenchymal stem
cells (BMSCs) that are more inclined to differentiate into adipocytes
rather than osteoblasts [4-6]. BMSCs lineage specification via
transcriptional control is strictly orchestrated by key molecular
signals to maintain bone-fat balance [7-9]. For example, RUNX2 and
ALPL serve as crucial transcription factors (TFs) to initiate the
osteoblastic lineage, while PPARy and PGC1-a are master regulators
of adipogenic differentiation. However, this does not explain the
inverse relationship between osteoblastic lineage commitment
accompanied by a coordinated inhibition of adipogenesis [10-12]
or the decision of ultimate differentiation fates [10, 13, 14]. Thus, it is
essential to explore the potential molecular switches that govern
BMSCs differentiation fate during skeletal aging.

Accumulating evidence demonstrates that the regulation of
mitochondrial dynamics and function is essential for BMSCs
differentiation determination and cellular senescence [15-18].
Mitochondria are highly dynamic organelles that undergo cyclic
fission-fusion and fragmentation-elongation and determine BMSCs
differentiation fates by regulating oxidative phosphorylation
(OxPhos) and energy metabolism [19, 20]. Aberrant fission and/or
fusion leads to mitochondrial dysfunction, and in turn pathological
BMSCs commitment and cellular senescence [16, 21-24]. Growing
evidence supports the cross-regulatory role of RNA transcripts
between nuclei and mitochondria [25]. Among the abundant
transcripts in the nucleoplasmic compartment, termed paraspeckles,
IncRNA nuclear-enriched abundant transcript 1 (NEAT1) retains
mMRNAs of nuclear-encoded mitochondrial proteins in response to
mitochondrial stress [26]. Meanwhile, NEATT1, as transcribed by ATF2,
regulates mitochondrial dynamics and function by influencing
paraspeckle numbers and assembly [25]. Therefore, the specific
molecular switches modulating BMSCs differentiation determination
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and cellular senescence by regulating mitochondrial function need
to be determined.

Transcriptional regulation of BMSCs for self-renewal and
differentiation demands precise coordination of key molecular
switches and state-specific gene expression patterns [27-29].
Pluripotency-related genes, including SOX2, OCT4, and NANOG,
serve as core TFs for self-renewal maintenance by promoting the
transcription of specific genes, whose downregulation also leads
to irreversible cellular senescence as it fails to maintain genomic
stability [30]. Importantly, in response to the induction of BMSCs
differentiation, lineage = commitment-associated  molecular
switches and transcription networks depend on multi-
spatiotemporal epigenetic responses of promoter and enhancer
regions. A previous study reported that NEATT is transcriptionally
controlled by super-enhancers (SEs) [31]. As large domains of
clustered enhancers, SEs regulate cell-type specific genes and
have been linked to control and definition of cell identity by
amassing rapid transcriptional effectors and mediating high
efficiency of transcriptional machinery [32-34]. Thus, we wanted
to explore whether SEs and related molecular switches are
involved in lineage commitment and self-renewal during
BMSCs aging.

Here, we profiled transcriptional and epigenetic regulation
differences between adipogenesis and osteogenesis and identi-
fied the SEs-associated IncRNA NEAT1 as a pivotal molecular
switch in BMSCs differentiation. We confirmed NEAT1 as a miRNA
sponge that significantly influences mitochondrial function,
adipogenesis and osteogenesis and as a protein-binding scaffold
connecting SOX2 and CDK2 and then deactivating core pluripo-
tency TFs. NEAT1 promoted CSF1 secretion by BMSCs and
strengthened osteoclast differentiation. Neat1 small interfering
RNA (si-Neat1) delivery effectively prevented age-related bone
loss. To our knowledge, this is the first evidence linking
mitochondrial stresses to pluripotency maintenance through
IncRNA NEATT1, contributing to the knowledge regarding lineage
determination of BMSCs during skeletal aging.

RESULTS

NEAT1 is an abundant marker gene during BMSCs
differentiation and senescence

To explore the fate switches involved in the adipogenic-
osteogenic imbalance in aged BMSCs, we profiled transcriptome
and epigenomics differences between osteogenesis and adipo-
genesis by analyzing single-cell RNA-seq, RNA-seq, DNase-seq,
Med1-seq, and H3k27ac-seq of human BMSCs (Fig. 1A). Dimen-
sional reduction analysis using t-distributed stochastic neighbor
embedding (t-SNE) and uniform manifold approximation and
projection revealed a diversity of undifferentiated and differen-
tiated BMSCs cell types (Fig. 1B). We mapped the differentiation
trajectories of undifferentiated BMSCs, osteogenic BMSCs, and
adipogenic BMSCs (Fig. STA). BMSCs clustering and biforked
trajectories indicated that adipogenic differentiation involved
isolating changes in gene expression compared to osteogenic
differentiation. Consistent with a previous study [35], at the
transcriptome level, undifferentiated BMSCs were closer to
osteoblasts than to adipocytes. In total, 1468 marker genes from
ten clusters displayed a dynamic expression pattern (Supplemen-
tary Table 1). Among them, more terminal clusters exhibited
differential gene expression levels of BMSCs markers, mitochon-
drial function, cellular senescence, and cell cycle-related genes, in
which IncRNA NEAT1 demonstrated significant and specific high
expression levels (Figs. 1C, S1B). Importantly, compared to
undifferentiated clusters, all terminal differentiation clusters
manifested significant upregulation of NEAT1 and were accom-
panied by cell marker loss, cell cycle arrest, and cellular
senescence (Figs. 1C, S1D). Pseudotime analysis of RNA-seq also
supported these findings, and the NEAT1’ shorter transcript

