
INTERNATIONAL JOURNAL OF MOLEcULAR MEdIcINE  47:  89,  2021

Abstract. As an important type of programmed cell death in 
addition to apoptosis, necroptosis occurs in a variety of patho‑
physiological processes, including infections, liver diseases, 
kidney injury, neurodegenerative diseases, cardiovascular 
diseases, and human tumors. It can be triggered by a variety 
of factors, such as tumor necrosis factor receptor and Toll‑like 
receptor families, intracellular dNA and RNA sensors, and 
interferon, and is mainly mediated by receptor‑interacting 
protein kinase 1 (RIP1), RIP3, and mixed lineage kinase 
domain‑like protein. A better understanding of the mechanism 
of necroptosis may be useful in the development of novel drugs 
for necroptosis‑related diseases. In this review, the focus is on 
the molecular mechanisms of necroptosis, exploring the role of 
necroptosis in different pathologies, discussing their potential 
as a novel therapeutic target for disease therapy, and providing 
suggestions for further study in this area.
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1. Introduction

Necroptosis,	an	emerging	field	closely	related	to	apoptosis,	is	a	
non‑caspase‑dependent cell death that has been implicated in 
the pathological processes of various diseases. It is regulated 
by various genes that cause regular and ordered cell death. 
Through	activating	specific	death	signaling	pathways,	it	shares	
typical characteristics of necrosis, including loss of metabolic 
function and subcellular changes (1,2). Receptor‑interacting 
protein kinase 1 (RIP1) was the first signaling molecule 
identified in the necrosome (3). RIP1 and RIP3 interact 
with the receptor protein, transducing death signals, and 
further recruiting and phosphorylating mixed lineage kinase 
domain‑like protein (MLKL) (4‑7). Necroptosis can be 
involved in the regulation of several signaling pathways, 
including the caspase‑8‑dependent apoptotic pathway, the 
mitogen‑activated protein (MAP) kinase cascade, and activa‑
tion of the nuclear factor‑κB (NF‑κB) pathway.

To explore the potential role of necroptosis in human 
diseases, researchers have developed various methods, such as 
gene knockdown and knockout, and pharmacological inhibitors. 
By using these methods, it has been found that necroptosis plays 
an important role in pathophysiological processes of several 
clinical diseases, including infections, liver diseases, kidney 
injury, neurodegenerative diseases, cardiovascular diseases, and 
human tumors (8). In the current review, we aimed to explore 
the potential role of necroptosis in various clinical diseases.

2. Overview of the molecular mechanism of necroptosis

Necroptosis can be triggered by a variety of factors, such as 
tumor necrosis factor receptor (TNFR) and toll‑like receptor 
(TLR) families, intracellular dNA and RNA sensors, and 
interferon (IFN) (9‑11). TNF‑dependent TNFR1 stimulation 
has three consequences that depend on the assembly of regula‑
tory proteins. These different pathways ultimately stimulated 
NF‑κB‑dependent	inflammation,	caspase‑8‑dependent	apop‑
tosis, or selective activation of necroptosis under caspase‑8 
inhibition (Fig. 1) (12). TNF‑dependent necroptosis is regu‑
lated by RIP1 and RIP3, which interact through unique RIP 
homotypic‑interacting motifs (RHIMs) (Fig. 2) (13,14).

The interaction of RIP1 and RIP3 results in autophospho‑
rylation, transphosphorylation, and assembly of ‘necrosome’ 
complex (5). RIP3 and MLKL are essential for necroptosis, 
whereas RIP1 is only sometimes involved in this process. 
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RIP3	and	MLKL	knockout	mice	do	not	show	deficiency	in	
embryogenesis, homeostasis and development, indicating the 
role of necroptosis may be not essential in non‑challenged 
conditions (15,16).

3. Difference of the key characteristics between apoptosis 
and necroptosis

Although	necroptosis	 is	characterized	by	caspase	 indepen‑
dence, the molecular pathway involved is similar to and shares 
features of apoptosis. However, the immunological and morpho‑
logical consequences of necroptosis are vastly different (Fig. 3). 
Necroptosis shares the major morphological features of necrosis, 
such as the swelling of organelles, gradually translucent cyto‑
plasm, and rupture of the cellular membrane (12). By contrast, 
apoptosis	is	characterized	by	membrane	blebbing,	cell	shrinkage,	
nuclear fragmentation, and chromatin concentration (17). 
The rupture of the cellular membrane results in the release of 
cellular contents, leading to the exposure of damage‑associated 
molecular	patterns	(DAMPs),	triggering	a	strong	inflammatory	
response in necroptosis, suggesting necroptotic cells are more 
immunogenic than apoptotic cells, which is relatively intact, 
with dAMP restricted to the plasma membrane, or encapsulated 
in the apoptotic bodies (17). It has also been shown that necrop‑
tosis was associated with maintenance of T‑cell homeostasis, as 
it has been found to be able to clear excess and abnormal T cells 
in the absence of caspase‑8 (18), which can prevent abnormal 
proliferation of lymphocytes (19).

4. Identification of necroptosis

As	there	is	currently	no	specific	marker	for	necroptosis,	multiple	
methods are usually required to identify necroptosis (Fig. 4). In 
cultured cells, transmission electron microscopy can be used 
to identify necroptotic cells (20). detection of key molecular, 
including RIP1, RIP3 and MLKL activation, necrosome 
formation,	MLKL	oligomerization,	and	membrane	transloca‑
tion can also be used to identify necroptosis (21). Activation of 
RIP3 and MLKL can be monitored by western blot analysis 
to assess phosphorylation status (22,23). Phosphorylation of 
MLKL at Ser358 and Thr357 and RIP3 at S227 indicates the 
activation of necroptosis (24). In particular, MLKL phos‑
phorylation has been used as a biomarker for certain disease 
diagnosis and prognosis (25). In addition, several pharmaco‑
logical inhibitors such as the necrostatin (Nec)‑1, GSK872, 
and necrosulfonamide (NSA) have also been used to detect 
necroptosis (7,26). In vivo, the activation of necroptosis can 
be	identified	by	the	elevated	levels	of	RIP1,	RIP3,	or	MLKL	
mRNA	or	protein.	Additionally,	previous	findings	suggested	
that	RIP3	and	MLKL	are	more	specific	molecular	biomarkers	
than RIP1 for the detection of necroptosis (27).

