REVIEW

Chemical Constituents of the Plants of the Genus Calophyllum

by Xiao-Hui Su^a), Man-Li Zhang^a), Li-Geng Li^a), Chang-Hong Huo^a), Yu-Cheng Gu^b), and Qing-Wen Shi^{*a})

^a) Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei Province, P. R. China (phone: +86-311-8626-5634; e-mail: shiqingwen@hebmu.edu.cn)

^b) Syngenta Jealott's Hill International Research Centre, Bracknell, UK-Berkshire RG426EY

Contents

- 1. Introduction
- 2. Chemical Constituents
 - 2.1. Coumarins
 - 2.2. Xanthones
 - 2.3. Chromanones
 - 2.3.1. Flavonoids
 - 2.3.2. Biflavonoids
 - 2.3.3. Further Chromanone Derivatives
 - 2.4. Triterpenes and Steroids
 - 2.5. Others
- 3. Biological Activity
 - 3.1. Antiviral Activities
 - 3.2. Antitumor-Promoting Activity
 - 3.3. Inhibition of the Multidrug Transporter P-glycoprotein
 - 3.4. Cytotoxic Activity
 - 3.5. Antimalarial Activity
 - 3.6. Antibacterial Activity
 - 3.7. Activity in Gastrointestinal Affections
 - 3.8. Inhibition of Sulfotransferases
- 4. Conclusions

1. Introduction. – The genus *Calophyllum* of the Guttiferae family, a large group of tropical trees consisting of *ca.* 180–200 different species [1], is well-known as a rich and valuable source of bioactive xanthones and coumarins, especially since the isolation of the calanolides (= benzo-tripyranones), a unique subclass within the HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), has been reported [2][3]. Chromanones are also distinctive compounds of this genus. A number of plants of this genus are used as traditional herbal medicines, such as being a diuretic [4], for the treatment of malaria, venereal diseases, and for blood pressure [5], rheumatism, varicose, haemorrhoids, and chronic ulcers [6], as well as skin infections, wounds,

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

leprous nephritis, pain, eye diseases, and inflammations [7]. The modern pharmacology research of genus *Calophyllum* has further revealed many activities, such as antiviral, antitumor-promoting, antimalarial, antibacterial, as well as cytotoxic activity.

To facilitate further research work, in this article, we review the structures and biological properties of the known constituents from *Calophyllum*.

2. Chemical Constituents. – The compounds of *Calophyllum* species were classified into four groups: coumarins, 1–84, xanthones, 85–166, chromanones, 167–211, steroids and triterpenoids, 212–238, and some other compounds, 239–243 (see the *Table*).

2.1. Coumarins. Natural coumarins isolated from the Calophyllum genus belong, from a biogenetic point of view, to a homogeneous group of naturally occurring heterocycles with a biosynthetic scheme related to that of neoflavonoids [76]. The known coumarins of the genus Calophyllum isolated over the past few decades include pyranocoumarins, 1-47, furocoumarins, 48-65, furo-pyranocoumarins, 66-69, simple coumarins, 70-80, and others, 81-84. Individual members of the groups vary with respect to the substituent at C(4) of the lactone ring of the coumarins, where Me, Pr, or Ph groups may be encountered. In 1996, McKee et al. concluded three basic structural types of pyranocoumarins which are the most frequent coumarins (Fig. 1): i) tetracyclic dipyranocoumarins **A**, in which the C rings have a geminal dimethyl moiety, e.g., compounds 1-18; ii) tricyclic pyranocoumarins **B**, e.g., compounds 19-32; and iii) tetracyclic dipyranocoumarins **C** with reversed C and D pyran rings, *i.e.*, the geminal dimethyl groups are in the D ring, e.g., as in compounds 33-35 [19].

Fig. 1. Three basic structural types of pyranocoumarins

Compound 10 was firstly named as (-)-calanolide B [3]. Fuller et al. named compound 11 as costatolide [18]. But, Spino et al. recognized that (-)-calanolide B and costatolide were the same compound, *i.e.*, 10 [9]. Calanolide E (26) was first isolated from *C. lanigerum* [3]. *McKee et al.* isolated this compound and its diastereoisomer calanolide E2 (27) from the stem bark of the same plant. So, they renamed calanolide E as calanolide E₁, but the configurations of the two diastereoisomers were not defined [19]. Recedesolide (31) was isolated from *C. recedens* and *C. blancoi* with different structures [26][27]. Compounds 34 and 35 were first identified as shown in *Fig. 2*, with the names as calanolides C and D, respectively [3], but later, their structures were revised, and they were renamed as pseudocalanolides C and D (*Table*) [77][78]. Calophyllic acid (36) and isocalophyllic acid (37) belong to the pyranocoumarins of type A, but the lactone ring is cleaved.

Compound	Name	Plant	Part	Ref.
1	Inophyllum C	C. inophyllum	leaf seed	[2][8] [9]
		C. brasiliense C. teysmannii var.	nut stem bark bark	[10] [11] [12][13]
2	Inophyllum E	tnopnyuotae C. inophyllum	leaf seed	[2][8] [9]
		C. brasiliense C. teysmannii var. inophylloide	stem bark bark	[10] [11] [12]
3	Soulattrolone	C. teysmannii var. inophylloide	latex	[14][15]
4	Cordatolide A	C. lanigerum var. austrocoriaceum C. cordato-oblongum	latex leaf	[15] [16]
5	Cordatolide B	C. cordato-oblongum	twig, bud leaf	[17] [16] [17]
6	12-Methoxycordatolide B	C. cordato-oblongum	twig, bud	[17]
7	(+)-Calanolide A	C. lanigerum C. lanigerum var. austrocoriaceum	fruit, twig latex	[3] [15]
8 9 10	12-Acetoxycalanolide A 12-Methoxycalanolide A (–)-Calanolide B	C. brasiliense C. lanigerum C. lanigerum C. lanigerum	stem bark fruit, twig fruit, twig fruit, twig	[11] [3] [3] [3]
11	Costatolide	C. teysmannu var. inophylloide C. teysmannii var. inophylloide	latex	[18]
12	12-Methoxycalanolide B	C. cerasiferum C. lanigerum	seed fruit, twig	[9] [3]
13	Calanolide F	C. teysmannii var. inophylloide	leaf, twig	[19]
14	Inophyllum A	C. inophyllum C. brasiliense C. moonii	leaf stem bark	[2] [11] [20]
15	Soulattrolide	C. teysmannii var. inophylloide	latex	[20] [14][15][18]
16	Inophyllum B	C. moonu C. teysmannii C. inophyllum	leat latex leaf	[20] [21] [2] [9]
17 18	Inophyllum P Inophyllum D	C. inophyllum C. inophyllum C. brasiliense	seed leaf leaf stem bark	[9] [2] [11]

Table.	Chemical	Constituents	from the	e Genus	Calophyllum

Table	(cont.)
rubu	(cont.)

Compound	Name	Plant	Part	Ref.
19	Calophyllolide	C. inophyllum	nut	[10]
			aerial part	[22]
			seed	[9][23]
		C. brasiliense	stem bark	[11]
20	Brasimarin A	C. brasiliense	stem bark	[11]
21	Calanone	C. brasiliense	stem bark	[11]
		C. tevsmannii var.	bark	[12][13]
		inophylloide		
		I J	latex	[14][15]
		C. aff. biflorum	latex	[15]
22	Mammea A/BA cyclo D	C. brasiliense	leaf	[24]
23	5-Methoxy-2.2-dimethyl-6-(2-methyl-1-	C brasiliense	stem bark	[11]
	oxobut-2-envl)-10-propyl-2H8H-	er or usinense	otom oum	[++]
	benzo[1 $2 \cdot b \cdot 3 \cdot 4 \cdot b'$]dipyran-8-one			
74	Cordatolide E	C lanigerum vər	stem bark	[10]
		austrocoriacoum	Stem Dark	[+7]
25	Oblongulide	C cordato-	leaf	[16]
23	Oblongunae	c. coruno-	icai	[10]
		obiongum	twig bud	[17]
06	Calanolida E (calanolida E1)	C laniaarum	fruit twic	[1/] [3]
20	Calanonde E (calanonde E1)	C. lanigerum	if uit, twig	[3]
		C. lanigerum var.	stem bark	[19]
7		austrocoriaceum		[10]
27	Calanolide E2	C. lanigerum var.	stem bark	[19]
		austrocoriaceum		[0.5]
•		C. polyanthum	seed	[25]
28	(–)-6-Benzoyl-3,4-dihydro-3,4,5-trihydroxy-2,2-	C. teysmannii var.	bark	[13]
	dimethyl-10-phenyl- $2H$, $8H$ -benzo[1 , $2-b$: 3 , $4-b'$]-	inophylloide		
	dipyran-8-one			
29	Calopolyanolide C	C. polyanthum	seed	[25]
30	Calopolyanolide D	C. polyanthum	seed	[25]
31	Recedesolide	C. recedens	bark	[26]
		C. blancoi	seed	[27]
32	Isorecedensolide	C. blancoi	seed	[27]
33	Pseudocordatolide C	C. lanigerum var.	leaf	[19]
		austrocoriaceum		
34	Pseudocalanolide C (Calanolide C)	C. lanigerum	fruit, twig	[3]
		C. brasiliense	stem bark	[11]
35	Pseudocalanolide D (Calanolide D)	C. lanigerum	fruit, twig	[3]
36	Calophyllic acid	C. inophyllum	leaf	[2]
37	Isocalophyllic acid	C. inophyllum	leaf	[2]
			aerial part	[22]
38	Teysmanone A	C. teysmannii var.	bark	[12]
	-	inophylloide		
39	Apetatolide	C. inophyllum	aerial part	[22]
40	Calaustralin	C. inophyllum	nut	[10]
		C. austraiianum	bark	[28]
41	<i>Q</i> -Methylisocalaustralin	C tevsmannii var	bark	[13]
		inonhylloide	Juin	[10]
42	trans-7 8-Dihydro-5-methovy-7 8-dimethyl 10	C tevsmannii vor	hark	[13]
	(3-methylhut-2-envl)_4-nhenvl 2H6H	inonhylloide	Jaik	[13]
	(5-memyrout-2-enyr)-+-pitenyr-211,011-	mopnynoue		