SPRINGER NATURE

NEAT1_1 (NR_028272) was the most abundant marker RNA
during BMSCs adipogenesis (Figs. 1D, S1C). Meanwhile, we
validated the upregulation of NEAT1 coupled with fat metabolism
and cell cycle regulation (Fig. STE). Additionally, NEAT1 but not
NEAT1_2 exhibited age- and terminal differentiation-associated
upregulation in human and mouse BMSCs (Figs. 1E-G, S1F-H).
gRT-PCR of the nucleus and cytoplasm and FISH assays further
demonstrated the transposition of NEAT1 from the nucleus to the
cytoplasm during BMSCs senescence and differentiation (Figs. 1H,
S11-M). Importantly, NEAT1 was simultaneously upregulated in the
nucleus and cytoplasm in aged BMSCs (Fig. S1K-L).

Taken together, these findings reveal that osteogenesis involves
the induction of many genes that are already active in
undifferentiated BMSCs, whereas adipogenesis is characterized
by BMSCs markers loss and NEAT1_1 upregulation. Therefore,
NEAT1_1 may be involved in the adipogenic lineage fate of
aged BMSCs.

SE-associated NEAT1 is activated by ATF2

Recent work has demonstrated that SE-associated genes are
particularly involved in cell development [36, 37], and differentia-
tion [38]. Considering the upregulation of NEAT1 in the terminal
differentiation of BMSCs, we investigated the upstream epige-
nomic regulation of NEAT1. H3K27ac-seq data generated in
undifferentiated and differentiated BMSCs were analyzed for the
identification of SEs (Figs. 2A, S2A). The results showed that linage
differentiation-related marker genes, such as ALPL and PPARG,
performed SEs enrichment (Figs. 2A, S2A). Notably, unlike
osteogenesis, adipogenesis specifically affected the biological
process of cellular senescence and negatively regulated osteogen-
esis, as shown by gene ontology enrichment analysis of SE-
associated genes, in which NEAT1 was associated with SE (Fig. 2A).
The differentiation-specific active nature of this SE was corrobo-
rated by the co-occupancy of both DNase and Med1 (Figs. 2B,
S2B). Considering the simultaneous transcriptomic and epige-
nomic activity of NEAT1 during BMSCs differentiation, we further
identified that NEAT1 transcript upregulation accompanied
epigenetic alterations in aged BMSCs (Fig. 2C). We also overlapped
TF binding sites between the NEAT1 promoter and enhancer
region using the JASPAR database. The majority of TF binding sites
were simultaneously located in the promoter-enhancer region,
including core TFs of pluripotency maintenance (SOX2, OCT4),
linage differentiation (RUNX2, CEBPB), cellular senescence (FOS,
JUN), and mitochondrial function (ATF2) (Fig. S2C, Supplementary
Table 2). Genome-wide RNAi screenings of NEAT1 have identified
ATF2 as a potential transcriptional regulator involved in mito-
chondrial function [25]. Therefore, we investigated whether ATF2
mediated the expression of NEAT1 in BMSCs fate determination
and found that ATF2 knockdown or overexpression resulted in
corresponding changes in NEAT1 levels (Figs. 2D, S2D). ChIP assays
further demonstrated that ATF2 bound to the promoter-enhancer
region of NEAT1, and the binding activity was substantially
increased in aged BMSCs (Fig. 2E). Meanwhile, ATF2 knockdown or
overexpression inhibited or promoted the promoter-enhancer
activity of NEAT1, respectively (Fig. 2F, G). These results indicate
that SE-associated NEAT1 is transcriptionally activated by mito-
chondrial stress factor ATF2 during BMSCs aging and
adipogenesis.

NEAT1 regulates the lineage fates of BMSCs by impairing
mitochondrial function

To investigate whether NEAT1-mediated BMSCs fates are involved
in mitochondrial function, we induced osteogenic and adipogenic
differentiation of BMSCs and subsequently analyzed mitochondrial
function and energy metabolism signatures. Distinguished from
the adipogenic process, the osteogenic process required higher
mitochondrial quality, including mitochondrial metabolites (super-
oxide anion, reactive oxygen species), oxygen consumption, and
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mitochondrial membrane potential (MMP) (Fig. 3A). Notably, the
difference in mitochondrial quality between the osteogenic and
adipogenic differentiation processes was accompanied by NEAT1
upregulation at a key time point on day 7 (Figs. 3A, 1D, G). Gene
set enrichment analysis showed that osteogenesis solely
depended on OxPhos (Fig. 3B), while adipogenesis had multiple
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NEAT1 FISH Probe
Aged Osteogenesis Adipogenesis

