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Abstract

Cattle are ideally suited to investigate the genetics of male reproduction, because semen

quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed

26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentra-

tion, sperm motility, sperm head and tail anomalies and insemination success. The heritabil-

ity of the six semen traits was between 0 and 0.26. Genome-wide association testing on

607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm

motility (P = 2.5 x 10−27), head (P = 2.0 x 10−44) and tail anomalies (P = 7.2 x 10−49) and

insemination success (P = 9.9 x 10−13). The QTL harbors a recessive allele that compro-

mises semen quality and male fertility. We replicated the effect of the QTL on fertility (P =

7.1 x 10−32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-

genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T,

rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage dis-

equilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a con-

stituent of the intraflagellar transport complex that is essential for the physiological function

of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the

BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolution-

arily conserved amino acids from WDR19. Western blot analysis demonstrated that the

BTA6:58373887 T-allele decreases protein expression. We make the remarkable observa-

tion that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887

T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to

uncover a variant that is associated with quantitative variation in semen quality and male fer-

tility in cattle.
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Author summary

In cattle farming, artificial insemination is the most common method of breeding. To

ensure high fertilization rates, ejaculate quality and insemination success are closely moni-

tored in artificial insemination bulls. We analyse semen quality, insemination success and

microarray-called genotypes at more than 600,000 genome-wide SNP markers of 794

bulls to identify a recessive allele that compromises semen quality. We take advantage of

whole-genome sequencing to pinpoint a variant in the coding sequence of WDR19 encod-

ing WD repeat-containing protein 19 that activates a novel exonic splice site. Our results

indicate that cryptic splicing in WDR19 is associated with reduced male reproductive per-

formance. This is the first report of a variant that contributes to quantitative variation in

bovine semen quality.

Introduction

Reproduction plays a pivotal role in dairy and beef production. Delayed conception compro-

mises profit and may lead to the unintended culling of cows and heifers [1–3]. Most cows and

heifers are bred using cryoconserved semen from artificial insemination (AI) bulls. Because

each AI bull is mated to many cows, factors contributing to conception can be partitioned

accurately for males and females using multiple trait animal models [4,5].

The fertility of AI bulls can be quantified using insemination success adjusted for environ-

mental and genetic effects [4,6]. However, the heritability of bull fertility is low [6–8]. Semen

traits that are routinely recorded at AI centers such as have higher heritability than bull fertility

[9–12]. Traits that are routinely assessed from fresh ejaculates include semen volume, sperm

concentration, sperm motility, and the proportion of sperm with head and tail anomalies.

Computer-assisted and flow-cytometric sperm analyses sometimes complement the macro-

scopic and microscopic evaluations of semen samples [13].

Ejaculates that fulfill the quality requirements for AI [14] are diluted with cryoprotective

semen extenders and filled in straws containing between 15 and 25 million spermatozoa per

straw. In order to ensure uniform insemination success within and between bulls, the number

of spermatozoa per straw is higher for ejaculates that fulfill the minimum requirements but

contain some sperm with compensable defects [15].

Routinely recorded semen quality data facilitate investigation of the genetics of male fertil-

ity. SNP microarray-derived genotypes of AI bulls [16] can be imputed to the whole-genome

sequence level using, e.g., the reference panel of the 1000 Bull Genomes Project consortium

[17,18]. Large mapping cohorts with dense genotypes and semen traits provide high statistical

power to detect male fertility-associated variants using genome-wide association testing.

Genome-wide association studies using microarray-derived genotypes provided evidence

that inherited differences in semen quality are amenable to genome-wide association testing (e.g.,

[19–25]). However, low marker density resulted in large QTL confidence intervals that contained

many genes and candidate causal variants. A missense variant (rs136195618) in the PROP1 gene

was postulated to be associated with bull fertility [26]. However, the effect of the missense variant

on bull fertility was not validated in two independent populations [27]. Case-control association

studies uncovered recessive variants in the TMEM95, ARMC3 and CCDC189 genes, that compro-

mise semen quality and bull fertility in the homozygous state [28–30].

Here, we assess semen quality and fertility of 794 Brown Swiss (BSW) bulls using data from

26,090 routinely collected ejaculates. Genome-wide association testing revealed a QTL on

bovine chromosome 6 that is associated with semen quality and fertility. Whole-genome
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sequencing, transcription and protein analyses enabled us to detect a cryptic splice site variant

in WDR19 that is associated with reduced semen quality and fertility.