5. Potential role of necroptosis in clinical diseases

Physiological functions. Over the last decade, researchers have 
put a lot of effort into the development of effective RIP1, RIP3, 
and MLKL inhibitors, and created mouse models that lack one 
or more components of the necroptotic pathway at systemic 
level	or	in	specific	tissues	(28).	Due	to	the	existence	of	these	
models, the physiological function of proteins of necroptosis 

have been investigated. conditional deletion of RIP1 in kera‑
tinocytes or intestinal epithelial cells suggested RIP1 plays an 
essential role in maintaining epithelial homeostasis (29,30). It is 
worth noting that the role of RIP1 in maintaining the intestinal 
barrier is similar to caspase‑8 (31). In addition, mice with Birc2, 
Birc3, and Xiap codeletion in the myeloid lineage have high 
levels	of	circulating	inflammatory	cytokines,	sterile	inflamma‑
tion, and granulocytes, which can be partially corrected by the 
lack of RIP1 or RIP3 (32). Tamoxifen‑induced systemic RIP1 
gene knockout in adult mice is fatal due to a surge in cell death 
and intestinal bone marrow failure, which accumulates and 
causes	fatal	systemic	inflammation	(33,34).	Fetal	hepatocytes	
that received tamoxifen‑induced RIP1 deletion or RIP1‑/‑ 
progenitor cells are unable to repopulate irradiated receptors. 
This defect can be partially corrected by the concomitant 
lack of RIP3, indicating that RIP1 plays a key role in the 
survival of hematopoietic stem and progenitor cells (33,34). 
Furthermore,	systemic	inflammation	caused	by	RIP1‑/‑ can be 
restricted in RIP1‑/‑RIP3‑/‑Casp8‑/‑ hosts (34,35). These hosts 
show age‑related lymphoproliferative disorders similar to 
those developed by RIP3‑/‑Casp8‑/‑ mice (11,34,36). In addition, 
compared to control animals, RIP1+/‑ mice, mice treated with 
intravenous siRNA targeting RIP1, and Nec‑1‑treated mice 
showed a higher rate of physiological intestinal epithelial cell 
regeneration in the small intestine (37). In addition, the negative 
effects of Nec‑1 on the regeneration of intestinal epithelial cells 
are also present in RIP3‑/‑ mice (37). Findings of those studies 
suggest that there may be a delicate balance between different 
cell deaths in maintaining homeostasis in adults.

Infectious diseases
Viral infections. Findings have shown the crucial role of necrop‑
tosis	 in	 inflammation	during	viral	 infection	(Table	I).	The	
viruses use the host's signaling pathways, such as anti‑apoptotic 
proteins, to enhance infection, thereby increasing its ability 
to replicate in the host cell. It has been reported that viral 
encoding protein involving the RHIM domain interacts with 
RIP1 and RIP3 to inhibit virus‑induced cell death (38). Viral 
inhibitor of RIP activation (vRIA) disrupts the combination of 
dAI and RIP3, thereby suppressing cytomegalovirus‑mediated 
necroptosis (9). By contrast, human cytomegalovirus differs 
in protein, which does not disrupt RIP3 binding with dAI; 
it works via blocking signaling downstream of MLKL (39). 
Experimental studies in mice lacking RIP3 have shown 
impaired virus‑induced necroptosis and increased suscepti‑
bility	to	viral	infections	such	as	vaccinia	virus,	influenza	A	
virus, and HSV‑1 (5,25,38,40) (Fig. 5).

Bacterial infections. Necroptosis also plays an important 
role in the inflammation caused by bacterial infections. 
Enteropathogenic E. coli (EPEc) has been shown to 
synthesize	and	secrete	 large	amounts	of	 the	 immunogenic	
effector protein NleB1 and modify the arginine residues of 
the Fas‑associated death domain (FAdd) and RIP1 death 
domains to prevent apoptosis and necroptosis (41,42). EPEc 
lacking	NleB1	fails	to	colonize	intestinal	epithelial	cells,	indi‑
cating that bacterial necroptosis is a protective mechanism of 
the	organism	(41,42).	Similarly,	the	absence	of	RIP3	sensitizes	
host cells to Yelsonella. Moreover, the simultaneous knockout 
of FAdd or caspase‑8 could make cells more sensitive (43,44). 
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In vitro, Salmonella typhimurium is able to escape TNFα, 
causing RIP1‑ and RIP3‑dependent necroptosis in infected 
macrophages. In a model of Salmonella typhimurium venous 
infection, RIP3 knockout significantly reduces splenic 
macrophage death, thereby reducing bacterial numbers and 
prolonging mouse survival (45,46). Findings focusing on oral 
Salmonella typhimurium infection have also shown that outer 
protein B was downregulated during infection, which resulted 
in promoting bacterial translocation, increasing macrophage 
necroptosis, and exacerbating bacterial infection (Table I) (47).

Parasite infections. Parasitic diseases such as malaria and 
leishmaniasis usually cause hemolysis, anemia, and bleeding. 
These are due to the release of hemoglobin (Hb) into the 
circulation by the rupture of red blood cells. When Hb is 
oxidized,	heme	is	generated,	the	Fenton	reaction	starts,	and	
peaks with the generation of reactive oxygen species (ROS). 
Heme is also involved in the activation of TLR4, causing 
autocrine secretion of ROS and TNF, and synergistically 
activating RIP1/3‑dependent necroptosis (48). In addition, 
it has been shown that 10 ng/ml TNFα can induce infected 

Figure 1. TNFR1‑mediated survival and cell death pathways. After TNF binding, TNFR1 recruits TRAdd and RIP1 to complex I via their respective death 
domains. TRAdd recruits TRAF2 and cIAP1/2, after which cIAP1/2 ubiquitinate components of complex I. The ubiquitination of RIP1 promotes the formation 
and activation of the TAK1/TAB complex and the IKKα/IKKβ/NEMO complex, which induced the NF‑κB pathway and cell survival. deubiquitination of RIP1 
by cylindromatosis (cYLd) induces the dissociation of TRAdd and RIP1 from TNFR1, which leads to the formation of either complex IIa or complex IIb. 
FADD	and	pro‑caspase‑8	are	recruited	to	TRADD	and	RIP1	to	form	complex	IIa,	resulting	in	the	activation	of	caspase‑8	by	oligomerization	and	cleavage.	In	
the absence of cIAP1/2, TAK1 or IKK complex, complex IIb, which contains RIP1, FAdd and pro‑caspase‑8 except TRAdd, is formed and then activates 
caspase‑8,	after	which	caspase‑8	induces	apoptosis.	When	caspase‑8	activity	is	blocked,	for	example	by	zVAD‑fmk,	complex	IIc/necrosome	is	formed,	and	
RIP3‑dependent necroptosis is induced. In the necrosome, RIP3 phosphorylates MLKL, and translocation of phosphorylated MLKL to the cell membrane leads 
to direct pore formation with the release of dAMPs. In spite of pore formation, MLKL also mediates its effect after interacting with ion channels.