energy metabolic pathways (Fig. 3C). The energetic map based on
the ATP rate (OCAR/ECAR) also revealed a relatively single energy
metabolic pathway of OxPhos during osteogenic differentiation of
BMSCs (Fig. 3D). Importantly, aged BMSCs exhibited poor
mitochondrial function reflected by inhibition of the SIRT3/SOD2
pathway and impaired MMP (Figs. 3E, S3A).
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Fig. 1 NEAT1 is an abundant marker gene during BMSCs differentiation and senescence. A Overview of human BMSCs osteogenic and
adipogenic differentiation and time points for harvesting single-cell RNA-seq, RNA-seq, H3K27ac-seq, Med1-seq, and DNase-seq samples. B
T-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) visualizations of all cell
clusters identified using the computational pipeline. C Violin plots of related marker genes from ten clusters. NEAT1 is marked in red. D Heat
map of K-means clustering of 1090 differentially expressed IncRNAs (log,FC > 1.0, p value <0.01) during BMSCs differentiation. NEAT1 is
marked in red. E The expression levels (transcripts per million) of NEAT1 in BMSCs derived from subjects of different ages (Y: young, M: middle-
aged, O: aged, n = 5). F qRT-PCR analysis of NEAT1 expression in BMSCs derived from young and aged subjects (n = 3). G gRT-PCR analysis of
NEAT1 expression in BMSCs during osteogenic and adipogenic differentiation. H FISH localization of NEAT1 in BMSCs during cell senescence
and differentiation. U6 and 18S rRNA were used as positive controls for the nuclear and cytoplasmic fractions, respectively. Scale bar: 20 um.
The results were presented as means + S.D. *p < 0.05; **p < 0.01; *p > 0.05 by Student’s t test and one-way ANOVA.
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Fig.2 SE-associated NEAT1 is activated by ATF2. A Hockey stick plots of the rank order of H3K27ac signals for all enhancers in BMSCs during
adipogenic differentiation. Inserted panels of selected GO functional categories of SE-associated genes. The red arrow indicates the NEAT1-
related SE. B Integrative Genomics Viewer (IGV) of H3K27ac-seq with DNase-seq and Med1-seq read density in NEAT1 of undifferentiated
BMSCs and BMSCs with multilineages differentiation (OB osteogenic differentiation, AD adipogenic differentiation). C Promoter/enhancer
reporter assays in young/aged BMSCs validated the age-related promoter/enhancer function of NEAT1. D NEAT1 expression level of BMSCs
transfected with normal control or si-ATF2 (left panel) and control vector or ATF2 plasmid (right panel). E ChIP assays showed ATF2 binding
sites in the NEAT1 promoter/enhancer region of young/aged BMSCs. F, G ATF2 knockdown and overexpression showed a significant influence
on NEAT1 promoter/enhancer region activity. The results were presented as means + S.D. *p < 0.05; **p < 0.01; *p > 0.05 by Student's t test and
one-way ANOVA.
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We next implemented NEAT1 small interfering RNA (si-NEAT1)
in aged BMSCs (Fig. S3B) and found that mitochondrial quality
and SIRT3/SOD2 pathway were significantly improved (Fig. 3F),
including MMP recovery and morphological network defrag-
mentation (Figs. 3G, H, S3C). In contrast, NEAT1 overexpression
in young BMSCs (Fig. S3D) showed impaired mitochondrial
function (Fig. 3I), including MMP decline and morphological
network fragmentation (Figs. 3J, K, S3E). Additionally, the Mito
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stress test validated the negative regulation of OxPhos activity
by NEAT1 (Fig. 3L), and individual mitochondria in the si-NEAT1
group were significantly enlarged compared to those of the si-
NC group (Fig. S3F). Mechanistically, we confirmed that the
mitochondrial function-related gene BNIP3L was regulated by
NEAT1 (Fig. S3G, H). Altogether, our data indicate that NEAT1
regulates the lineage fates of BMSCs by impairing mitochondrial

function.
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Fig. 3 NEAT1 regulates the lineage fates of BMSCs by impairing mitochondrial function. A Assessment of superoxide anion, reactive
oxygen species, oxygen consumption, and MMP during BMSCs osteogenic and adipogenic differentiation. B Gene set enrichment analysis of
energy metabolism-related pathways during BMSCs osteogenic differentiation and (C) adipogenic differentiation. D Energy map based on the
ATP rate (OCAR/ECAR) of the energy metabolic pathway of BMSCs osteogenesis and adipogenesis. E Western blotting showed decreased
mitochondrial function in aged BMSCs. F si-NEAT1 decreased the expression levels of mitochondrial membrane related ATF2, BAK1, BNIP3L,
while improved the SIRT3/SOD2 pathway of aged BMSCs during osteogenic differentiation. G si-NEAT1 in aged BMSCs during osteogenic
differentiation resulted in MMP and mitochondrial morphological skeleton recovery. H The MMP assay kit with JC-1 showed that si-NEAT1
improved MMP. | Western blotting showed that NEAT1 overexpression increased the expression levels of mitochondrial membrane related
ATF2, BAK1, BNIP3L, while suppressed the SIRT3/SOD2 pathway of young BMSCs during osteogenic differentiation. J NEAT1 overexpression in
young BMSCs during osteogenic differentiation led to a decline in MMP and mitochondrial morphological skeleton fragmentation. K The JC-1
assay exhibited decreased MMP in young BMSCs with NEAT1 overexpression. L Bioenergetic profiling of the BMSCs osteogenesis process with
si-NEAT1 and NEAT1 overexpression approaches in a Mito stress test measuring mitochondrial respiration. Scale bars: 50 pm (G); 100 pm (J).
The results were presented as means = S.D. *p < 0.05; **p < 0.01; *p > 0.05 by Student’s t test and one-way ANOVA.