Compound	Name	Plant	Part	Ref.
43	Brasimarin C	C. brasiliense	stem bark	[11]
44	Calocoumarin A	C. brasiliense	stem bark	[11]
		C. inophyllum	aerial part	[22]
45	Teysmanone B	C. teysmannii var.	bark	[12]
		inophylloide		
46	Isocalanone	C. teysmannii var.	bark	[13]
		inophylloide		
47	Mammea A/AB cyclo E	C. dispar	stem bark	[29]
48	Calocoumarin B	C. inophyllum	aerial part	[22]
49	Mammea A/BA cyclo F	C. dispar	stem bark	[30]
50	Mammea A/BB cyclo F	C. dispar	stem bark	[30]
51	Mammea A/BC cyclo F	C. dispar	fruit	[30]
52	Mammea B/BA cyclo F	C. brasiliense	leaf	[24]
53	Mammea B/BB cyclo F	C. brasiliense	leaf	[24]
54	Isodisparfuran A	C. dispar	fruit	[30]
55	Brasimarin B	C. brasiliense	stem bark	[11]
56	(-)-9-Benzoyl-2,3-dihydro-2-(1-hydroxy-1-	C. teysmannii var.	bark	[13]
	methylethyl)-4-methoxy-5-phenyl-7 <i>H</i> -	inophylloide		
	furo[3,2-g][1]benzopyran-7-one			
57	(–)-9-Benzoyl-2,3-dihydro-3-hydroxy-2-	C. teysmannii var.	bark	[13]
	(1-hydroxy-1-methylethyl)-4-methoxy-5-	inophylloide		
	phenyl-7 <i>H</i> -furo[3,2-g][1]benzopyran-7-one			
58	(–)-6-Benzoyl-8,9-dihydro-5-hydroxy-8-	C. teysmannii var.	bark	[13]
	(1-hydroxy-1-methylethyl)-4-phenyl-2 <i>H</i> -	inophylloide		
	furo[2,3- <i>h</i>][1]benzopyran-2-one			
59	Disparfuran B	C. dispar	stem bark	[30]
60	Disparacetylfuran A	C. dispar	stem bark	[30]
61	Mammea A/AA deshydrocyclo F	C. dispar	stem bark	[30]
62	Mammea A/AA methoxycyclo F	C. dispar	stem bark	[30]
63	Mammea A/AA cyclo F	C. dispar	stem bark	[30]
64	Mammea A/AB cyclo F	C. dispar	stem bark	[30]
65	Mammea A/AC cyclo F	C. dispar	fruit	[30]
66	Inophyllum G-1	C. inophyllum	leaf	[2]
67	Inophyllum G-2	C. inophyllum	leaf	[2]
68	Calocoumarin C	C. inophyllum	aerial part	[22]
69	Mammea A/AB dioxalanocyclo F	C. dispar	stem bark	[29]
70	Mammea A/BA	C. brasiliense	leaf	[24]
71	Mammea A/BB	C. brasiliense	leaf	[24]
72	Mammea B/BA	C. brasiliense	leaf	[24]
73	Mammea B/BB	C. brasiliense	stem bark	[11]
		C. brasiliense	leaf	[24]
74	Mammea C/OA	C. brasiliense	leaf	[24]
75	Mammea C/OB	C. brasiliense	leat	[24]
76	Isodispar B	C. dispar	truit	[29]
77	Disparinol D	C. dispar	stem bark	[29]
78	Disparpropylinol B	C. dispar	stem bark	[29]
79	Disparinol B	C. dispar	stem bark	[29]
80	Dispardiol B	C. dispar	stem bark	[29]
81	Inocalophyllin A	C. inophyllum	seed	[23]

<i>Tuble</i> (cont.)	Table	(cont.)
----------------------	-------	---------

Table	(cont.)
-------	---------

Compound	Name	Plant	Part	Ref.
82	Inocalophyllin A methyl ester	C. inophyllum	seed	[23]
83	Inocalophyllin B	C inophyllum	seed	[23]
84	Inocalophyllin B methyl ester	C inophyllum	seed	[23]
85	7-Hydroxy-8-methoxyxanthone	C. caledonicum	trunk bark	[4]
86	7.8-Dimethoxyxanthone	C. caledonicum	trunk bark	[4]
87	6-Hydroxy-5-methoxyxanthone	C. caledonicum	trunk bark	[4]
88	7-Hydroxy-5,6-dimethoxyxanthone	C. caledonicum	trunk bark	[4]
89	1,3,5-Trihydroxy-2-isoprenylxanthone	C. austroindicum	stem wood	[31]
90	1-Hydroxy-7-methoxyxanthone	C. austroindicum	stem wood	[31]
91	6-Hydroxy-1,3,5-trimethoxyxanthone	C. austroindicum	stem wood	[31]
92	3,6-Dihydroxy-1,5-dimethoxyxanthone	C. austroindicum	stem wood	[31]
93	1,3,6-Trihydroxy-5,7-dimethoxyxanthone	C. austroindicum	stem wood	[31]
94	2-Methoxyxanthone	C. austroindicum	bark	[31]
95	4-Hydroxyxanthone	C. austroindicum	bark	[31]
96	1,7-Dihydroxyxanthone	C. austroindicum	bark	[31]
		C. ramiflorum	heartwood	[32]
		C. inophyllum	heartwood	[33]
		C. tomentosum	heartwood	[34]
		C. teysmannii var.	wood	[35]
		inophylloide		
97	1,5-Dihydroxyxanthone	C. inophyllum	root bark	[10][36]
		C. tomentosum	heartwood	[34]
98	1,5,6-Trihydroxyxanthone	C. inophyllum	heartwood	[33]
99	1,6-Dihydroxy-5-methoxyxanthone	C. inophyllum	heartwood	[33]
		C. tomentosum	heartwood	[34]
100	1,7-Dihydroxy-3,6-dimethoxyxanthone	C. inophyllum	timber	[37]
101	1-Hydroxy-6,7-dimethoxyxanthone	C. ramiflorum	heartwood	[32]
102	1,2,8-Trimethoxyxanthone	C. teysmannii var.	wood	[35]
		inophylloide		
103	1,3,5,7-Tetramethoxyxanthone	C. teysmannii var.	wood	[35]
		inophylloide		
104	2-Hydroxyxanthone	C. austroindicum	bark	[31]
		C. teysmannii var.	wood	[38]
10.		inophylloide		[20]
105	3-Hydroxy-2,4-dimethoxyxanthone	C. teysmannu var.	wood	[38]
107		inophylloide		[20]
100	/-Hydroxy-1,2,8-trimetnoxyxanthone	C. teysmannii var.	wood	[38]
107	6 Hudrom 125 toim ath ammanth and	inopnyuoiae C. tauan annii ann		[20]
107	6-Hydroxy-1,2,5-trimetnoxyxantnone	C. leysmannii var.	wood	[38]
100	28 Dihudrow 124 trimothouwonthono	inopnyiloide C. tangan gamii yan	wood	[20]
100	5,8-Dillydroxy-1,2,4-trillethoxyxantholie	C. leysmannii val.	wood	[30]
100	17 Dibudrovy 2 mathewayanthana	C taysmannii yor	wood	[29]
109	1,7-Dillydroxy-5-methoxyxanthone	C. leysmanna val.	wood	[30]
110	6-Methovy-2-(methovycarbonyl)vanthone	C tevsmannii vor	wood	[38]
110	o memoxy-2-(memoxyearbonyr)xanthone	inonhylloide	wood	[50]
111	Calovanthone F	C inophytiolite	root bark	[30]
112	1 3 8-Tribydroxy-7-methoxyyanthone	C inophyllum	root bark	[39]
113	1 3-Dihydroxy-7 8-methoxyxanthone	C inophyllum	root bark	[39]
114	6-Hydroxy-15-dimethoxyxanthone	C inophyllum	root bark	[39]
	, stony no annothony autonoite			[~]