Figure 2. domain structure of RIP1 and RIP3. The intermediate domain of RIP1 contains the RIP homotypic interaction motif (RHIM) that enables the protein 
to combine with the RHIM in RIP3 to activate necroptosis. Length is indicated in a number of amino acids.
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human foreskin fibroblasts egressing Toxoplasma gondii 
(Table I) (49).

Cancers
Type of cancers. Studies on necroptosis highlight its role 
in cancer because of its necroptosis‑inducing function 
(Table II) (50). chen et al suggested that necroptosis is an 
important cell death mechanism for blocked apoptosis, and 
has been proposed as an alternative cell death procedure 
to prevent cancer (20). Previous studies have shown that a 
decreased expression of RIP3 or MLKL is associated with 
worse prognosis and poor survival in breast cancer (51,52), 
colorectal cancer (53‑55), acute myeloid leukemia (56,57), 
melanoma (58,59), head and neck squamous cell carci‑
noma (60), gastric cancer (61), ovarian cancer (62), and cervical 
squamous cell carcinoma (63). However, increased RIP3 or 
RIP1 expression was also correlated with cancer development, 
including glioblastoma (64), lung cancer (65), and pancreatic 
cancer (66,67). SN38, the topoisomerase inhibitor, was found 
to be able to promote necroptosis progression, inhibit cell 

proliferation, and induce dNA damage accumulation in colon 
cancer	(68).	These	findings	indicate	that	inhibiting	activities	
of necroptosis components may be a strategy in the treatment 
of cancers.

Metastasis. Metastasis is the most common cause of 
cancer‑related death. Researchers have found that metastasis 
involves a complex interaction between cancer cells and the 
microenvironment.	By	promoting	inflammation,	necroptosis	
may be able to promote metastasis (69). It has been shown that 
TNFα plays a critical role in cancer progression. However, the 
exact mechanism of this process has not been fully understood. 
Increased expression of TNFα in cancer is a key characteristic 
in numerous malignancies and is usually associated with 
a poor prognosis and decreased survival (69). consistent 
with	the	pro‑inflammatory	properties	of	necroptosis	and	the	
cancer‑promoting	effect	of	inflammation,	Nec‑1	was	able	to	
reduce	inflammation	and	colitis‑related	tumor	formation	(70),	
indicating that targeting necroptosis may be a strategy for 
preventing cancer metastasis.

Figure	3.	Difference	of	the	key	characteristics	between	apoptosis	and	necroptosis.	Necroptosis	is	characterized	by	the	swelling	of	organelles,	gradually	translu‑
cent cytoplasm, and rupture of the cellular membrane. The rupture of the cellular membrane results in the release of cellular contents, leading to the exposure 
of	DAMPs,	triggering	a	strong	inflammatory	response	in	necroptosis.	Apoptosis	is	characterized	by	membrane	blebbing,	cell	shrinkage,	nuclear	fragmentation,	
and chromatin concentration, with dAMPs restricted to the plasma membrane, or encapsulated in the apoptotic bodies.
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Neurodegenerative diseases
Parkinson's disease. Researchers have shown that necroptosis 
was activated in Parkinson's disease (Pd), and may be asso‑
ciated with mitochondrial defects which led to necroptosis 
(Table III) (71). compared with healthy brain, the level of 
necroptosis components, including RIP1, RIP3 and MLKL, 
was significantly increased in the substantia nigra of Pd 
brain (72). Moreover, researchers have found Nec‑1 could 
protect Pc12 cells from death in Pd models (73). This suggests 
that the activation of RIP1 may be a risk factor for dopami‑
nergic neurons lost in Pd patients. In addition, leucine‑rich 
repeat	kinase	2,	which	was	identified	in	a	systematic	RNAi	
screen, is encoded by a gene that is frequently mutated in Pd 
and is able to promote activation of RIP1 (74).

Alzheimer's disease. Alzheimer's	disease	(AD)	is	a	degenera‑
tive brain disease featured by loss of neurons. Previous studies 
have found that there were activated necroptosis in both 
human (75) and mouse (76) Ad brain. In the Ad brain, the 

levels of necroptosis components, such as RIP1 and MLKL, 
were	significantly	higher	than	the	normal	brain	(Table	III)	(75).	
Treatment of Ad in brain of mice with the necroptosis inhibitor 
can	significantly	suppress	necroptosis	and	prevent	neuronal	
loss (75). This indicates that targeting necroptosis may be a 
new therapeutic strategy for Ad treatment.

Amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis 
(ALS)	is	a	neurodegenerative	disease	that	is	characterized	by	
loss of motor neurons. In a previous study, the ALS spinal cord 
was	shown	to	have	a	significant	increase	in	necroptosis	compo‑
nents including RIP1, RIP3, and MLKL in the ALS mouse 
model compared to healthy mouse spinal cord (77). In addition, 
loss of optineurin, an ALS‑related gene, resulted in suscep‑
tibility to necroptosis. Nec‑1 inhibition of RIP1 or knockout 
of RIP3 could prevent demyelination and reduce axonal 
pathological hallmarks in ALS mouse models (Table III) (77). 
Those	findings	suggested	that	targeting	necroptosis	may	have	
potential therapeutic value in ALS patients.

Table I. The role of necroptosis in infectious diseases.

Type of infections Observations (Refs.)