NEAT1 attenuates BMSCs pluripotency by scaffolding SOX2
and CDK2
To explore NEATT's interaction with RNA-binding proteins, we
designed a specific biotin-labeled NEAT1 probe to perform an RNA
pulldown assay in BMSCs. The silver staining results revealed
enrichment of several bands of proteins combined with NEAT1
(Fig. 4A left). Protein mass spectrometry analysis was used to
identify differentially expressed proteins, and SOX2, OCT4, and
CDK2 ranked forward in the recognized protein list (Fig. 4A right,
Supplementary Table 3). The RIP assay revealed that antibodies
against SOX2, OCT4, and CDK2 pulled down abundant NEAT1
compared to IgG (Figs. 4B, S4A, B). We further identified NEAT1
bound to the SOX2/0CT4 complex (Fig. 4C). Importantly,
pluripotent maintenance factors acts as key regulator in cell cycle
control and cellular senescence remission, while the SOX2/0CT4
protein complex can dominate and synergize with NANOG in
maintaining pluripotency and self-renewal of adult stem cells [39].
Therefore, we investigated whether potential binding sites existed
between NEAT1 and SOX2/0CT4, and the results of the catRAPID
server demonstrated NEAT1-SOX2 and NEAT1-OCT4 interaction
scores of 0.72 and 0.68, respectively (Figs. 4D, S4C). Next, catRAPID
fragments further revealed that NEAT1 simultaneously bound to
SOX2, OCT4, and CDK2 at similar nucleotide positions with high
propensities (Figs. 4E, F, S4D). Multiple labeling of SOX2, OCT4,
and CDK2 immunofluorescence and NEAT1 FISH further confirmed
the colocalization of NEATT and SOX2/0CT4/CDK2 during BMSCs
aging (Fig. S4E, F). Notably, the predicted interaction domain of
SOX2 contains several identified consecutive serine phosphoryla-
tion sites: Ser249, Ser250, and Ser251 (Fig. 4E). A previous study
verified that Cdk2 interacts with Sox2 and phosphorylates Sox2 at
Ser253 (human SOX2 Ser251) [40]. Our results further revealed
that NEAT1 knockdown attenuated CDK2-SOX2 interactions, while
NEAT1 overexpression strengthened the interactions (Fig. 4G, H).
Considering that SOX2 is often a compound complexed with
OCT4 in pluripotency maintenance [41-43], we further verified
that SOX2 with the Ser249/250 phosphorylation mutation resulted
in weakened SOX2/0OCT4 complexes and SOX2-CDK2 interactions
(Figs. 4l, S4G). Furthermore, we knocked down endogenous SOX2
using small interfering RNA of the SOX2 3’UTR and transferred it to
the SOX2 plasmid with the Ser249/250 phosphorylation mutation
(Fig. S4H). Then, an RNA pulldown assay showed that interactions
between NEAT1 and the SOX2/0CT4 complex was not detected
(Fig. 4J). Meanwhile, we showed that NEAT1 could not bind with
Ser249/250 phosphorylation-mutated SOX2 (Fig. S4l). NEAT1
knockdown and overexpression resulted in downregulation and
upregulation of phosphorylation SOX2 (Ser249/250), respectively,
while expression levels of CDK2 did not change (Fig. 4K).
Additionally, as a scaffold, NEAT1 overexpression rescued CDK2-
SOX2 interactions, which were suppressed by si-CDK2 transfection
(Figs. 4L, S4J), and ascending CDK2-SOX2 interactions activated by
CDK2 overexpression were damaged by NEAT1 knockdown
(Figs. 4M, S4K). Compared to young BMSCs, aged BMSCs exhibited
cycle arrest and cellular senescence (Fig. S4L-M). NEAT1
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knockdown in aged BMSCs resulted in GO/G1 cycle arrest release
and senescence remission (Fig. S4N, O), while NEAT1 over-
expression induced the opposite effect (Fig. S4P, Q). Altogether,
our data demonstrate that NEAT1 attenuates BMSCs pluripotency
by scaffolding the RNA-binding proteins SOX2 and CDK2 and
deactivating core pluripotent TFs.

NEAT1 improves adipogenesis and attenuates osteogenesis in
aged BMSCs

Considering the upregulation of NEAT1 in aged BMSCs and its
effects on fates determination, we next explored the roles of
NEAT1 in aged BMSCs differentiation. Aged BMSCs exhibited a
decreased osteogenic capacity and an increased adipogenic
tendency (Fig. 5A). During osteogenic differentiation of aged
BMSCs, NEAT1 knockdown markedly improved osteogenesis of
BMSCs (Figs. 5B-D, S5A). In contrast, NEAT1 overexpression in
young BMSCs decreased osteogenesis of BMSCs (Figs. 5E-G, S5B).
Additionally, loss- and gain-of-function of NEAT1 caused
decreased and increased adipogenic differentiation of BMSCs,
respectively (Fig. 5H-L). Notably, accompanied by improved
adipogenesis, NEAT1 overexpression promoted expression levels
of BMP2K, a protein kinase with a regulatory role in attenuating
osteoblast differentiation. These data identify NEAT1 as a regulator
of lineage differentiation in BMSCs.

NEAT1 promotes paracrine CSF1-dependent osteoclastic
activation

BMSCs senescence is commonly considered as an initial representa-
tion of bone degeneration [44, 45], involving wide secretion of
cytokines to other cells via the paracrine pathway and extracellular
vesicles (EVs) contributing to aging-associated tissue dysfunction
[46, 47]. CSF1, a secretion protein, was markedly increased in aged
BMSCs, as well as in the cellular supernatant (Figs. 6A, S6A). NEAT1
knockdown resulted in downregulated CSF1 levels in cells and
supernatant (Fig. 6B), while NEAT1 overexpression displayed the
opposite results (Fig. 6C). To investigate EVs secreted from BMSCs,
we purified EVs by super-centrifugation, and nanoparticle-tracking
analysis of EVs demonstrated the size distribution (Fig. 6D). We
observed EVs via TEM, and confirmed the incorporation into THP-1
cells using Dil labeling (1,1’-dioctadecyl-3,3,3’,3-tetramethylindocar-
bocyanine perchlorate) (Fig. 6E, F). High expression levels of CD63,
HSP70, and TSG101 were detected in these EVs, while Calnexin was
barely detected (Fig. 6G). Importantly, EVs derived from BMSCs
contained high levels of CSF1, which was positively associated with
NEATT1 levels (Fig. 6G). Next, for induction of osteoclasts, THP-1 cells
were cocultured with supernatant from aged BMSCs, aged BMSCs
with NEAT1 knockdown, young BMSCs, or young BMSCs with NEAT1
overexpression, in which multinucleated osteoclasts with high
activity of tartrate-resistant acid phosphatase (TRAP) were observed
in groups of aged BMSCs and young BMSCs with NEAT1
overexpression (Figs. 6H, S6B). Meanwhile, THP-1 cells treated with
the supernatant from aged BMSCs with NEAT1 knockdown and
young BMSCs demonstrated decreased TRAP activity (Figs. 6H, S6B).
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Furthermore, decreased bone resorption activity was observed in