Results

Semen quality and fertility of BSW bulls

After applying rigorous quality control on the phenotype data including the removal of ejacu-

lates that did not fulfill the requirements for AI, we considered 26,090 ejaculates of 794 BSW

bulls for genetic analyses (Table 1). Bull fertility was estimated from female non-return rates at

56 days after the insemination for 591 bulls. Average values for volume, sperm concentration,

sperm motility, sperm head and tail anomaly scores, and number of sperm per insemination

straw were calculated using between 8 and 162 ejaculates (median: 20) per bull. The average

ejaculate volume was 3.93 ml (Table 1). On average, each ejaculate contained 1.32 x 109 sperm

per ml and 86% of the sperm were motile. Each ejaculate received scores between 0 and 3 indi-

cating few and many sperm with head and tail anomalies, respectively. The vast majority of the

ejaculates (93.4 and 87.6%) had very few sperm with head and tail anomalies. On average, each

ejaculate was diluted into 319 straws that contained 16.45 million spermatozoa per straw.

Marked phenotypic correlations were detected between the semen traits (S1 Table). Pheno-

typic correlations were particularly high between head and tail anomalies (r = 0.84), tail anom-

alies and sperm count per straw (r = 0.68), and motility and tail anomalies (r = -0.75). Motility

was positively correlated with bull fertility (r = 0.22). Sperm count per straw, head, and tail

anomalies were negatively correlated (r� -0.2) with bull fertility. The repeatability of the

semen traits was between 0.38 and 0.61, but the heritability was clearly lower indicating that

permanent environmental effects markedly affect semen quality (Table 1). The heritability was

close to zero for the proportion of sperm with either head or tail anomalies. The heritability

was 0.27, 0.25, 0.12 and 0.10 for ejaculate volume, sperm concentration, sperm count per

straw, and motility, respectively, suggesting that genome-wide association testing between

semen quality and dense genotypes in 794 bulls should have sufficient statistical power to

detect QTL with moderate to large effects [31].

A QTL for semen quality and fertility is located on bovine chromosome 6

To detect QTL for semen quality and fertility, we carried out genome-wide haplotype-based

association tests that were based on additive and recessive modes of inheritance. We

Table 1. Semen quality and fertility of 794 BSW bulls.

unit min mean (± sd) max repeatability heritability

Ejaculates n 8 32.86 ± 28.69 162

Volume ml 1.57 3.93 ± 0.94 7.31 0.41 ± 0.02 0.27 ± 0.05

Concentration 109/ml 0.47 1.32 ± 0.32 2.68 0.43 ± 0.02 0.25 ± 0.06

Motility % 77.85 86.16 ± 2.33 92.27 0.44 ± 0.01 0.10 ± 0.04

Sperm number per straw mio 15.00 16.45 ± 1.91 24.85 0.61 ± 0.01 0.12 ± 0.06

Tail anomalies score 0.00 0.13 ± 0.26 1.53 0.43 ± 0.01 0.02 ± 0.03

Head anomalies score 0.00 0.05 ± 0.14 0.90 0.38 ± 0.01 0a

Bull fertility index 65 100.6 ± 9.37 127

Inseminations n 239 744 ± 1437 15690

Heritability (h2) and repeatability were estimated using pedigree-based relationship coefficients and taking into account genetic, non-genetic, environmental and

permanent environmental effects (see Material and Methods).
aThe model for head anomalies converged at 10−9 as convergence criterion, for all other traits, the convergence criterion was 10−15.

https://doi.org/10.1371/journal.pgen.1008804.t001
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considered six semen traits and male fertility (Table 1), respectively, of 794 and 591 BSW bulls

that had partially imputed genotypes at 607,511 SNPs. In order to take population stratification

and the resulting inflation of false-positive association signals into account, we included the

top ten principal components of the genomic relationship matrix in the statistical models. The

average genomic inflation factor lambda was 1.29 ± 0.19 and 1.12 ± 0.07 for the additive and

recessive model, respectively, indicating that this corrective measure was mostly successful.