Compound	Name	Plant	Part	Ref.
115	1,3,5-Trihydroxy-2-methoxyxanthone	C. inophyllum	root bark	[39]
		C. apetalum	stem wood	[40]
116	1,3-Dihydroxy-2,5-dimethoxyxanthone	C. apetalum	stem wood	[40]
117	3,8-Dihydroxy-1,2-dimethoxyxanthone	C. apetalum	stem wood	[40]
118	1,3,5-Trihydroxyxanthone	C. apetalum	stem wood	[40]
119	Teysmannic acid	C. teysmannii var.	wood	[35]
120	Scriblitifolic acid	inophylloide C. teysmannii var. inophylloide	wood	[35]
		C. cordato-oblongum	bark, timber	[41]
121	Caloxanthone H	C. austroindicum	stem wood	[31]
122	6-(3',3'-Dimethylallyl)-1,5- dihydroxyxanthone; calophyllin B; guanandin	C. austroindicum	stem wood	[31]
		C. inophyllum	timber	[37]
		C. brasiliense	wood	[42]
		C. scriblitifolium	heartwood	[43]
123	1,5-Dihydroxy-6-(4-hydroxy-3-	C. scriblitifolium	heartwood	[43]
124	l,5-Dihydroxy-6-(4-hydroxy-3- methylbut-2-enyl)xanthone	C. scriblitifolium	heartwood	[43]
125	8-(3',3'-Dimethylallyl)-1,5-dihydroxy- xanthone	C. brasiliense	wood	[42]
126	2-(3,3-Dimethylallyl)-1,3,5-trihydroxy- xanthone	C. inophyllum	heartwood	[33][44]
127	l,3,5,6-Tetrahydroxy-2-(3-hydroxy- 3-methylbutyl)xanthone	C. inophyllum	heartwood	[44]
128	2-(3,3-Dimethylallyl)-1,3,5,6- tetrahydroxyxanthone	C. neo-ebudicum	heartwood	[45]
		C. inophyllum	heartwood	[33][44][46]
129	6-Deoxy-γ-mangostin	C. thwaitesii	root bark	[47][48]
		C. caledonicum	root bark	[49]
130	Calocalabaxanthone	<i>C. calaba</i> var. <i>calaba</i>	bark	[50]
		C. bracteatum	root bark	[47]
131	Caledonixanthone D	C. caledonicum	trunk bark	[4]
132	1-Hydroxy-3,5,6-Trimethoxy-2- (3-methylbut-2-enyl)xanthone	C. ramiflorum	heartwood	[32]
133	Apetalinone A	C. apetalum	root	[40]
134	Osajaxanthone	C. enervosum	stem bark	[51]
135	Jacareubin	C. austroindicum	stem wood	[31]
		C. ramiflorum	heartwood	[32]
		C. tomentosum	heartwood	[34]
		C. cordato-oblongum	bark, timber	[41]
		C. brasiliense	wood	[42]
		C. neo-ebtuikum	heartwood	[45]
		C. inophyllum	timber heartwood	[37] [33][44][46]

Table (cont.)

Compound	Name	Plant	Part	Ref.
120			1	[21]
150	o-Denyaroxyjacareubin	C. austroindicum	stem wood	[31]
		C. tomentosum	neartwood	[34]
		C. brasiliense	wood	[42]
		C. neo-ebudicum	heartwood	[45]
		C. inophyllum	heartwood timber	[33][44][46 [37]
137	Caloxanthone A	C. inophyllum	root bark	[10][36]
138	Caloxanthone C	C. caledonicum	root bark	[49][52]
	(Inoxanthone)	C. inophyllum	root bark	[10]
	(Blancoxanthone)	C. blancoi	root	[53]
139	3-Hydroxyblancoxanthone (Macluraxanthone)	C. blancoi	root	[53]
	× /	C. inophyllum	root bark	[10][36]
		C. caledonicum	root bark	[49]
140	Acetylblancoxanthone	C. blancoi	root	[53]
141	Trapezifolixanthone	C. calaba var. calaba	root bark	[47]
		C. thwaitesii	root bark	[48]
142	Calabaxanthone	C. tomentosum	bark	[34]
	Culubululululul	C. bracteatum	root bark	[47]
143	Demethylcalabaxanthone	C thwaitesii	root bark	[48]
	Denietingienne	C. caledonicum	root bark	[49]
		C. walkeri	stem bark	[54]
44	Dombakinaxanthone	C. caledonicum	root bark	[49]
	Domoutinuxuitiione	C moonii	root bark	[55]
45	Caledonivanthone B	C caledonicum	trunk bark	[33]
46	Dehydrocycloguanandin	C brasiliense	wood	[42]
47	Calothwaitesixanthone	C thwaitesii	root bark	[47][48]
	Calotifwaltesixaltilolle	C caledonicum	root bark	[49]
48	Pyranojacaeubin	C blancoi	root	[53]
49	Caloxanthone	C blancoi	root	[53]
50	Thwaitesixanthone	C austroindicum	hark	[31]
	Inwatesixantione	C thwaitesii	root bark	[31]
		C. unwanesn C. walkeri	stem bark	[54]
151	Thwaitesiyanthonol	C. walkeri	stem bark	[54]
152	11 12-Dihydrothwaitesiyanthone	C. thwaitesii	root bark	[⁵] [48]
153	Cordato-oblonguyanthone	C cordato-oblongum	hark timber	[⁺⁰] [41]
154	Caloxanthone G	C austroindicum	stem wood	[31]
155	Caledonivanthone Δ	C. caledonicum	trunk bark	[31]
156	Calovanthone B	C inonhyllum	root bark	[⁻⁺] [10][36]
157	Caloxanthone F	C. austroindicum	stem wood	[31]
158	Caledonivanthone C	C. caledonicum	trunk bark	[31]
150	2"-Isopropenyl-3"-hydroxydiby	C. walkeri	stem bark	נדן [54]
1.07	drofuranodemethylcalabaxanone			[-20]
LOU LC1	Caloxanthone D	C. inophyllum	root bark	[39]
101	Apetalinone B	C. apetalum	root	[40]
162	Calozeyloxanthone	C. apetalum	root	[40]
		C. moonii	root bark	[55]
		C. zeylanicum	bark	[56]
		C. caledonicum	root bark	[49]

Compound	Name	Plant	Part	Ref.
163	Zeyloxanthonone	C. apetalum	root	[40]
164	Tomentonone	C. apetalum	stem bark	[40]
165	Apetalinone C	C. apetalum	root	[40]
166	Apetalinone D	C. apetalum	stem bark	[40]
167	(–)-Epicatechin	C. austroindicum	bark	[31]
		C. inophyllum	root bark	[36]
		C. enervosum	stem bark	[51]
168	(-)-Epiafzelechin	C. apetalum	stem wood	[40]
169	Myricetin	C. inophyllum	andraecium	[57]
			of flowers	
170	Myricetin-7-glucoside	C. inophyllum	andraecium	[57]
			of flowers	
171	Quercetin	C. inophyllum	andraecium	[57]
			of flowers	
172	5,7,3',4'-Tetrahydroxyisoflavone	C. polyanthum	seed	[25]
173	GB-1	C. panciflorum	stem bark	[58]
174	GB-2	C. panciflorum	stem bark	[58]
175	GB-1a	C. panciflorum	stem bark	[58]
176	GB-2a	C. panciflorum	stem bark	[58]
177	Pancibiflavonone	C. panciflorum	stem bark	[58]
178	Garcinianin	C. panciflorum	stem bark	[58]
179	GD-IV	C. panciflorum	stem bark	[58]
180	Amentoflavone	C. brasiliense	leaf	[24]
		C. calaba	leaf	[59]
181	Isocalolongic acid	C. recedens	bark	[26]
182	2,3-Dihydro-5-hydroxy-2,3,8,8-tetramethyl-2H-	C. tomentosum	leaf	[60]
	[l]benzopyran-6-(1-phenylethenyl)-4H,8H-			
	benzo[1,2-b:3,4-b']dipyran-4-one			
183	(2 <i>S</i> ,3 <i>R</i>)-2,3-Dihydro-5-hydroxy-2,3,8,8-	C. inophyllum	leaf	[61]
	tetramethyl-6-(1-phenylethenyl)-4H,8H-			
	benzo[1,2-b:3,4-b']dipyran-4-one			
184	Inophynone $((2R,3R)-2,3-Dihydro-5-hydroxy-$	C. inophyllum	leaf	[61][62]
	2,3,8,8-tetramethyl-6-(1-phenylethenyl)-			
	4H, 8H-benzo $[1, 2-b: 3, 4-b']$ dipyran-4-one)			
185	Isoinophynone	C. inophyllum	leaf	[62]
186	Papuanic acid	С. рариапит	bark resin	[63]
187	Isopapuanic acid	C. papuanum	bark resin	[63]
188	Recedensic acid	C. recedens	bark	[26]
189	Caloverticillic acid C	C. verticillatum	stem bark	[64]
190, 191	Caloverticillic acid A, Caloverticillic acid B	C. verticillatum	stem bark	[64]
192	Brasiliensophyllic acid B	C. brasiliense	bark	[65]
193	Isobrasiliensophyllic acid B	C. brasiliense	bark	[65]
194	Brasiliensophyllic acid A	C. brasiliense	bark	[65]
195	Isobrasiliensophyllic acid A	C. brasiliense	bark	[65]
196	Brasiliensophyllic acid C	C. brasiliense	bark	[65]
197	Isobrasiliensophyllic acid C	C. brasiliense	bark	[65]
198	Calozeylanic acid	C. walkeri	leat	[20]
100		C. lankaensis	leat	[66]
199	Calofloride	C. verticillatum	seed	[67]