bovine bone slides cultured with

supernatant from si-NEAT1-

transfected BMSCs (Figs. 6l, S6C), while increased bone resorption
pits were observed in bovine bone slides treated with supernatant
from NEAT1 plasmid-transfected BMSCs (Figs. 6, S6C). In line with
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these findings, the osteoclast activity-related factors ITGR3, CTSK,
and CALCR showed corresponding changes (Fig. 6J). Thus, for
extracellular communication, NEAT1 promotes CSF1 secretion by
aged BMSCs via EVs delivery and strengthens osteoclastic differ-

entiation (Fig. S6D).
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Fig. 4 NEAT1 attenuates BMSCs pluripotency by scaffolding SOX2 and CDK2. A Silver staining of NEAT1 pulldown in undifferentiated
BMSCs, left panel. Arrows show different bands between the sense and antisense lanes. List of the top ten differentially expressed proteins
identified by mass spectrometry, FDR < 0.05, right panel (n = 3). B Expression levels of NEAT1 detected by gRT-PCR after RIP for SOX2 in
BMSCs. € Western blotting showed NEAT1 pulldown of the SOX2/0CT4 complex and CDK2. The red arrow indicates the SOX2/0CT4 complex.
D CatRAPID signature module prediction of the RNA-binding propensity for SOX2 protein followed by the prediction of RNA-binding regions.
Overall interaction scores above 50% indicate the binding propensity. E CatRAPID fragment module prediction of the interaction profile and
matrix between SOX2 and NEATT1. F Interaction between CDK2 and NEAT1. G, H Immunoprecipitation of SOX2 and OCT4 using an anti-CDK2
antibody. SOX2 and OCT4 were reduced in BMSCs transfected with si-NEAT1. By contrast, SOX2 and OCT4 expression increased in BMSCs
overexpressing NEAT1. I Immunoprecipitation of CDK2 and Flag-OCT4 using an anti-Myc antibody. CDK2 and Flag-OCT4 were reduced in
293T cells transfected with the mut-SOX2 (Ser249/250 mutation) plasmid. J Western blotting showed NEAT1 pulldown of BMSCs transfected
with SOX2 small interfering and mut-SOX2 plasmid. K si-NEAT1 and NEAT1 overexpression downregulated and upregulated ser249/250-
phosphorylated SOX2, but not CDK2, respectively. I Interaction among CDK2, SOX2, and OCT4 was identified in BMSCs co-transfected with si-
CDK2 and NEAT1 plasmid by coimmunoprecipitation. M The interaction among CDK2, SOX2, and OCT4 was confirmed in BMSCs co-
transfected with the CDK2 plasmid and si-NEAT1 by coimmunoprecipitation. The results were presented as means+S.D. **p <0.01 by
Student’s t test and one-way ANOVA.
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Fig. 5 NEAT1 improves adipogenesis and attenuates osteogenesis in aged BMSCs. A Western blotting revealed that osteogenesis was
significantly attenuated in aged BMSCs, while adipogenesis was markedly strengthened. B-D Alizarin red staining, qRT-PCR, and western
blotting showed that si-NEAT1 rescued the osteogenesis decline in aged BMSCs. E-G Alizarin red staining, gRT-PCR, and western blotting
showed that NEAT1 overexpression decreased osteogenesis in young BMSCs. H-L Qil red O staining, gRT-PCR, and western blotting showed
that NEAT1 promoted adipogenesis. Scale bar: 200 pm. The results were presented as means + S.D. *p < 0.05; **p < 0.01; ***p < 0.001; *p > 0.05
by Student’s t test and one-way ANOVA.
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Fig. 6 NEAT1 promotes paracrine CSF1-dependent osteoclastic activation. A Western blotting and ELISA revealed upregulated CSF1
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secretion. D NTA analysis determined the size distribution of the isolated extracellular vesicles (EVs). E EVs were visualized on a transmission
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way ANOVA.