Viral infections HSV‑1 HSV‑1‑Induced necroptosis is partially dependent on RIP1, and fully (38)
  dependent on RIP3 and MLKL 
	 Influenza	A	virus	 Mice	deficient	in	RIPK3	is	more	susceptible	to	influenza	A	 (40)
  virus than wild‑type counterparts 
 McMV RIP3‑/‑	murine	embryonic	fibroblasts	were	resistant	to	 (9,156)
  McMV‑induced necrosis 
 HIV‑1 Necrostatin‑1 restrains HIV‑1‑induced cytopathic effect and inhibits (157)
  the formation of HIV‑induced syncytia in cd4+ T‑cell lines 
 Reovirus cell death following reovirus infection was sensitive to (158)
  inhibition of RIP1 
 Vaccinia virus RIP1‑/‑ mice cells infected with Vaccinia virus was resistant to (159)
  TNF‑α induced death 
  RIP3‑/‑ mice exhibited severely impaired virus‑induced tissue (5)
	 	 necrosis	and	inflammation	
Bacterial infections Clostridium prefringens RIP1 or RIP3 inhibitors reduced both bacteria‑induced (160)
 β‑toxin apoptosis and necrosis
 Salmonella  Inhibition of the RIP1 or RIP3 prevented the bacteria‑induced (47)
 typhimurium death of wild‑type macrophages 
  deletion of MLKL rescued severity of bacteria‑induced tissue (45)
	 	 inflammatory	
 M. tuberculosis RIP1 and RIP3 morpholino knockdown reduced susceptibility of (161)
	 	 zebrafish	to	Mycobacterium marinum 
 Yersinia pestis Deficiency	of	both	RIP3	and	caspase‑8	completely	abrogated	 (44)
  Yersinia‑induced cell death 
 Staphylococcus aureus RIP3‑/‑	mice	exhibited	significantly	improved	staphylococcal	clearance	 (162)
Parasite infections Toxoplasma gondii Blocking necroptosis by necrostatin‑1 has little impact on (49)
  TNF‑α‑induced egress of T. gondii 
 Leishmaniasis and Inhibition of the RIP1 or RIP3 protected macrophages from (48)
 Malaria heme‑induced cell death 

HSV‑1, herpes simplex virus type 1; RIP, receptor‑interacting protein kinase; MLKL, mixed lineage kinase domain‑like protein; McMV, 
murine cytomegalovirus; TNFα, tumor necrosis factor‑α;	HIV‑1,	human	immunodeficiency	virus	type‑1.
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Multiple sclerosis. Multiple sclerosis (MS) is degenerative 
disease	characterized	by	oligodendrocyte	loss	and	demye‑
lination.	Previous	findings	have	shown	a	significant	increase	
in necroptosis components including RIP1, RIP3, and 
MLKL in MS patients. In addition, MLKL oligomers were 
significantly	increased	in	MS	pathology	samples	compared	
with controls (Table III) (78). This suggests necroptosis is 
activated in the pathogenesis of MS. In MS mouse model, 
oral administration of RIP1 inhibitor can suppress oligo‑
dendrocyte degeneration and reduce disease severity (78). 
Moreover, researchers have shown that inhibition of RIP1 
reduced demyelination and disease progression in an MS 

model (79). Notably, MLKL was shown to be involved in the 
MS process (79).

Liver diseases. Non‑alcoholic fatty liver disease (NAFLD), 
Non‑alcoholic fatty liver disease (NAFLd) is a chronic 
disease	characterized	by	excess	 triglyceride	accumulation	
in the liver. Several studies have used different models to 
assess the effects of necroptosis on NAFLd (Table IV). 
Studies have found necroptosis components, including RIP1, 
RIP3 and MLKL, were increased in NAFLd models, as 
well as in RIP3KO mice (80‑85). In addition, an increased 
expression of RIP3 and MLKL in the human NAFLd was 

Figure 4. Methods to identify necroptosis. In cultured cells, transmission electron microscopy can be used to identify necroptotic cells. detection of key 
molecular,	including	RIP1,	RIP3	and	MLKL	activation,	necrosome	formation,	MLKL	oligomerization,	and	membrane	translocation	can	also	be	used	to	
identify necroptosis. Activation of RIP3 and MLKL can be monitored by western blot (WB) analysis to assess phosphorylation status. Several pharmacological 
inhibitors such as the Nec‑1, GSK872, and NSA have also been used to detect necroptosis. In vivo,	the	activation	of	necroptosis	can	be	identified	by	the	elevated	
levels of RIP1, RIP3, or MLKL mRNA or protein.

Figure 5. The potential role of necroptosis in clinical diseases. Necroptosis has been implicated in pathophysiological processes of several clinical diseases, 
including infectious diseases, neurodegenerative diseases, liver diseases, pulmonary diseases, renal diseases, cardiovascular diseases, joint diseases, and 
human tumors.
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identified (83,85). Increased level of RIP3 and p‑MLKL 
was also found in visceral adipose tissue of obese patients. 
Furthermore, RIP3 expression correlated with p‑MLKL and 
metabolic serum markers including blood insulin levels and 
Hemoglobin A1c (84).

Alcoholic hepatitis. Similar to the pathologies of NAFLd, 
alcoholic	hepatitis	is	an	inflammatory	syndrome	in	liver,	which	
can result in high morbidity and mortality. Several studies have 
found that RIP3 was increased following ethanol feeding, and 
RIP3 deletion could protect the liver from ethanol‑mediated 
injury (Table IV). In addition, p‑JNK was regulated by RIP3 
in a model of alcoholic hepatitis, and RIP3 deletion reduced 
ethanol‑induced p‑JNK expression (86). Another study found 
pharmacological	inhibition	of	proteasome	and	liver‑specific	

PSMc1 KO mice could increase RIP3 expression, indi‑
cating RIP3 expression was post‑translationally regulated in 
ethanol‑mediated liver injury (87). Additionally, when RIP3 
was	deleted,	the	steatosis	and	inflammatory	effects	of	ethanol	
in	hepatocyte	could	be	reduced	(86).	However,	the	inflamma‑
tory and steatosis effects of high fat diet for hepatocyte were 
increased when RIP3 was deleted (80).

Fibrosis. Hepatic	fibrosis	is	one	of	the	most	common	liver	
diseases, which is closely related to liver failure and hepato‑
cellular cancer. RIP3 deletion reportedly aggravated hepatic 
fibrosis	by	increasing	insulin	resistance	(80).	Furthermore,	
inhibition of RIP3 did not result in protective effect in 
carbon	tetrachloride	(CCL4)‑induced	fibrosis	(83)	(Table	IV).	
Additionally, curcumol suppressed serum inflammatory 

Table II. The role of necroptosis in cancer.

cancer type Observations (Refs.)