Compound	Name	Plant	Part	Ref.
200	Thwaitesic acid	C. lankaensis, C. thwaitesis	leaf	[66]
201	Isothwaitesic acid	C. lankaensis C. thwaitesis	leaf	[66]
201	Apetalic acid	C blancoi	seed	[27]
202	Apetalic acid	C macrocarnum C walkeri	stem bark	[27] [54]
203	Isoapetalic acid	C. macrocarpam, C. waiken	seed	[34] [27]
203	A potalio acid mothyl astor	C. blancoi	seed	[27]
204	Apetalia agid 5 Q agetata	C. blancoi	seed	[27]
205	Apetalic actu 5-0-acetate	C. blancol	seed	[27]
200	Isoapetalic methyl ester	C. blancol	seed	[27]
207	Isoapetatic acid 5-0-acetate	C. blancol	seed	[27]
208	Chapelleric acid	C. calaba	lear	[59]
209	Isochapelieric acid	C. calaba	leaf	[59]
210	Cordato-oblongic acid	C. cordato-oblongum	twig	[17]
		~	stem bark	[68]
211	Isocordato-oblongic acid	C. cordato-oblongum	stem bark	[68]
212	Friedelin	C. cordato-oblongum	leaf	[16]
			twig	[17]
		C. moonii	leaf	[20]
			root bark	[55]
		C. brasiliense	leaf	[24]
		C. inophyllum	root bark	[10]
			timber	[37]
			leaf	[69][62]
		C. walkeri	leaf	[20]
			stem bark	[54]
		C. tomentosum	branch timber, sapwood	[34]
			bark	[70]
		C. thwaitesii	root bark	[48]
			leaf	[66]
		C. calaba	leaf	[59]
		C. verticillatum	stem bark	[64]
		C. lankaensis	leaf	[66]
		C. apetalum	bark	[70]
		C gracilines	leaf	[71]
213	Canophyllol	C cordato-oblongum	twig	[17]
		C walkeri	leaf	[20]
		C hrasiliense	leaf	[24]
		C calaba	leaf	[27] [50]
		C. lankaensis C. thwaitesii	leaf	[66]
		C. univuensis, C. inwallesti C. inophyllum	leaf	[60][60]
214	Capaphyllal	C. mopnyuum C. calaba	loof	[09][02]
214	Canopiiyilai	C. cataba	loof	[37]
		C. inopnyium	lear	[20]
31 5	3-Oxo-2/-hydroxyacetate	C. inophyllum	leat	[72]
215	friedelan-28-oic acid			
215 216	friedelan-28-oic acid Canophyllic acid	C. inophyllum	leaf	[69][62]
215 216	friedelan-28-oic acid Canophyllic acid	C. inophyllum C. calaba	leaf leaf	[69][62] [59]
215 216 217	friedelan-28-oic acid Canophyllic acid Friedelan-3β-ol	C. inophyllum C. calaba C. inophyllum	leaf leaf timber	[69][62] [59] [37]
215 216 217	friedelan-28-oic acid Canophyllic acid Friedelan-3 β -ol	C. inophyllum C. calaba C. inophyllum C. tomentosum	leaf leaf timber branch timber, sapwood	[69][62] [59] [37] [34]
215 216 217	friedelan-28-oic acid Canophyllic acid Friedelan-3β-ol	C. inophyllum C. calaba C. inophyllum C. tomentosum	leaf leaf timber branch timber, sapwood bark	[69][62] [59] [37] [34] [70]

Table	(cont)

Compound	Name	Plant	Part	Ref.
218	Friedelane- 3β ,28-diol	C. calaba	leaf	[59]
219	27-Hydroxyacetate canophyllic acid	C. inophyllum	leaf	[72]
220	Ursolic acid	C. polyanthum	seed	[25]
221	Taraxerol	C. moonii	bark, branch, timber, sapwood	[34]
	T	C. tomentosum	root bark	[33]
222	laraxerone	C. moonu	bark	[34]
	A	C. tomentosum	root bark	[55]
223	a-Amyrin	C. verticillatum	stem bark	[64]
24	β-Amyrin	C. inophyllum	timber	[37]
25	Betulinic acid	C. tomentosum	bark	[34]
		C. macrocarpum	stem bark	[54]
		C. apetalum	bark	[70]
		C. gracilipes	leaf	[71]
26	Lupeol	C. gracilipes	leaf	[71]
27	Lupenone	C. gracilipes	leaf	[71]
228	3β -Hydroxy-30-norlupan-20-one	C. gracilipes	leaf	[71]
29	Lupane-3 β ,20-diol	C. gracilipes	leaf	[71]
230	$(20R)$ -3 β -Hydroxylupan-29-oic acid	C. gracilipes	leaf	[71]
31	3,4-Secofriedelane-3,28-dioic acid	C. inophyllum	leaf	[72]
32	Apetalactone	C. moonii	leaf	[20]
		C. lankaensis	leaf	[67]
33	Squalene	C. gracilipes	leaf	[71]
34	Gracilipene	C. gracilines	leaf	[71]
35	Sitosterol	C ordato-oblongum	twig bud	[17]
		C moonii	leaf	[20]
		ci moonin	root bark	[55]
		C polyanthum	seed	[25]
		C. poryuninum	heartwood	[22]
		C. monhyllum	timber	[37]
		C. inophytium	hartwood	[37]
		C thungitagii	reat bark	[44]
		C. inwaitesti	TOOL DAIK	[40]
		C. macrocurpum	SUCIII UALK	[34] [70]
		C. apelalum	Uark	[/0]
		C. tomentosum	sapwood	[34]
			bark	[70]
		C. gracilipes	leaf	[71]
36	β -Daucosterol	C. polyanthum	seed	[25]
37	Cholesterol	C. inophyllum	leaf	[62]
38	Stigmasterol	C. macrocarpum	stem bark	[54]
39	Enervosanone: 8,8-dimethyl-5-geranyl-1,7- bis(3-methylbut-2-enyl)bicyclo[3.3.1]- nonane-2,4,9-trione	C. enervosum	stem bark	[51][73]
240	Cambogin	C. enervosum	stem bark	[51]
41	Sundaicumone A	C. sundaicum	leaf	[74]
42	Sundaicumone B	C. sundaicum	leaf	[74]
13	Soulattrone A	C soulattri	bark	[75]

Table (cont.)

Fig. 2. The primary structure of calanolides C and D

As more coumarins were discovered in recent years, five new types of tricyclic pyranocoumarins were determined (*Fig. 3*): *a*) simple coumarins with a pyran ring fused at C(6)-C(7), which bear geminal dimethyl groups, (type **D**), *e.g.*, compounds **38** and **39**; *b*) simple coumarins with a pyran-4-one moiety fused at C(6)-C(7) (type **E**), *e.g.*, compounds **40–42**; *c*) tricyclic pyranocoumarins with a noncyclized equivalent of the *C* ring of the type **A** (type **F**) as represented by compounds **43–45**; *d*) tricyclic pyranocoumarins with a noncyclized equivalent of the *C* ring of the type **C** (type **G**), *e.g.*, compound **46**; *e*) tricyclic pyranocoumarins in which the C(11)=C(12) bond of the type **G** is hydrogenated (type **H**), compound **47**.

Fig. 3. Five new structural types of pyranocoumarins

Compounds **48–65** belong to furocoumarins, in which the furan ring is fused at C(5)-C(6) (*i.e.*, **48–55**), C(6)-C(7) (*i.e.*, **56** and **57**), or C(7)-C(8) bonds (*i.e.*, **58–65**). Compounds **66**, **67**, and **68** possess a fused furan ring at C(5)-C(6) bond and a pyran ring at C(7)-C(8) bond. More specially, a 2-dimethylcyclopropane ring is fused to the furan ring. Mammea A/AB dioxalanocyclo F (**69**) isolated from *C. disar* has a fused furan ring with a fused dioxolane structure at the C(7)-C(8) bond.

Ó

ŌН Ph

HO

HO

58

Ö

Ph

но

Ó

Ph

Ο

0[⁄]

HO

ò

60

61

Ó

Compounds **70–80** are simple coumarins with differences at C(4), C(6), and C(8). Compounds **81–84** represent a new class of pyranocoumarin derivatives, which contain an isoprene unit and a monoterpene group at C(8a) of the unique pyranocoumarin ring system [23].

2.2. Xanthones. The genus Calophyllum is considered as a rich source of xanthone derivatives which are simply oxygenated and substituted with isoprenyl group(s) [79]. The xanthones with differences from C(1) to C(8), *i.e.*, **85–13** are listed in the Table. Besides OH, MeO, isoprenyl, and COOMe groups, the substituents also include some special groups such as 3-carboxybutyl (*i.e.*, **119** and **120**), 2,3-dihydroxy-3-methylbutyl (*i.e.*, **121**), 4-hydroxy-3-methylbutyl (*i.e.*, **133**). The compound **122** is 1,5-dihydroxy-