NEAT1 serves as a miR-27b-3p sponge and mediates the
characteristics of aged BMSCs

Given that IncRNAs have been widely explored as miRNA sponges
and NEAT1 is abundant in the cytoplasm of aged BMSCs, we
speculated that NEAT1 might act as a miRNA sponge to regulate
phenotypic genes. The NEAT1-related regulatory genes BNIP3L,
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PPARG, BMP2K, and CSF1 were used to predict potential
microRNAs by TargetScan (Supplementary Table 4). By over-
lapping four groups of potential miRNAs, two candidate miRNAs,
miR-27b-3p and miR-2763, were screened out (Fig. 7A). According
to microRNA microarrays between young BMSCs and aged BMSCs,
we further detected high expression levels and significant
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downregulation of miR-27b-3p in aged and differentiated BMSCs,
respectively (Figs. 7B, S7A). miR-27b-3p downregulation in aged
BMSCs was reversed by NEAT1 knockdown (Fig. S7B), while NEAT1
overexpression in young BMSCs resulted in miR-27b-3p down-
regulation (Fig. S7C). FISH assays confirmed that NEAT1 and miR-
27b-3p were colocalized in the cytoplasm (Fig. 7C), and NEAT1

miRNA Expression Level
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pulldown identified an interaction between NEAT1 and miR-27b-
3p (Fig. S7D). Meanwhile, biotin-labeled miR-27b-3p pulldown
demonstrated the interaction of miR-27b-3p with NEAT1 and
target genes (Fig. S7E). To further verify their direct interaction, we
constructed dual-luciferase reporters and found that the miR-27b-
3p mimic reduced the luciferase activity of reporter vectors
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Fig. 7 NEAT1 serves as a miR-27b-3p sponge and mediates the characteristics of aged BMSCs. A Venn diagram showing four miR-27b-3p-
and miR-3163-targeted genes predicted by TargetScan. B miRNA profiling in young and aged BMSCs showed downregulated miR-27b-3p and
miR-3163 in aged BMSCs. C Colocalization of NEAT1 and miR-27b-3p was detected by FISH in aged BMSCs and BMSCs osteogenic
differentiation. D Luciferase reporters of NEAT1, BNIP3L, PPARG, BMP2K, and CSF1 and luciferase activity in 293T cells co-transfected with miR-
27b-3p mimic. E, F Western blotting showed the expression of BNIP3L, PPARG, BMP2K, and CSF1 following exposure to the miR-27b-3p mimic
and inhibitor. G, H qRT-PCR and Western blotting revealed that the miR-27b-3p mimic decreased the upregulation of BNIP3L, PPARG, BMP2K,
and CSF1 by NEAT1 overexpression. I, J gRT-PCR and Western blotting showed thar the miR-27b-3p inhibitor rescued the downregulation of
BNIP3L, PPARG, BMP2K, and CSF1 by si-NEAT1. Scale bar: 20 pm. The results were presented as means + S.D. *p < 0.05; **p < 0.01; *p > 0.05 by

Student’s t test and one-way ANOVA.

containing NEAT1, BNIP3L, PPARG, BMP2K, and CSF1 relative to NC
treatment (Fig. 7D). By AGO2 immunoprecipitation and NEAT1
pulldown assays, we verified the binding of AGO2 and NEATIT,
indicating that NEAT1 acts as a miRNA sponge (Fig. S7F, G).

To investigate the function of miR-27b-3p, we employed loss-
and gain-of-function miR-27b-3p and found corresponding
changes in BNIP3L, PPARG, BMP2K, and CSF1 (Fig. 7E, F). To
confirm the effect of the NEAT1-miR-27b-3p interaction on target
genes, we co-transfected miR-27b-3p inhibitor and si-NEAT1, as
well as miR-27b-3p mimic and NEAT1 plasmid. gRT-PCR and
western blot assays demonstrated that NEAT1 overexpression
significantly increased the mRNA and protein levels of target
genes, whereas the miR-27b-3p mimic decreased the above
markers (Fig. 7G, H) and induced osteogenesis markers (Fig. S7H).
Similarly, knockdown of NEAT1 suppressed the expression levels
of target genes, while the miR-27b-3p inhibitor rescued the
downregulation of target genes and attenuated osteogenesis
(Figs. 71, J, S7l). These results suggest that NEAT1 regulates
mitochondrial function, lineage differentiation, and CSF1 secretion
in aged BMSCs by sponging miR-27b-3p.

si-Neat1 delivery prevents bone loss and marrow fat
accumulation in aged mice

NEAT1 is a human-mouse homologous gene with 95% sequence
overlap. We first confirmed a significant increase of Neat1 in aged
mice BMSCs (Fig. S1G). The corresponding expression changes of
Neat1 and above target genes were verified using si-Neatl
(Fig. 8A). Next, chemically modified si-Neat1 was delivered into
aged mice (18 months old) via the caudal vein once a week (Fig.
S8A), and bioluminescence was captured using an IVIS Spectrum
Xenogen Imaging System (Caliper Life Sciences) for detecting si-
Neat1 distribution and maintenance (Fig. S8B). After 6 weeks of
administration, important organs were collected for observation
(Fig. S8C). gRT-PCR was used to detect the expression of Neatl,
bmp2k, pparg, bnip3l, csf1, and miR-27b-3p in BMSCs of young
mice (si-NC injection), aged mice (si-NC injection), and si-NEAT1-
treated aged mice, and the results showed NEAT1 downregula-
tion, miR-27b-3p upregulation, and target genes downregulation
in aged mice treated with si-NEAT1 (Fig. S8D). Furthermore,
double immunofluorescence labeling of Nestin (@ BMSCs marker)
and Neat1 FISH directly revealed that si-NEAT1 treatment targeted
BMSCs (Fig. S8E). Meanwhile, compared to the control group, the
si-Neat1 group demonstrated significant improvement in bone
mass and cortical bone thickness (Fig. 8B). Bone quality
enhancement was also reflected in trabecular bone morphological
analysis, including increased trabecular bone volume, thickness,
and numbers as well as decreased trabecular bone separation
(Fig. 8C). Dynamic histomorphometry revealed that the si-Neat1
group displayed elevated trabecular and endosteal bone forma-
tion rates (Fig. 8D). Notably, compared to the control group, si-
Neat1 delivery enhanced trabecular bone structure and sup-
pressed adipogenesis and osteoclastogenesis (Figs. 8E-H, S8F). In
addition, no obvious pathological changes were observed in the
lung, spleen, kidney, brain, heart, or liver (Fig. S8C, G). These
results suggest that si-Neat1 delivery prevents imbalanced bone-
fat switching and progressive bone loss in skeletal aging.
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DISCUSSION