Breast cancer decrease of RIP3 expression was associated with worse prognosis (51,52)
colorectal cancer decrease RIP3 and MLKL expression were associated with decreased overall survival (53‑55)
Gastric	cancer	 Low	MLKL	expression	was	significantly	associated	with	decreased	overall	survival	 (61)
Ovarian cancer decrease of MLKL expression was associated with worse prognosis (62)
Pancreatic cancer Increase of RIP1, RIP3, FAdd and MLKL expression were associated with worse (66,67)
 prognosis 
Lung cancer Increased RIP1 expression was associated with worse prognosis (65)
Acute myeloid leukemia decrease of RIP3 expression was associated with worse prognosis (56,57)
Melanoma decrease of RIP3 expression was associated with worse prognosis (58,59)
Head and neck squamous decrease of RIP1 expression was associated with worse prognosis (60)
cell carcinoma  
cervical squamous cell  decrease of MLKL expression was associated with worse prognosis (63)
carcinoma  
Glioblastoma Increased RIP1 expression was associated with worse prognosis (64)

RIP, receptor‑interacting protein kinase; MLKL, mixed lineage kinase domain‑like protein; FAdd, Fas‑associated death domain.

Table III. The role of necroptosis in neurodegenerative diseases.

Neurodegenerative diseases Observations (Refs.)

Parkinson's disease RIP1 inhibition improved survival of optic atrophy 1‑mutant human induced pluripotent (72)
 stem cell‑derived neurons in vitro. RIP1 inhibition attenuated MPTP‑induced 
 dopaminergic neuronal loss 
Alzheimer's	disease	 RIP1	inhibition	reduced	Aβ	burden,	levels	of	inflammatory	cytokines,	and	memory	 (76)
	 deficits	in	a	mouse	model	of	Alzheimer's	disease	
Amyotrophic	lateral		 RIP1	inhibition	or	RIP3	deficiency	blocked	oligodendrocyte	death,	microglial	 (77)
sclerosis		 inflammation,	and	axonal	degeneration	
Multiple sclerosis cortical lesions in human multiple sclerosis brain samples showed increased activation of (78)
 RIP1, RIP3 and MLKL 
 Inhibition of RIP1 inhibited the progression of demyelination and disease development (79)
	 in	a	cuprizone‑induced	model	for	multiple	sclerosis	

RIP, receptor‑interacting protein kinase; MPTP, 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine; MLKL, mixed lineage kinase domain‑like 
protein.
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markers, transaminases, and fibrosis in a dose‑dependent 
manner by inducing necroptosis of hepatic stellate cells in a 
liver	fibrosis	model	(88).	Curcumol‑induced	increased	necrop‑
tosis was mediated by increased expression of p‑RIP3 and 
p‑JNK (88). Those results indicated that pharmacotherapy 
which induced increased necroptosis may be a notable strategy 
for	the	treatment	of	hepatic	fibrosis	in	the	future.

Pulmonary diseases
Chronic obstructive pulmonary disease. chronic obstructive 
pulmonary	disease	(COPD)	is	characterized	by	persistent	and	
progressive	airway	inflammation	and	narrowing,	and	is	a	major	
source of the high healthcare expenditure in the elderly (89). 
An increasing number of studies have shown that necroptosis 
is associated with the etiology of cOPd (Table V). In addition, 
necroptosis of epithelial cell is associated with cOPd (90). 
cigarette smoking (cS)‑related necroptosis and dAMP release 
could	cause	neutrophil	inflammation	in	mice,	and	Nec‑1	could	
reduce	the	inflammation	(91).	In	addition,	researchers	have	found	
that in airway epithelial cells, endoplasmic reticulum chaperone 
protein	GRP78	could	promote	CS‑induced	inflammation.	This	
may be due to the upregulation of necroptosis and subsequent 
activation of the NF‑κB pathway (92).

Acute lung injury. Acute lung injury (ALI) is one of the most 
common	complications	in	critically	ill	patients	(93).	Recent	find‑
ings have shown the involvement of RIP3‑mediated necroptosis 
in neonatal mice with hypoxia‑induced lung injury, which can be 
attenuated by gene deletions in RIP3 (94). In additional, inhibi‑
tion	of	RIP3	could	significantly	reduce	inflammatory	activation	

and lipopolysaccharide‑induced necroptosis (95). Researchers 
have also found that mice lacking RIP3 were protected from 
ventilator‑induced lung injury (96). Additionally, inhibition of 
RIP1	can	reduce	systemic	and	pulmonary	inflammation	and	
increase survival rate of septic neonatal mice (Table V) (97).

Idiopathic pulmonary f ibrosis. Idiopathic pulmonary 
fibrosis	(IPF)	is	a	chronic,	progressive,	fibrotic	lung	disease	
characterized	by	the	usual	interstitial	pneumonia	pattern	at	
histopathologic examination (98). In a previous study using 
alveolar epithelial cells, RIP3‑mediated necroptosis was 
associated with IPF development by releasing dAMP (99). 
Additionally, RIP3 and p‑MLKL levels in the lungs of 
IPF patients are significantly higher than those in healthy 
lungs (99). Mice with RIP3 knockout showed a reduced cell 
death, with a decrease of p‑MLKL level in alveolar epithe‑
lial cells (99). RIP3 knockout could effectively suppress the 
DAMP	releasing,	cell	death,	and	pulmonary	fibrosis	without	
reducing the expression of cleaved caspase‑3 (Table V) (99). 
These indicate that inhibiting activities of necroptosis compo‑
nents may be a strategy in the treatment of IPF.

Bronchial asthma. Bronchial asthma is the most common 
chronic	 respiratory	 disease	 characterized	 by	 bronchial	
hyper‑responsiveness and airway obstruction (100). 
Viral‑induced bronchial asthma exacerbation mimicked by 
IFN‑β knockout mice treated with house dust mite is asso‑
ciated with increased necroptosis components, including 
p‑MLKL	and	LDH	in	the	bronchoalveolar	lavage	fluid	(101).	
As	a	major	inflammatory	cytokine	in	bronchial	asthma,	IL‑33	

Table IV. The role of necroptosis in liver diseases.

Liver diseases Observations (Refs.)