R ⁷		R^1 R^2	A 500	СООН	B ; , , , , , , , , , , , , , , , , , ,	ОН	C 500	ОН
R ⁶	↓ 0 ↓ R ⁵	R^4 R ³	D	ОН	E ,,,,	HO	F	\swarrow
	R ¹	R ²	R ³	R⁴	R⁵	R^6	R^7	R ⁸
85	Н	Н	Н	Н	Н	Н	ОН	MeO
86	н	Н	н	н	н	н	MeO	MeO
87	н	Н	н	Н	MeO	ОН	н	Н
88	н	Н	н	Н	MeO	MeO	ОН	Н
89	ОН	isoprenyl	OH	Н	OH	Н	н	Н
90	ОН	Н	н	Н	н	Н	MeO	Н
91	MeO	Н	MeO	Н	MeO	ОН	н	Н
92	MeO	н	OH	Н	MeO	ОН	н	н
93	ОН	Н	ОН	Н	MeO	ОН	MeO	Н
94	н	MeO	н	Н	Н	Н	н	Н
95	н	Н	Н	ОН	Н	Н	н	Н
96	ОН	Н	н	Н	Н	н	ОН	Н
97	н	Н	Н	ОН	Н	Н	н	ОН
98	ОН	Н	н	Н	OH	ОН	Н	Н
99	ОН	Н	н	н	MeO	ОН	Н	Н
100	ОН	Н	MeO	н	Н	MeO	ОН	Н
101	ОН	Н	н	Н	н	MeO	MeO	Н
102	MeO	MeO	н	Н	н	Н	н	MeO
103	MeO	Н	MeO	Н	MeO	OH	MeO	Н
104	н	ОН	Н	Н	Н	Н	Н	Н
105	н	MeO	OH	MeO	Н	н	н	Н
106	MeO	MeO	н	Н	Н	Н	OH	MeO
107	MeO	MeO	Н	Н	MeO	OH	н	Н
108	MeO	MeO	OH	MeO	Н	Н	н	ОН
109	ОН	Н	MeO	Н	Н	Н	ОН	Н
110	Н	COOMe	Н	Н	Н	MeO	Н	Н
111	ОН	Н	ОН	Н	OH	ОН	MeO	Н
112	ОН	Н	ОН	Н	Н	Н	MeO	ОН
113	ОН	Н	OH	Н	Н	Н	MeO	MeO
114	MeO	Н	Н	Н	MeO	ОН	Н	Н
115	ОН	MeO	OH	Н	ОН	Н	Н	Н
116	ОН	MeO	OH	Н	MeO	Н	Н	Н
117	MeO	MeO	ОН	Н	Н	Н	Н	ОН
118	OH	Н	OH	Н	OH	Н	Н	Н
119	Н	Н	Н	Н	MeO	Α	Н	Н
120	OH	Н	Н	Н	MeO	Α	Н	Н
121	OH	Н	н	н	OH	В	Н	Н
122	OH	Н	н	Н	OH	isoprenyl	Н	Н
123	OH	Н	н	н	OH	С	н	Н
124	OH	н	н	н	OH	D	н	н
125	OH	Н	Н	Н	OH	Н	Н	isoprenyl
126	ОН	isoprenyl	OH	н	OH	Н	н	н
127	OH	E	OH	н	OH	ОН	н	н
128	OH	isoprenyl	OH	Н	OH	ОН	Н	H
129	ОН	isoprenyl	OH	н	н	н	OH	isoprenyl
130	ОН	Isoprenyl	OH	H .	H	н	MeO	Isoprenyl
131	ОН	MeO	OH	isoprenyl	OH	Н	н	н
132	OH	isoprenyl	MeO	н	MeO	MeO	н	H
133	OH	isoprenyl	OH	Н	н	Н	F	isoprenyl

6-(3,3-dimethylbut-2-enyl)-1,5-dihydroxyxanthone, named as calophyllin B by Jackson et al. [46], while *linuma et al.* and *Gottlieb et al.* named it as guanandin [31][42]. Apetalinone A (133) was a novel xanthone with 1,1-dimethylprop-2-envloxy ether moiety, which indicated a new biosynthetic pathway including Claisen rearrangement and Diels-Alder reaction. The occurrence of a xanthone with a 1,1-dimethylallyl group was reported for the first time in 1997 [40]. Compounds 134-147 were pyranoxanthones that possess a pyran ring at C(5)-C(6), C(6)-C(7), or C(7)-C(8). Two of them were named differently by different authors, compound 138 was named as caloxanthone C, inoxanthone, or blancoxanthone [10][49][53]; compound 139 was named as macluraxanthone and 3-hydroxyblancoxanthone [10][36][49][53]. Jacareubin (135) and 6-dehydroxyjacareubin (136) are very common constituents in genus Calophyllum. They have been found in C. cordato-oblongum, C. tomentosum, C. neoebudicum, C. brasiliense, C. inophyllum, C. ramiflorum, and C. austroindicum [31– 34][37][41][42][44–46]. C. moonii afforded a trioxygenated diprenylated chromenxanthone, dombakinaxanthone (144) [55]. The pyranoxanthones 148-151 possess two pyran rings at C(2)-C(3) and C(6)-C(7) or C(7)-C(8). A 2,2-dimethyl-3,4dihydropyrane ring was united in xanthones 152-155, while a furan ring was united in xanthones 156–160. Compounds 161–166 were isolated from C. apetalum. linuma et al. listed the biosynthesis of compounds 161–163 and 165 (Schemes 1 and 2) [40][56].

2.3. *Chromanones.* 2.3.1. *Flavonoids.* Compounds **157–171** are simple flavonoids obtained from genus *Calophyllum* [31][36][40][51][57]. The isoflavone **172** was isolated from *C. polyanthum* [25].

2.3.2. *Biflavonoids*. The types of biflavonoids isolated from *Calophyllum* species are: *a*) flavanone-flavonol, **173** and **174**; *b*) flavanone-flavanone, **175** and **176**; *c*) flavanone-flavonol, **177** and **178**; *d*) flavanone-flavone, **179**; and *e*) flavone-flavone, **180**) [24][58][59].

Scheme 1. Hypothetical Biosynthesis of Compound 162 through a Geranylated Precursor [56]

Scheme 2. Possible Biosynthetic Pathways of Compounds 161, 163, and 165 Derived from 133 [40]

2.3.3. Further Chromanone Derivatives. Compounds 181-185 are five 1-benzopyran-4-one derivatives which possess an additional pyran ring fused at C(7)-C(8) bond. Papuanic and isopapuanic acids (186 and 187, resp.) represented the first pair of stereoisomeric products isolated from a species of *Calophyllum* [63]. Compounds 189– 191 were isolated from *C. verticillatum* [64]. They have a rarely occurring cyclobutane moiety derived from the equally unusual lavandulyl chain. Compounds 190 and 191 are definitely distinct substances, since they can be easily separated on TLC plates. Small, but significant differences were also observed in the ¹H-NMR spectra, particularly in the chemical shifts of the signals for the two side chains. It was proposed that the absolute configuration at C(6) may differ in compounds 190 and 191, although changes in the absolute configuration at C(22) and C(23) cannot be totally ruled out.

	R ¹	R ²	R ³	R^4	R ⁵
202	β-Me	β-Me	OH	Pr	COOH
203	β-Me	α-Me	OH	Pr	COOH
204	β -Me	β-Me	OH	Pr	COOMe
205	β -Me	β-Me	AcO	Pr	COOH
206	β-Me	α-Me	OH	Pr	COOMe
207	β -Me	α-Me	AcO	Pr	COOH
208	α -Me	β-Me	OH	Ph	COOH
209	β -Me	β-Me	OH	Ph	COOH
210	α-Me	β-Me	OH	Me	COOH
211	β -Me	β-Me	OH	Me	COOH

Unfortunately, this point was not further investigated [64]. Compounds 192-197 were obtained from the bark of *C. brasiliense.* Four of them also exhibit an unusual cyclobutane ring (*i.e.*, 192-195) [65]. Calozeylanic acid (198) appears to be the biogenetic precursor of chapelieric acid (208) found in the leaf extract of *C. calaba* [20]. In 1984, two neoflavonoids, thwaitesic acid (200) and isothwaitesic acid (201), were isolated from *C. thwaiteii* and *C. lankaensis.* The presence of the same acids in the leaves as well as in the bark of the same plant is of biogenetic significance [66]. Compounds 202-211 are ten pyranochromanone derivatives isolated from various *Calophyllum* species [27][54][59][68][17].

2.4. Triterpenes and Steroids. Among the triterpenes and steroids isolated from genus Calophyllum, friedelin (212), canophyllol (213), betulinic acid (225), and sitosterol (235) are most frequent. Compound 231 is a seco-triterpenoid. Apetalactone (232) from C. lankaensis and C. moonii possesses a lactone ring. Squalene (233) and gracilipene (234) were isolated from the leaves of C. gracilipes. Gracilipene (234) is a heterocyclic trisnor-triterpene that shows an unprecedented rearranged trisnor-seco-oleanane structure with a dihydropyran ring A. The possible biosynthesis of gracilipene (234) is depicted in Scheme 3 [71].

2.5. Others. In 2005, Taher et al. isolated two phloroglucinol derivatives, enervosanone (239) and cambogin (240), from the stem bark of *C. enervosum* [51]. Later, *Cao et al.* also isolated two similar compounds, 241 and 242, from *C. sundaicum*, of which the structures contain a 3-propylpropanoic acid moiety not previously reported in other polyprenylated acylphloroglucinols [74]. The structure of soulattrone A (243), a C_{24} terpenoid isolated from the bark of *C. soulattri*, does not obey the terpene rules *sensu stricto*, but it might be considered as either a modified sesterterpene or a diprenylsesquiterpene derivative [75].

3. Biological Activity. – 3.1. Antiviral Activities. Five isolated pyranoxanthones, *i.e.*, blancoxanthone (**138**), 3-hydroxyblancoxanthone (**139**), acetylblancoxanthone (**140**), pyranojacaeubin (**148**), and caloxanthone (**149**), were tested against coronavirus *in vitro*. Compounds **138** and **148** exhibited viral inhibition with EC_{50} values of 3 and 15 µg/ ml, respectively. This result suggested that compound **138** might be a potential candidate in the treatment of coronavirus infection [53].