Bone aging includes dysregulation of the bone-fat balance with
decreased bone mass and accumulated marrow fat [8, 9]. The
imbalance in bone-fat derived from the disproportionality of
adipocytes and osteoblasts is delicately controlled by the
differentiation commitment of BMSCs [4]. Recent studies have
reported several endocrinal signals of bone-fat switches that
initiate imbalanced osteogenesis-adipogenesis in response to
adiposity [48], hormones [49], and aging [50]. Here, we identified
that the SE-associated IncRNA NEAT1 was highly expressed in
aged BMSCs, which may link the aberrant differentiation fate of
adipogenic activation and osteogenic suppression. At the
epigenetic level, our results suggest that osteoblast-specific genes
exhibit corresponding SE activity during osteogenic differentia-
tion, but adipogenesis is accompanied by negative regulation of
osteogenesis and cellular senescence-related SE activity. Further-
more, a previous study [4] supported our findings and demon-
strated that disruption of adipogenesis protectively maintained
bone homeostasis. Notably, BMSCs with NEAT1 overexpression
tended to differentiate into adipocytes, which are also character-
ized by cellular senescence hallmarks, suggesting that SE-derived
NEAT1 governs the adipogenic differentiation fate of aged BMSCs.

A recent study of aging cell fates reported that chromatin
instability and mitochondrial decline represent different types of
terminal states [51], while mitochondrial decline dominates the
aging process [52]. Consistent with a recent study [35], we
confirmed that adipogenic differentiation possessing similar
characteristics to cellular senescence was relatively more terminal,
while osteogenic differentiation possessing mitochondria-
dependent energy metabolism was closer to the undifferentiated
BMSCs state. As a mitochondrial protein that regulates mitochon-
drial permeability in response to genotoxic stress, ATF2 tran-
scriptionally regulates cellular growth and development by
nuclear localization [53-56]. Consistent with a previous study
[25], we demonstrated the high binding activity of ATF2 in the
NEAT1 promoter/enhancer region. Beyond shaping mitochondrial
functions via paraspeckle formation [25], we further identified that
NEAT1 controls mitochondrial function by regulating mitochon-
drial gene expression, and downregulating NEAT1 in aged BMSCs
markedly rescued mitochondrial dysfunction. In addition, energy
metabolism during osteogenic differentiation solely depended on
OxPhos, while adipogenic differentiation exploited diverse energy
metabolic pathways. Nevertheless, whether NEAT1 influences the
glycolysis pathway and regulates adipogenesis related energy
metabolism is worthy of further study.

The pluripotency properties of BMSCs include the potential for
self-renewal and pluripotent differentiation [1, 29]. Our in vitro
studies confirmed that NEAT1 intrinsically aggravated BMSCs
senescence by promoting cell cycle arrest and pluripotency-
related genes reduction. A previous study reported that
NEAT1 scaffolds RNA-binding proteins in a stable manner [57].
Our findings revealed that NEAT1 scaffolding CDK2-SOX2 and
SOX2 Ser249/250 phosphorylation impaired the stability of the
SOX2/0CT4 complex. Importantly, the SOX2/0CT4 complex has
shown a more sufficient role than either SOX2 or OCT4 alone in
pluripotency maintenance [41-43, 58], so NEAT1 governs BMSCs
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pluripotency by scaffolding the RNA-binding proteins SOX2 and osteoclast imbalance due to aberrant osteoimmune responses
CDK2 and deactivating the SOX2/0CT4 complex. and BMSCs lineage commitment [44, 45]. Consistent with previous

Mounting evidence demonstrates that accumulation of the reports [47], our data further verified that CSF1 regulated by
senescence-associated secretory phenotype in the aged bone NEAT1 in aged BMSCs can be extracellularly delivered by a
marrow microenvironment is the main cause of osteoblast- paracrine pathway to directly induce osteoclastic differentiation.
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Fig. 8 si-Neat1 delivery prevents bone loss and marrow fat accumulation in aged mice. A qRT-PCR analysis of the expression levels of
Neat1 and related genes in mouse BMSCs transfected with si-Neat1. B, C Micro-CT images and quantitative CT analysis were performed in the
distal femur from 18-month-old mice treated with control, si-NC and si-Neat1 (n = 5). D Representative images of dynamic histomorphometry
of trabecular bone with quantification of the mineralization apposition rate (MAR). E, F Representative images of HE and Masson’s trichrome
staining showed that bone structure and osteoblasts were significantly increased in aged mice treated with si-Neat1. G Oil red O staining of
the distal femur and quantification of adipocytes indicated that adipogenesis was markedly decreased in aged mice treated with si-Neat1. H
TRAP staining of the distal femur and quantification of OC.N/B.Pm (osteoclast number per bone perimeter) and OC.N/BS (osteoclast number
per bone surface) indicated that the osteoclast numbers were significantly decreased in aged mice with si-Neat1 treatment. I A model by
which NEAT1 regulates the lineage fates of BMSCs in the aged bone marrow microenvironment. Scale bars: 20 pm (D); 200 pm (E); 100 um (F);

50 um (G, H). The results were presented as means +S.D. *p < 0.05; **p < 0.01; #p >0.05 by Student’s t test and one-way ANOVA.
«

Additionally, we found that high CSF1 levels in EVs from aged
BMSCs were delivered into THP-1 cells. In line with a previous
study [59], intracellular CSF1 can modulate osteoclast differentia-
tion, but the underlying mechanisms need to be further
investigated.