NAFLD	 MLKL	deficiency	and	necrostatin‑1	administration	improves	insulin sensitivity without affecting (81)
	 inflammation	
	 RIP3KO	mice	had	increased	hepatic	steatosis	but	reduced	inflammation	 (82)
	 MCD	diet‑fed	RIP3KO	mice	were	protected,	but	CCL4‑induced	fibrosis	model	mice	were	not	 (83)
 protected
 RIP3 maintains WAT homeostasis and has a role in WAT insulin signaling (84)
	 RIP3	deficiency	protects	from	steatosis,	inflammation,	and	fibrosis	 (85)
Alcoholic hepatitis RIP3 expression increased following ethanol feeding (163)
 RIP3 but not RIP1 inhibition protects from ethanol‑induced hepatic injury and steatosis (86)
	 RIP3	ablation	and	necrostatin‑1	decreased	hepatic	inflammation	 (87)
 curcumin reduced ethanol‑induced necroptosis in Nrf/p53‑dependent mechanism (164)
Fibrosis	 RIP3KO	mice	were	not	protected	against	steatosis,	inflammation	and	fibrosis	 (80)
	 RIP3	deficiency	protects	from	steatosis,	inflammation,	and	fibrosis	 (85)
	 RIP3KO	MCD	diet‑fed	mice	were	protected	from	inflammation	and	fibrosis,	while	CCL4‑induced	 (83)
	 fibrosis	was	not	reduced	in	RIP3KO	mice	
	 RIP3	deficiency	reduced	inflammation,	oxidative	stress,	and	fibrosis	in	3‑day	CBD	ligation	model	 (165)
	 Melatonin	protects	from	CCL4‑induced	fibrosis	 (166)
	 Curcumol‑mediated	decreased	fibrosis	is	associated	with	increased	necroptosis	in	hepatic	 (88)
 stellate cells 

NAFLD,	non‑alcoholic	fatty	liver	disease;	RIP,	receptor‑interacting	protein	kinase;	KO,	knockout;	MCD,	methionine	and	choline‑deficient;	
ccL4, carbon tetrachloride; WAT, white adipose tissue; cBd, common bile duct.
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is released in response to necroptosis and causes eosinophil 
and basophil activation (102). Moreover, in a mouse model of 
asthma induced by Aspergillus fumigatus extract, the necrop‑
tosis inhibitor GW806742X can eliminate necroptosis and 
IL‑33 response, and attenuates eosinophilia (102). Additionally, 
The TNFα‑induced necroptosis enhanced by mucin 1 can be 
reduced by Nec‑1 in human bronchial epithelial cells (103) 
(Table V).

Renal diseases
Acute kidney injury. Acute kidney injury (AKI) is a common 
and severe clinical disease that often requires renal replacement 
therapy (Table VI). Signs of an ongoing necroptotic response 
have been found in AKI caused by ischemia‑reperfusion injury 
(IRI) (104‑106), urolithiasis (107), cisplatin‑based chemo‑
therapy	or	radiocontrast	(104,108‑111).	Previous	findings	have	
shown that compared with wild‑type counterparts, RIP3‑/‑ and 
MLKL ‑/‑ mice are less sensitive to oxalate crystal‑induced 
AKI, and are associated with reduced plasma creatinine levels, 
neutrophil	 infiltration,	and	limited	tubular	 injury	(107,110).	
Moreover, the RIP3‑/‑ mice confer protection from mild IRI, and 

the protection can be extended to severe IRIs with the deletion 
of Ppif (104). Similar results are also found when Nec‑1, SfA, 
and 16‑86 are employed alone or in combination (104,109). The 
abovementioned results suggest that inhibition of necroptosis 
may be a therapeutic option for AKI treatment.

Chronic kidney disease. Similar to the AKI, necroptosis was 
also found in chronic kidney disease (cKd) after unilateral 
nephrectomy (Table VI) (112). Researchers have shown that 
necroptosis and the highest levels of RIP1 and RIP3 occurred 
8 weeks after subtotal nephrectomy (112). Notably, the renal 
pathological	changes	and	renal	function	could	be	significantly	
improved after Nec‑1 treatment, and the overexpression of 
RIP1,	RIP3,	MLKL	could	be	significantly	reduced	(112).	These	
results suggest that necroptosis contributes to the loss of renal 
cells	in	subtotal	nephrectomized	rats.	Furthermore,	during	the	
AKI to cKd process, upregulation of expression and inter‑
action between RIP3 and MLKL can induce necroptosis in 
proximal	renal	tubular	cells	and	promote	inflammasome	acti‑
vation under IRI conditions (113). RIP3 or MLKL knockout 
could protect the renal tubular cells from necroptosis and 

Table V. The role of necroptosis in pulmonary diseases.

Pulmonary diseases Observations (Refs.)

cOPd cS‑induced necroptosis and the release of dAMPs trigger neutrophilic	inflammation	in	mice	that (91)
 was reduced with Nec‑1 treatment 
Acute lung injury RIP3‑mediated necroptosis is observed in neonatal mice with HALI, which is attenuated by (94)
 genetic deletion in RIP3 
	 RIP3‑deficient	mice	are	protected	against	ventilator‑induced	lung	injury	 (96)
Idiopathic		 RIP3	and	p‑MLKL	expression	levels	are	significantly	higher	in	the	lungs	of	IPF	patients	than	in	 (99)
pulmonary	fibrosis	 healthy	control	lungs	
 Bleomycin‑treated AEcs isolated from RIP3 knockout mice show attenuation of cell death with
 decreased p‑MLKL expression 
Bronchial asthma GW806742X can abrogates IL‑33 reaction in vitro and attenuates eosinophilia in a mouse (102)
 model of asthma 

cOPd, chronic obstructive pulmonary disease; cS, cigarette smoking; dAMPs, damage‑associated molecular patterns; RIP, receptor‑inter‑
acting protein kinase; MLKL, mixed lineage kinase domain‑like protein; HALI, hypoxia‑induced lung injury; IPF, idiopathic pulmonary 
fibrosis;	AECs,	alveolar	epithelial	cells;	IL‑33,	interleukin	33.

Table VI. The role of necroptosis in renal diseases.

Renal diseases Observations (Refs.)

Acute kidney injury RIP3‑/‑ and MLKL‑/‑ mice are less sensitive to oxalate crystal–induced and cisplatin‑driven (107,110)
 AKI than are their wild‑type counterparts 
 The RIP3‑/‑ genotype confers considerable protection against mild IRI, and such a (104)
 protection can be extended to severe IRI by the concomitant deletion of Ppif 
chronic kidney disease RIP1 and RIP3 participate in the loss of renal cells of subtotal nephrectomised rats (112)
	 Gene	deletion	of	RIP3	or	MLKL	ameliorated	renal	tubular	cell	necroptosis,	and	then	finally	 (113)
	 reduced	interstitial	fibrogenesis	in	the	long	term	after	IRI	

RIP, receptor‑interacting protein kinase; MLKL, mixed lineage kinase domain‑like protein; AKI, acute kidney injury; IRI, ischemia‑reperfusion 
injury.
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inflammasome	activation,	which	prevent	kidney	from	intersti‑
tial	fibrogenesis	after	IRI	(113).