235 R = OII 236 R = Glu

Besides, the highest attention was focused on anti-HIV activities. The calanolides and inophyllums, isolated from the genus *Calophyllum*, can be considered as NNRTIs, as they are primarily active against HIV-1 RT, but differ from the classical (synthetic) NNRTIs in their HIV sensitivity/resistance profile [80]. The following developments should be mentioned.

In 1992, eight coumarins, **7–10**, **12**, **26**, **34**, and **35**, isolated from *C. lanigerum* were evaluated for their anti-HIV activity [3]. Calanolides A and B (**7** and **10**, resp.) were completely protective against HIV-1 replication and cytopathicity (EC_{50} values of 0.1 and 0.4 μ M, resp.). 12-Acetoxycalanolide A (**8**) was also active, albeit less potent (EC_{50} 2.7 μ M). The apparent *in vitro* therapeutic indices (*TI*) for compounds **7**, **8**, and **10** were 200, 5, and 37, respectively. Studies with purified bacterial recombinant RT revealed that the calanolides are HIV-1-specific RT inhibitors distinct from any previously known pharmacologic class. Moreover, calanolide A (**7**) was active not only against AZT-resistant viral strains, as well as against the A 17 strain, which is known to be resistant to non-nucleoside RT inhibitors. Therefore, the pyranocoumarins provide a

new class of anti-HIV compounds [3]. In 1993, Kashman et al. tested compounds 1, 2, 14, 16–19, 36, 37, 66, and 67 for their inhibitory activity against HIV-1 RT. Inophyllums B and P (16 and 17, resp.) inhibited HIV RT with IC_{50} values of 38 and 130 μ M, respectively, and both were active against HIV-1 in cell culture (IC_{50} 1.4 and 1.6 μ M, resp.). The configuration at C(12) is not critical, because 16 and 17 are both active at submicromolar concentrations, but the presence of a C=O group at this position lowered the activity significantly. The other compounds were much less active or inactive [2]. Soulattrolide (15), the enantiomer of inophyllum P (17), which was isolated from C. teysmannii latex, also found to be a potent inhibitor of HIV-1 RT with an IC_{50} value of 0.34 μ M [21]. In 2003, Yu et al. reviewed the recent progress in the development of coumarin derivatives as potent anti-HIV agents [81]. For the coumarins isolated from genus *Calophyllum*, they determined the structure-activity relationship as well as the mechanism of action. First, bulky substituents are required at C(4); second, both calanolides and inophyllums require Me groups at C(10) and C(11)of the chromanol ring to be *trans*-diaxial; third, both calanolides and inophyllums require a H-bond acceptor at C(12). In case of calanolides, the configuration at C(12)should be (S), or C=O group can be present. The configuration at C(12) of inophyllums can be either (S) or (R), but a C=O group is not allowed.

3.2. Antitumor-Promoting Activity. In 2001, Ito et al. investigated the antitumorpromoting activity of ten natural 4-phenylcoumarins using the short-term in vitro assay of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Epstein-Barr virus early antigen (EBV-EA) activation in Raji cells [82]. The compounds are tetracyclic (i.e., 1, 2, 14, and 18), tricyclic (i.e., 19, 39, and 44), and dimethylcyclopropan fused (i.e., 48 and 68) 4-phenylcoumarins, and isocalophyllic acid (37), which were isolated from C. inophyllum. All tested compounds except for inophyllum C (1) and calocoumarin C (68) showed an inhibitory effect on EBV-EA activation, even at 1×10 mol ratio, and only weak cytotoxicity against Raji cells, even at 1×10^3 mol ratio. Calocoumarin A (44) showed more potent activity than any of the other compounds, suggesting that the prenyl side chain is decisive in increasing the antitumor-promoting effect [83]. Furthermore, calocoumarin A (44) exhibited a marked inhibitory effect on mouse skin tumor promotion in an *in vivo* two-stage carcinogenesis test. The results of the investigation by Ito et al. indicated that some of these 4-phenylcoumarins might be valuable as potential cancer chemopreventive agents (antitumor promoters) [82]. In 2005, Ito et al. also tested three 4-phenylcoumarins (i.e., 21, 43, and 55), and five 4propylcoumarins (*i.e.*, **7**, **20**, **23**, **34**, and **73**), which were isolated from the stem bark of C. brasiliense [11]. All tested compounds showed inhibitory activity against EBV-EA without showing any cytotoxicity. The IC_{50} values of all tested compounds were lower than that of β -carotene. Among 4-propylcoumarins, 7, 23, and 73 showed more significant activities compared with 4-phenylcoumarins, 21, 43, and 55. Mammea B/BB (73), 4-propylcoumarin with a prenyl side chain, exhibited the most potent inhibitory activity. Calanolide A (7) with trans-oriented 10,11-dimethyl groups was more potent than the corresponding *cis*-derivative, *i.e.*, calanolide C (34). These results are in accordance with the pattern of anti-HIV activity that the functional groups at C(10), C(11), and C(12), and their derivatives are critical for their anti-HIV activity [11].

Besides the coumarins, the antitumor-promoting activity of biflavonoids was also evaluated in the same way. Six biflavonoids, **173–178**, isolated from *C. panciflorum*,

along with two others from genus *Garcinia*, showed significant inhibitory effects at high concentrations (1×10^3 mol ratio) but weak cytotoxicities in assays of *Raji* cells. Among these compounds, garcinianin (**178**) showed the most significant inhibitory effect on EBV-EA activation (100% inhibition of activation at 1×10^3 mol ratio/TPA) [58].

3.3. Inhibition of the Multidrug Transporter P-glycoprotein. Raad et al. studied the structure–activity relationship of natural and synthetic coumarins originated from the genus Calophyllum inhibiting the multidrug transporter P-glycoprotein. Results showed a favorable electrostatic and steric volume, like the (1-hydroxy-1-methyl-ethyl)dihydrofuran moiety, fused at the C(5)-C(6) or C(7)-C(8) bond. In addition, the analysis revealed an important hydrophobic, neutral-charge group, like Ph, at C(4) of the coumarin ring [76].

3.4. Cytotoxic Activity. The coumarins isolated from C. brasiliense were cytotoxic against K562, U251, and PC3 human tumor cell lines. The highest activity was exhibited by mammea A/BA (70; IC_{s0} 0.04 to 0.59 μ M). The mixtures of mammea A/BA + A/BB (70 and 71), mammea B/BA+B/BB (72 and 73), and mammea C/OA+C/OB (74 and **75**) were also highly active ($IC_{50} < 4.05 \,\mu\text{M}$). In contrast, mammea B/BA cyclo F (**52**) pure or in mixture with mammea B/BB cyclo F (53) were less potent with IC_{50} values of 5.0–63 μ M. The above data suggest that a Pr, pentyl, or Ph group at C(4) (*i.e.*, **70–75**) is relevant for high cytoxic activity. On the other hand, a 6-prenyl chain (*i.e.*, 70-75) increases cytotoxicity, but this effect decreases if this substituent is cyclized to a dihydrofuran or a pyran ring (i.e., 52 and 53) [24]. GUT-70, characterized as a tricyclic coumarin, 5-methoxy-2,2-dimethyl-6-(2-methyl-1-oxobut-2-enyl)-10-propyl-2H,8Hbenzo[1,2-b;3,4-b']dipyran-8-one (23), was tested on six human leukemic cell lines, BV173, K562, NALM6, HL60, SEM, and the colorectal adenocarcinoma cell line HCT116, including a P-glycoprotein over-expressing cell line. It significantly inhibited the growth of leukemic cells by inducing caspase-mediated and p53-independent apoptosis, and can overcome multidrug resistance [84]. The cytotoxic effect against KB cell of a number of known compounds isolated from genus Calophyllum was evaluated. Calophyllolide 19 displayed the most significant cytotoxic activity against KB cells with an IC_{50} value of 3.5 µg/ml. Other compounds such as caloxanthone A (139), with an IC_{50} value of 7.4 µg/ml, was considered, in addition to calaustralin (40) and inophyllum E(2), as inactive [10]. The furanocoumarins mammea A/BA cyclo F (49), mammea A/ AA cyclo F (63), mammea A/AB cyclo F (64), mammea A/AC cyclo F (65), together with other coumarins, isodispar B (76), disparpropylinol B (78), and disparinol B (79), which were all isolated from *C. dispar*, also exhibited significant activities in this assay, since these compounds inhibited 50% of the cellular growth at concentration ranging from 5 to 9 and 4 to 8 μ g/ml, respectively [29][30].

3.5. Antimalarial Activity. Hay et al. tested the activity on a chloroquino-resistant strain of *Plasmodium falciparum* of seven xanthones, **129**, **138**, **139**, **143**, **144**, **147**, and **162**, which were obtained from *C. caledonicum*. They showed IC_{50} values from 0.8 to 4.4 µg/ml. Regarding the structure–activity relationship, the authors concluded that 1) the position of the OH groups appears to be important; 2) the substitution by a 1,1-dimethylallyl chain, or the presence of an additional pyran ring appear to be factors for good activity, as well as the substitution with two isopentenyl chains, or the prenyl side chain is not required for higher activity [49].