In conclusion, our study determined that the highly expressed
IncRNA NEAT1 is activated by ATF2 in aged BMSCs as a bone-fat
switch that shapes mitochondrial function, regulates pluripotency
maintenance, and governs differentiation commitment in a
miRNA sponge and protein-binding scaffold manner. Moreover,
considering the effect of NEAT1 on upregulated osteoclastic and
adipogenic differentiation and decreased osteogenic capability,
the application of si-NEAT1 to the bone marrow microenviron-
ment might represent a new approach for the treatment of age-
associated osteoporosis (Fig. 8l).

MATERIALS AND METHODS

Experimental animals

Animal experimental procedures were approved by the Laboratory Animal
Care and Use Committee at Nanjing Medical University (Approval No. IACUC-
1905049). After the knockdown efficiency of si-Neatl was verified by
transfection of mouse BMSCs, si-Neat1 which chemically modified with 5Col/
20Me was synthesized by RiboBio (Guangzhou, China). Eighteen-month-old
C57BL/6 mice were randomly divided into three groups. The sample size and
inclusion criteria of each group was confirmed with adequate power based
on the literature and our previous experience [60]. Two groups received
either si-NC or si-Neat1 at a dose of 100 nM once per week by caudal vein
injection. The other group of mice received a comparable volume of PBS. In
the animal experiments, the investigator was blinded to the group allocation.
After 6 weeks, the mice were euthanized and the femurs were harvested for
micro-CT and histological analysis.

In vitro cell culture and differentiation

For human jaw bone-derived BMSCs isolation, young (18-32 years old) and
aged (62-79 years old) volunteers with informed consent were involved in
the current study. The inclusion criteria and cell culture protocols were
conducted as previously described [60], in which BMSCs were performed
for the following experiment after three passages. Human BMSCs-related
procedures were approved by The Ethical Committee Department at
Affiliated Hospital of Stomatology of Nanjing Medical University (Approval
No. PJ2018-047-001). Regarding mouse BMSCs isolation, the bone marrow
was flushed with a-MEM using an 18-gauge sterile needle inserted into the
medullary cavity. The following protocols were performed in accordance
with human BMSCs culture. To induce osteogenic differentiation, BMSCs
were cultured in complete medium supplemented with 107 M dex-
amethasone, 10 mM (-glycerophosphate, and 50 uM ascorbic acid. For
adipogenic differentiation induction, BMSCs were cultured in complete
medium containing 1 uM dexamethasone, 10 mg/l of insulin, 0.2 mM
indomethacin, and 500 uM 3-isobutyl-1-methylxanthine (IBMX).

The cell lines 293T (CRL-3216) and THP-1 (TIB-202) were obtained from
the American Type Culture Collection (ATCC). All the cell lines were
authenticated by STR profiling and tested negative for mycoplasma. For
osteoclast differentiation induction, the THP-1 cell line was cultured in
complete medium (RPMI-1640, 100 U/ml penicillin and 100 pg/ml strepto-
mycin, 10% FBS) and phorbol-12-myristate-13-acetate (PMA) (200 nM) for
3 days. Next, adherent cells were cultured in complete medium with
RANKL (50 ng/ml) and BMSCs supernatant, and the mixed medium was
refreshed every 3 days for 2 weeks.

Cell Death & Differentiation (2022) 29:351-365

Rhodamine 123 and Hoechst 33342 double staining
Rhodamine 123 (C2007, Beyotime Biotechnology, Haimen, China) staining
was used to determine the MMP and trace the mitochondrial network.
BMSCs were counterstained with 2 uM rhodamine 123 and Hoechst 33342
for 10 min. Images were taken using a fluorescence microscope and
confocal microscopy. Increased green rhodamine 123 fluorescence
indicated dissipated MMP. Mitochondrial network morphology was
analyzed using the mitochondrial network analysis (MiNA) toolset in
ImageJ [61].

Bioenergetic analyses/profiling

BMSCs were seeded in 96-well multiwell plates (Seahorse Bioscience,
Agilent Technologies, MA, USA) and differentiated toward adipogenesis
and osteogenesis for 7 days. According to a previous study [62], a
mitochondrial stress test was performed by adding 10 mmol L™" glucose,
1.5 umol L™ oligomycin A, 2 umol L™" FCCP, and 0.5 umol L™' Rot/Ant in
succession. The basal OCR was then calculated by subtracting Rot/Ant from
the unstimulated OCR value. Maximal respiration was determined
following FCCP treatment. The ATP production rate was measured using
an ATP rate assay (Seahorse Bioscience, Agilent Technologies, MA, USA). All
the data were normalized to the CCK-8 assay.

Statistical analysis
The results are expressed as means+ SD. Experiments were repeated
independently at least three times. Statistical significance of two-group
comparisons was assessed using Student’s t test. Analysis across multiple
comparisons was performed for one-way ANOVA. To determine signifi-
cance between aged and si-Neat1 mice, comparisons were made using
two-way ANOVA. *p <0.05; **p <0.01; ***p<0.001 were considered
statistically significant.

Additional methodological details are provided in the Supplementary
Materials.

DATA AVAILABILITY

The accession numbers for the Single-Cell RNA-seq, ChIP-seq (including H3K27ac,
MED1, DNase), and RNA-seq data reported in this paper are Gene Expression
Omnibus (GEO): GSE113253, GSE139073.
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