Cardiovascular diseases
Myocardial infarction. Myocardial	infarction,	characterized	
by regional myocardial ischemia and hypoxia, is one of the 
leading	causes	of	death	worldwide	(114).	Previous	findings	
have shown that compared to wild‑type mice, the levels of 
RIP1	and	RIP3	were	significantly	higher	in	hearts	of	ischemic	
mice	(22,115).	In	an	acute	IRI	mouse	model,	RIP3	deficiency	
was able to protect heart from IRI‑induced necroptosis and 
reduce	the	infarct	size	(116).	Notably,	researchers	have	found	
that Nec‑1 could protect heart against short‑term and long‑term 
effects of myocardial ischemia, including reduced necrotic 
cell	death	and	size	of	myocardial	infarction,	which	helped	to	
maintain long‑term cardiac function (22) (Table VII).

Atherosclerosis, Atherosclerosis,	a	chronic	inflammatory	
disease, is frequently observed in middle‑aged individuals and 
the elderly, and is a major cause of cardiovascular death (117). 
It has been demonstrated that necroptosis may promote the 
inflammatory response and atherosclerosis development. 
Oxidized	low‑density	lipoprotein	(LDL)	is	able	to	upregulate	
RIP3	and	oxidized	LDL‑related	gene	expression	in	macro‑
phages, leading to macrophage necroptosis (118). It triggers 
an inflammatory response, which leads to atherosclerosis. 
during the progression of the disease, some cytokines are 
released and monocytes accumulate in the lesion, exacerbating 
the	accumulation	of	inflammation.	Additionally,	necroptosis	
can lead to the death of foam cells, which in turn aggravates 
the progression of the disease (Table VII) (118). These results 

suggest that inhibition of necroptosis may be a therapeutic 
option for atherosclerosis treatment.

Joint diseases
Rheumatoid arthritis. Rheumatoid	arthritis	(RA),	characterized	
by	synovial	membrane	inflammation,	is	a	chronic	systemic	inflam‑
matory autoimmune disease that affects 0.5‑1% of the population 
worldwide (119). Previous findings have shown a significant 
increase in necroptosis components including RIP1, RIP3, and 
MLKL in the synovium of an arthritis mouse model (120). 
Additionally, researchers have also found in an arthritis mouse 
model,	Nec‑1	could	significantly	reduce	these	key	components	of	
necroptosis and IL‑17, IL‑1β, IL‑6, and TNFα (Table VIII) (121). 
These results suggested that inhibiting activities of necroptosis 
components may be a strategy in the treatment of RA.

Osteoarthritis. Osteoarthritis (OA) is the leading cause of pain 
and disability among chronic disease, which affects about 10% 
of	men	and	18%	of	women	older	than	60	years	(122).	A	signifi‑
cant increase in necroptosis components including RIP3, and 
MLKL was found in highly degenerated cartilage tissue (123). 
Moreover,	it	has	been	shown	that	Nec‑1	could	significantly	
reduce	cell	death	and	subsequent	 release	proinflammatory	
mediators in the OA model (Table VIII) (123).

6. Drugs and agents that regulate necroptosis

As necroptosis not only participate in the maintenance 
of organismal homeostasis, but also constitute etiological 
determinants of diverse human pathologies (124), at least two 

Table VII. The role of necroptosis in cardiovascular diseases.

cardiovascular diseases Observations (Refs.)

Myocardial	infarction	 RIP3	deficiency	protects	mouse	hearts	from	IR‑induced	necroptosis	and	significantly	 (22)
	 reduces	infarct	size	
 Necrostatin‑1 prevents both short and long‑term effects of myocardial ischemia 
Atherosclerosis Ox‑LdL deposited in the endothelium can upregulate the expression of RIP3 and (118)
 ox‑LdL‑related genes, resulting in the necroptosis of macrophages 

RIP,	receptor‑interacting	protein	kinase;	IR,	ischemia‑reperfusion;	ox‑LDL,	oxidized‑low‑density	lipoprotein.

Table VIII. The role of necroptosis in joint diseases.

Joint diseases Observations (Refs.)

Rheumatoid arthritis RIP1, RIP3 and MLKL were potently increased in the synovium of a collagen‑induced RA (120)
 mouse model 
	 RIP1	inhibitor	significantly	decreased	the	expression	of	RIP1,	RIP3	and	MLKL	and	 (121)
 suppressed the expression of IL‑17, IL‑1β, IL‑6 and TNFα in a RA mouse model 
Osteoarthritis Gene expression levels of RIP3 and MLKL were elevated in highly degenerated cartilage tissue (123)
	 Trauma	induced	cell	death	and	subsequent	release	of	pro‑inflammatory	mediators	could	be
 largely attenuated by necrostatin‑1 or N‑acetylcysteine 

RA, rheumatoid arthritis; RIP, receptor‑interacting protein kinase; MLKL, mixed lineage kinase domain‑like protein; IL, interleukin; TNFα: 
tumor necrosis factor‑α.
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therapeutic paradigms can be envisioned: i) the activation 
of necroptosis, as a means to bypass the accrued resistance 
of most tumors to apoptosis (125); ii) the inhibition of 
necroptosis, as a strategy to limit the loss of post‑mitotic 
cells in pathologies such as inflammatory, ischemic, and 
toxic syndromes (126). Therefore, drugs affecting either the 
expression or the activity of necroptosis mediators may have 
therapeutic potential (Table IX).

Several drugs have been found to upregulate the expression 
of the key molecules of necroptosis, including interferons (127), 
histone deacetylase inhibitor valproic acid (128), and hypo‑
methylating	agents	such	as	decitabine	and	5‑azacytidine	(51).	
Additionally, several traditional chinese medicine drugs 
such as shikonin (129), emodin (130), bufalin (131), and 
resibufogenin (132) were also found to upregulate RIP1 and 
RIP3,	which	finally	induced	necroptosis.	By	contrast,	various	
drugs have been documented to downregulate necroptosis, 
including immunosuppressive drug cyclosporine A (133) and 

Rapamycin (134), inhibitors of the HSP90 [(G‑TPP) (135), 
Kongensin A (136), 17‑demethoxy‑reblastatin (137), 
dHQ3 (137), gamitrinib (18), and geldanamycin (138)], 
as well as traditional chinese medicine such as patchouli 
alcohol (139).