3.6. Antibacterial Activity. The MeOH extracts of leaves, root, and stem barks of C. soulattri were partitioned with petroleum ether, CH₂Cl₂, and AcOEt. All extracts showed a range of activity against all the tested bacteria and protozoan. Fractionation improved the level of activity, particularly the petroleum ether fraction of the root bark [5]. Besides the extracts, the antibacterial activity of several constituents were also evaluated. Six chromanone acids, i.e., 192-197, isolated from C. brasiliense showed moderate-to-strong antibacterial activity against the Gram-positive bacteria Bacillus cereus and Staphylococcus epidermidis. Compounds 194 and 195 were most active against B. cereus, while compounds 196 and 197 are less active. Thus, the presence of a cyclobutane ring in compounds 192-195 most probably contributes to the strong antibacterial activity [65]. Mammea A/BA + A/BB (70 + 71), and mammea C/OA + C/ OB (74+75) inhibited the growth of S. aureus, S. epidermidis, and B. subtilis [24]. The inhibition of S. aureus was also observed with calozeyloxanthone. The MIC values of calozevloxanthone (162) for S. aureus ranged from 4.1 to 8.1 µg/ml. Hence, 162 appears to hold promise as an antimicrobial agent in the treatment of infections with S. aureus [85]. In 2004, Yimdjo et al. also evaluated the isolated compounds for their antimicrobial and potency against representative Gram-positive (S. aureus, Vibrio anguillarium) and Gram-negative (Escherichia coli) bacteria, and yeast, and Candida tropicalis organisms, in agar well diffusion assays. At the dose of 20 µg/disc, caloxanthone A (137), calophyllolide (19), and inophyllum C (1) and E (2) were found to exhibit significant inhibitory activity against S. aureus, but not against other microorganisms [21].

3.7. Activity in Gastrointestinal Affections. Sartori et al. investigated the pharmacological basis for the ethnomedicinal use of stem bark extracts of C. brasiliense in gastrointestinal affections. This study examined the effects of a CH_2Cl_2 fraction, obtained from the hexane extract of bark, on EtOH, indomethacin, and hypothermic restraint stress-induced gastric lesions in mice and rats, respectively. Oral administration of CH_2Cl_2 fraction at doses ranging from 12.5 to 250 µg/kg significantly inhibited the development of gastric lesions in all three test models. It caused significant decreases of the pyloric-ligation and bethanechol-stimulated gastric secretion, and also the free and total acidities. Besides, CH_2Cl_2 fraction offered protection against EtOHinduced depletion of stomach-wall mucus and reduction in nonprotein sulfhydryl concentration. The results indicate that CH_2Cl_2 fraction from C. brasiliense possesses antisecretory, antiulcer, and cytoprotective properties [6].

3.8. Inhibition of Sulfotransferases. Four xanthones, **127**, **128**, **135**, and **136**, and two coumarins, **70** and **74**, which were obtained from *C. brasiliense*, were tested as substrates and inhibitors for two recombinant sulfotransferases (SULTs). Assays were performed using recombinant phenolsulfotransferase (SULT1A1) and hydroxysteroidsulfotransferase (SULT2A1). Two xanthones, **135** and **136**, and two coumarins, **70** and **74**, tested were substrates for SULT1A1, while the coumarin mammea A/BA (**70**) was a substrate for SULT2A1. The xanthones **127**, **128**, **135**, and **136** reversibly inhibited SULT1A1 with IC_{50} values ranging from 1.6 to 7.4 µm. Both coumarins **70** and **74** inhibited SULT1A1 with IC_{50} values of 47 and 185 µm, and SULT2A1 with IC_{50} values of 16 and 31 µm. The results indicate that SULT1A1, but not SULT2A1, is highly sensitive to inhibition by xanthones. The potency of this inhibition depends on the position and number of OH

groups. Conversely, SULT2A1 is 3-6 times more sensitive to coumarins than SULT1A1 [86].

4. Conclusions. – The plants of the genus *Calophyllum* are well known as rich sources of bioactive xanthones and coumarins. Biflavonoids and neoflavonoids are also distinctive constituents in this genus. The studies on chemical constituents in recent years have disclosed many different activities of the isolated compounds, such as antiviral activity, antitumor-promoting activity, inhibition of the multidrug transporter P-glycoprotein, cytotoxic activity, antimalarial activity, antibacterial activity, activity in gastrointestinal affections, and inhibition of sulfotransferases, especially anti-HIV activity of calanolides and inophyllums. The possible biosynthetic pathways of several compounds are also reviewed in this article. Nevertheless, there are still many plants of this genus that have not yet received enough attention. This review might provide some motivation for further investigations on genus *Calophyllum*.

REFERENCES

- [1] S. Crane, G. Aurore, H. Joseph, Z. Mouloungui, P. Bourgeois, Phytochemistry 2005, 66, 1825.
- [2] A. D. Patil, A. J. Freyer, D. S. Eggleston, R. C. Haltiwanger, M. F. Bean, P. B. Taylor, M. J. Caranfa, A. L. Breen, H. R. Bartus, R. K. Johnson, R. P. Hertzberg, J. W. Westly, *J. Med. Chem.* 1993, 36, 4131.
- [3] Y. Kashman, K. R. Gustafson, R. W. Fuller, J. H. Cardellina II, J. B. McMahon, M. J. Currens, R. W. Buckheit Jr., S. H. Hughes, G. M. Cragg, M. R. Boyd, J. Med. Chem. 1992, 35, 2735.
- [4] C. Morel, D. Séraphin, J. M. Oger, M. Litaudon, T. Sévenet, P. Richomme, J. Bruneton, J. Nat. Prod. 2000, 63, 1471.
- [5] M. R. Khan, M. Kihara, A. D. Omoloso, Fitoterapia 2002, 73, 741.
- [6] N. T. Sartori, D. Canepelle, P. T. Sousa Jr., D. T. O. Martins, J. Ethnopharmacol. 1999, 67, 149.
- [7] N. Y. Chiu, K. H. Chang, 'The Illustrated Medicinal Plants of Taiwan', Institute of Chinese Pharmaceutical Science, China Medical College, Taichung, Taiwan, 1995, Vol. 4, p. 117.
- [8] K. Kawazu, H. Ohigashi, T. Mitsui, Tetrahedron Lett. 1968, 9, 2383.
- [9] C. Spino, M. Dodier, S. Sotheeswaran, BioMed. Chem. Lett. 1998, 8, 3475.
- [10] M. C. Yimdjo, A. G. Azebaze, A. E. Nkengfack, A. M. Meyer, B. Bodo, Z. T. Fomum, *Phytochemistry* 2004, 65, 2789.
- [11] C. Ito, M. Itoigawa, Y. Mishina, V. C. Filho, F. Enjo, H. Tokuda, H. Nishino, H. Furukawa, J. Nat. Prod. 2003, 66, 368.
- [12] S. G. Cao, K. Y. Sim, J. Pereira, S. H. Goh, Phytochemistry 1998, 47, 773.
- [13] S. G. Cao, X. H. Wu, K. Y. Sim, B. H. K. Tan, J. J. Vittal, J. T. Pereira, S. H. Gob, *Helv. Chim. Acta* 1998, 81, 1404.
- [14] K. R. Gustafson, H. R. Bokesch, R. W. Fuller, J. H. Cardellina, M. R. Kadushin, D. D. Soejarto, M. R. Boyd, *Tetrahedron Lett.* 1994, 35, 5821.
- [15] T. C. McKee, C. D. Covington, R. W. Fuller, H. R. Bokesch, S. Young, J. H. Cardellina II, M. R. Kadushin, D. D. Soejarto, P. F. Stevens, G. M. Cragg, M. R. Boyd, J. Nat. Prod. 1998, 61, 1252.
- [16] H. R. W. Dharmaratne, S. Sotheeswaran, S. Balasubramaniam, E. S. Waight, *Phytochemistry* 1985, 24, 1553.
- [17] H. R. W. Dharmaratne, J. R. D. M. Sajeevani, G. P. K. Marasinghe, E. M. H. G. S. Ekanayake, *Phytochemistry* 1998, 49, 995.
- [18] R. W. Fuller, H. R. Bokesch, K. R. Gustafson, T. C. McKee, J. H. Cardellina II, J. B. McMahon, G. M. Cragg, D. D. Soejarto, M. R. Boyd, *BioMed. Chem. Lett.* **1994**, *4*, 1961.
- [19] T. C. McKee, R. W. Fuller, C. D. Covington, J. H. Cardellina II, R. J. Gulakowski, B. L. Krepps, J. B. McMahon, M. R. Boyd, J. Nat. Prod. 1996, 59, 754.

- [20] B. M. R. Bandara, H. Ranjith, W. Dharmaratne, S. Sotheeswaran, S. Balasubramaniam, *Phytochemistry* 1986, 25, 425.
- [21] T. Pengsuparp, J. Nat. Prod. 1996, 59, 839.
- [22] C. Ito, Y. Mishina, M. Ohta, H. Furukawa, H. Tan, H. Tokuda, H. Nishino, The 119th Annual Meetings of the Pharmaceutical Society of Japan, Tokushima, March 1999, Abstract II, p. 156.
- [23] Y. C. Shen, M. C. Hung, L. T. Wang, C. Y. Chen, Chem. Pharm. Bull. 2003, 51, 802.
- [24] R. Reyes-Chilpa, E. Estrada-Muñiz, T. R. Apan, B. Amekraz, A. Aumelas, C. K. Jankowski, M. Vázquez-Torres, *Life Sci.* 2004, 75, 1635.
- [25] C. H. Ma, B. Chen, H. Y. Qi, B. G. Li, G. L. Zhang, J. Nat. Prod. 2004, 67, 1598.
- [26] E. Guerreiro, G. Kunesch, J. Polonsky, Phytochemistry 1973, 12, 185.
- [27] Y. C. Shen, L. T. Wang, A. T. Khalil, Y. H. Kuo, Chem. Pharm. Bull. 2004, 52, 402.
- [28] G. D. Breck, G. H. Stout, J. Org. Chem. 1969, 34, 4203.
- [29] D. Guilet, D. Séraphin, D. Rondeau, P. Richomme, J. Bruneton, *Phytochemistry* **2001**, *58*, 571.
- [30] D. Guilet, J. J. Hélesbeux, D. Séraphin, T. Sévenet, P. Richomme, J. Bruneton, J. Nat. Prod. 2001, 64, 563.
- [31] M. Iinuma, H. Tosa, N. Toriyama, T. Tanaka, T. Ito, V. Chelladurai, *Phytochemistry* 1996, 43, 681.
- [32] S. Bhanu, F. Scheinmann, A. Jefferson, *Phytochemistry* 1975, 14, 298.
- [33] F. S. A. Jeboury, H. D. Locksley, Phytochemistry 1971, 10, 603.
- [34] S. Karunanayake, S. Sotheeswaran, M. Uvais, S. Sultanbawa, S. Balasubramaniam, *Phytochemistry* 1981, 20, 1303.
- [35] A. Kijjoa, M. J. Gonzalez, C. M. Afonso, M. M. M. Pinto, C. Anantachoke, W. Herz, *Phytochemistry* 2000, 53, 1021.
- [36] M. Iinuma, H. Tosa, T. Tanaka, S. Yonemori, Phytochemistry 1994, 35, 527.
- [37] V. Kumar, S. Ramachandran, M. U. S. Sultanbawa, Phytochemistry 1976, 15, 2016.
- [38] A. Kijjoa, M. J. Gonzalez, M. M. M. Pinto, A. M. S. Silva, C. Anantachoke, W. Herz, *Phytochemistry* 2000, 55, 833.
- [39] M. Iinuma, H. Tosa, T. Tanaka, S. Yonemori, Phytochemistry 1995, 38, 725.
- [40] M. Iinuma, T. Ito, H. Tosa, T. Tanaka, R. Miyake, V. Chelladurai, Phytochemistry 1997, 46, 1423.
- [41] S. P. Gunasekera, M. U. S. Suhanbawa, J. Chem. Soc., Perkin Trans. 1 1975, 1, 2215.
- [42] O. R. Gottlieb, M. T. Magalhães, M. O. S. Pereira, A. A. L. Mesquita, D. D. B. Corrêa, G. G. Oliveira, *Tetrahedron* 1968, 24, 1601.
- [43] B. Jackson, H. D. Locksley, F. Scheinmann, Tetrahedron 1968, 24, 3059.
- [44] S. H. Goh, I. Jantan, Phytochemistry 1991, 30, 366.
- [45] F. Scheinmann, N. A. Sripong, Phytochemistry 1971, 10, 1331.
- [46] B. Jackson, H. D. Locksley, F. Scheinmann, Phytochemistry 1969, 8, 927.
- [47] H. R. W. Dharmaratne, S. Sotheeswaran, S. Balasubramaniam, J. Reisch, *Phytochemistry* 1986, 25, 1957.
- [48] H. R. W. Dharmaratne, W. M. A. R Wanigasekera, *Phytochemistry* 1996, 42, 249.
- [49] A. E. Hay, J. J. Hélesbeux, O. Duval, M. LabaRed, P. Grellier, P. Richomme, Life Sci. 2004, 75, 3077.
- [50] V. Kumar, S. Sotheeswaran, S. Surendrakumar, S. Balasubramaniam, Phytochemistry 1982, 21, 807.
- [51] M. Taher, M. S. Idris, F. Ahmad, D. Arbain, Phytochemistry 2005, 66, 723.
- [52] M. Iinuma, H. Tosa, T. Tanaka, S. Yonemori, *Heterocycles* 1994, 37, 833.
- [53] Y. C. Shen, L. T. Wang, A. T. Khalil, L. C. Chiang, P. W. Cheng, Chem. Pharm. Bull. 2005, 53, 244.
- [54] S. A. Ampofo, P. G. Waterman, *Phytochemistry* 1986, 25, 2617.
- [55] H. R. W. Dharmaratne, W. M. N. M. Wuesinghe, Phytochemistry 1997, 46, 1293.
- [56] S. P. Gunasekera, S. Sotheeswaran, U. S. Sultanbawa, J. Chem. Soc., Perkin Trans. 1 1981, 1, 1831.
- [57] S. S. Subramanian, A. G. R. Nair, Phytochemistry 1971, 10, 1679.
- [58] C. Ito, M. Itoigawa, Y. Miyamoto, K. S. Rao, J. Takayasu, Y. Okuda, T. Mukainaka, H. Tokuda, H. Nishino, H. Furukawa, J. Nat. Prod. 1999, 62, 1668.
- [59] A. A. L. Gunatilaka, A. M. Y. J. D. Silva, S. Sotheeswaran, S. Balasubramaniam, M. I. M. Wazeer, *Phytochemistry* 1984, 23, 323.
- [60] V. Babu, R. Arya, M. Ilyas, K. T. Nasim, Phytochemistry 1994, 35, 507.

- [61] N. U. D. Khan, N. Parveen, M. P. Singh, R. Singh, B. Achari, P. P. G. Dastidar, P. K. Dutta, *Phytochemistry* 1996, 42, 1181.
- [62] M. S. Ali, S. Mahmud, S. Perveen, V. U. Ahmad, G. H. Rizwani, Phytochemistry 1999, 50, 1385.
- [63] G. H. Stout, G. K. Hickernell, K. D. Sears, J. Org. Chem. 1968, 33, 4191.
- [64] B. Ravelonjato, N. Kunesch, J. E. Poisson, Phytochemistry 1987, 26, 2973.
- [65] F. Cottiglia, B. Dhanapal, O. Sticher, J. Heilmann, J. Nat. Prod. 2004, 67, 537.
- [66] H. R. W. Dharmaratne, S. Sotheeswaran, S. Balasubramaniam, *Phytochemistry* 1984, 23, 2601.
- [67] F. Ramiandrasoa, N. Kunesch, J. Poisson, G. Kunesch, Tetrahedron 1983, 23, 3923.
- [68] H. R. W. Dharmaratne, D. S. C. Perera, G. P. K. Marasinghe, J. Jamie, Phytochemistry 1999, 51, 111.
- [69] T. R. Govindachari, N. Viswanathan, B. R. Pai, U. R. Rao, M. Srinivasan, Tetrahedron 1967, 23, 1901.
- [70] S. K. Nigam, C. R. Mitra, Phytochemistry 1969, 8, 323.
- [71] S. G. Cao, K. Y. Sire, S. H. Goh, F. Xue, T. C. W. Mak, Tetrahedron Lett. 1997, 38, 4783.
- [72] F. Laure, G. Herbette, R. Faure, J. P. Bianchini, P. Raharivelomanana, B. Fogliani, Magn. Reson. Chem. 2005, 43, 65.
- [73] M. Taher, M. S. Idris, F. Ahmad, D. Arbain, Phytochemistry 2006, 67, 1048.
- [74] S. G. Cao, K. N. Low, R. P. Glover, S. C. Crasta, S. Ng, A. D. Buss, M. S. Butler, J. Nat. Prod. 2006, 69, 707.
- [75] S. K. Nigam, R. Banerji, S. Rebuffat, M. Cesario, C. Pascard, B. Bodo, Phytochemistry 1988, 27, 527.
- [76] I. Raad, R. Terreux, P. Richomme, E. L. Matera, C. Dumontet, J. Raynaud, D. Guilet, *Bioorg. Med. Chem.* 2006, 14, 6979.
- [77] C. J. Palmer, J. L. Josephs, Tetrahedron Lett. 1994, 35, 5363.
- [78] T. C. McKee, J. H. Cardellina II, G. B. Dreyer, M. R. Boyd, J. Nat. Prod. 1995, 58, 916.
- [79] G. J. Bennet, H. Lee, Phytochemistry 1989, 28, 967.
- [80] E. D. Clercq, 'Chemotherapy of Human Immunodeficiency Virus (HIV) Infection', 2000, p. 323.
- [81] D. L. Yu, M. Suzuki, L. Xie, S. L. Morris-Natschke, K. H. Lee, Med. Res. Rev. 2003, 23, 322.
- [82] M. Itoigawa, C. Ito, H. T. W. Tan, M. Kuchide, H. Tokuda, H. Nishino, H. Furukawa, *Cancer Lett.* 2001, 169, 15.
- [83] C. Ito, M. Itoigawa, H. Furukawa, H. Tokuda, Y. Okuda, T. Mukainaka, M. Okuda, H. Nishino, *Cancer Lett.* 1999, 138, 87.
- [84] S. Kimura, C. Ito, N. Jyoko, H. Segawa, J. Kuroda, M. Okada, S. Adachi, T. Nakahata, T. Yuasa, V. C. Filho, H. Furukawa, T. Maekawa, *Int. J. Cancer* 2005, 113, 158.
- [85] H. R. W. Dharmaratne, W. M. N. M. Wijesinghe, V. Thevanasem, J. Ethnopharmacol. 1999, 66, 339.
- [86] S. Mesía-Vela, R. I. Sánchez, E. Estrada-Muñiz, D. Alavez-Solano, C. Torres-Sosa, M. Jiménez-Estrada, R. Reyes-Chilpa, F. C. Kauffman, *Phytomedicine* 2001, 8, 481.

Received October 30, 2007