Promising	specific	inhibitors	are	also	being	developed	for	
the central molecules of necroptosis. currently, several drugs 
with anti‑necroptotic activity have been used for the treatment 
of	different	types	of	cancer	[Pazopanib	(140),	Ponatinib	(140),	
GSK3145095	(141),	Dabrafenib	(26),	Carfilzomib	(142),	and	
Sorafenib (143)]. Moreover, a clinically used anti‑convulsant, 
Phenytoin (144) as well as components found in different plants 
[aucubin (145) and wogonin (146)] could inhibit RIPK1 activity. 
By contrast, radiotherapy (147), chemotherapeutic agents such 
as	5‑fluorouracil	(148),	cisplatin	(149),	oxaliplatin	(150),	and	
anthracyclines (150), pan‑BcL‑2 inhibitor Obatoclax (151), 
or traditional chinese medicines such as neoalbaconol (152) 
and tanshinone (153) have been documented to upregulate 

Table IX. drugs and agents that regulate necroptosis.

drugs and agents Target disease condition (Refs.)

drugs and agents that induce necroptosis

Interferons RIP3 and MLKL different diseases (127)
Valproic acid RIP1 Epilepsy and mood disorders (128)
Decitabine	and	5‑azacytidine	 RIP3		 Breast	cancer	 (51)
Shikonin RIP1 and RIP3 Pancreatic and non‑small cell lung cancers, osteosarcoma (129)
Emodin RIP1, RIP3 and MLKL Renal cancer (130)
Bufalin RIP1 and RIP3 Pancreatic and breast cancers (131)
Resibufogenin RIP3 and MLKL Pancreatic and colorectal cancers (132)
Radiotherapy caspase‑8 different cancers (147)
5‑fluorouracil	 RIP1	and	RIP3	 Different	cancers	 (148)
cisplatin RIP1, RIP3 and MLKL different cancers (149)
Anthracyclines and oxaliplatin RIP3 and MLKL Lung cancer (150)
Obatoclax RIP1, RIP3 and MLKL different cancers (151)
Neoalbaconol RIP1 and RIP3 Nasopharyngeal carcinoma (152) 
Tanshinone RIP1 and RIP3 Hepatocellular carcinoma (153)

drugs and agents that inhibit necroptosis

cyclosporine A RIP1 and RIP3 Immunosuppressive drug (133)
Rapamycin RIP1 Restenosis in coronary arteries, transplant rejection in (134)
  lymphangioleiomyomatosis, and retinal detachment 
Patchouli alcohol RIP3 and MLKL colitis (139)
Pazopanib	 RIP1	 Renal	cell	carcinoma	and	advanced	soft	tissue	sarcoma	 (140)
Ponatinib RIP1 and RIP3 Leukemia (140)
GSK2982772	 RIP1	 Inflammatory	diseases	(colitis,	rheumatoid	arthritis,	psoriasis)	 (167)
GSK3145095 RIP1 Pancreatic cancer (141)
dabrafenib RIP3 Melanoma (88)
Carfilzomib	 RIP3	and	MLKL	 Multiple	myeloma	 (142)
Sorafenib RIP1 and RIP3 Thyroid and renal cell cancers, hepatocellular carcinoma (143)
Phenytoin RIP1 Epilepsy and breast cancer (144)
Aucubin RIP1 and MLKL Epilepsy (145)
Wogonin RIP1 Acute kidney injury (146)
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necroptosis. Although these drugs did not affect the expression 
of necroptotic component, these medicines may increase the 
effect of the drugs affecting the expression of the necroptotic 
molecules in combination therapy in cancer cells.

7. Conclusions and perspectives

During	the	last	decade,	necroptosis	has	been	recognized	as	an	
alternative to apoptosis when cells are exposed to various stimuli 
under	specific	conditions	(154).	The	necrosome	components,	
RIP1, RIP3, and MLKL, are critical regulators of necroptotic 
cell	death.	RIP1	functions	as	a	traffic	cop	for	mechanisms	of	
cell death. MLKL acts as the executioner of necroptosis, based 
on	the	phosphorylation,	oligomerization	and	membrane	trans‑
location (155). current understandings demonstrated a pathway 
in which RIP3 activation, possibly mediated by RIP1, induces 
MLKL	activation,	and	finally	results	in	permeabilization	of	the	
plasma membrane and cell death.

Recent studies have revealed a complex role for necroptosis 
in diverse clinical diseases, such as ischemia‑reperfusion injury, 
neurological and inflammatory diseases, retinal disorders, 
acute kidney injury or bacterial infections. On the one hand, 
it functioned as a cell‑death mechanism activated by various 
signal transduction cascades in the same cell or the same tissue; 
on	the	other	hand,	it	acted	as	an	inflammation	inducer	through	
the release of dAMPs. cross‑regulation between necroptosis 
and other modes of cell death increase the complexity of these 
pathways. The major necroptosis‑regulating proteins exert 
pleiotropic signaling functions that culminate in necroptotic 
cell death and have cell death‑independent functions, such as 
regulation	of	inflammasome	activation,	mitochondrial	func‑
tion and integrity, and cellular metabolic activities (96).

As necroptosis constitutes etiological determinants of 
multiple human pathologies, targeting the necroptotic pathway 
is a potential therapeutic approach for multiple diseases, and 
several activators or inhibitors of the necroptosis pathway have 
been	developed,	such	as	dabrafenib,	pazopanib,	and	ponatinib.	
These small‑molecule activators or inhibitors of necroptosis 
may	be	useful	as	therapeutics	in	a	specific	clinical	disease.	
However, most studies investigating the therapeutics targeting 
necroptosis are based on in vitro experiments or animal models, 
thus the feasibility of the clinical use of these compounds 
and agents remains to be assessed in vivo and clinical trials. 
Additionally, the off‑target effects of the necroptosis‑targeting 
therapeutics	should	be	scrutinized,	and	novel	approaches	that	
conjugate necroptosis inducers and disease‑guiding agents 
should be developed to enhance selectivity and safety.
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