Haplotype-based association testing (additive model) revealed a QTL on chromosome 6 (S1

Fig) for sperm motility (P = 4.1 x 10−12), sperm head and tail anomalies (P = 5.2 x 10−16,

P = 1.3 x 10−17), sperm count per straw (P = 8.6 x 10−12) and insemination success (P = 1.5 x

10−8). The strongest association signals resulted from three adjacent haplotypes with almost

identical P values that were located between 57,335,668 and 57,993,128 bp. The QTL on chro-

mosome 6 was not associated with ejaculate volume and sperm concentration. Only few haplo-

types located on chromosomes other than BTA6 met the Bonferroni-corrected significance

threshold for the seven traits analysed (S1 Fig).

The association of the QTL on chromosome 6 was more pronounced when the association

tests were carried out assuming recessive inheritance (Fig 1). The strongest associations were

detected for two overlapping haplotypes located between 57,538,068 and 57,993,128 bp. The P

value of the top haplotype was 9.9 x 10−13, 2.6 x 10−26, 2.5 x 10−27, 2.0 x 10−44, and 7.2 x 10−49

for bull fertility, sperm count per straw, motility, head anomalies, and tail anomalies, respec-

tively. The P value of the top haplotype was higher (i.e., less significant) for bull fertility than

semen quality. This is partly due to the fact that the number of bulls with fertility records was

lower than the number of bulls with semen quality records. After correcting for multiple test-

ing, the top haplotype was not associated with ejaculate volume (P = 0.002) and sperm concen-

tration (P = 0.65). The frequency of the top haplotype was 24%. Of 794 AI bulls, 291 were

heterozygous and 46 were homozygous for the top haplotype. The association signal on chro-

mosome 6 was absent for all traits, when the association analysis was conditioned on the top

haplotype indicating that the top haplotype fully accounts for the QTL.

Homozygosity for the top haplotype on chromosome 6 is associated with reduced sperm

motility and fertility, increased sperm head and tail anomalies, and more sperm per straw (Fig

2). The semen quality and fertility of heterozygous bulls were normal corroborating recessive

inheritance. Semen quality of homozygous bulls was only slightly reduced compared to either

heterozygous or non-carrier bulls. For instance, with an average proportion of 83% motile

sperm per ejaculate, homozygous bulls fulfill the minimum requirements for artificial insemi-

nation which is 70% [32]. However, more ejaculates were rejected for AI due to less than 70%

motile sperm in homozygous than either heterozygous or non-carrier bulls (4.5% vs. 1.7%).

Insemination straws of homozygous bulls contain 2.86 million additional sperm per straw.

However, the fertility of homozygous bulls is reduced in spite of the compensation (Fig 2E).

Homozygous haplotype carriers share a 2.38 Mb segment on BTA6

Haplotypes that were significantly associated with either semen quality or bull fertility were

detected within an 15 Mb interval (between 50 and 65 Mb) on chromosome 6. One hundred

and five haplotypes that were significantly associated with at least two of the seven traits stud-

ied were located between 55,348,382 and 65,408,468 bp (Fig 3A). We detected haplotypes that

had markedly lower P values (e.g., P< 1 x 10−30 for sperm head and tail anomalies, P < 1 x

10−15 for motility) than surrounding haplotypes between 56,922,962 and 58,293,842 bp. A

deeper analysis of the genotypes of 46 bulls that were homozygous for the top haplotype

showed that they share a 2.38 Mb segment of extended autozygosity (between 57,465,157 and

59,846,532 bp) (Fig 3B). This segment contains 23 genes (KLF3, TLR10, TLR6, FAM114A1,
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ENSBTAG00000055220, TMEM156, KLHL5, WDR19, RFC1, KLB, RPL9, LIAS, UGDH,

SMIM14, UBE2K, PDS5A, N4BP2, ENSBTAG00000049669, RHOH, CHRNA9, RBM47,

NSUN7, APBB2) (Fig 3C). Of these genes, 15 and 14 are expressed at medium to high levels

(> 10 transcripts per million (TPM)) in the testes of newborn and mature males, respectively

(S2 Fig) including NSUN7 encoding NOP2/Sun RNA Methyltransferase Family Member 7.

Loss-of-function alleles in NSUN7 have been associated with low sperm motility and impaired

male fertility in mice and humans [33],[34].

A synonymous variant in WDR19 is in linkage disequilibrium with the top

haplotype

We analysed whole-genome sequencing data of 42 BSW animals for which the status for the

BTA6 top haplotype was known from SNP microarray genotypes. Of the 42 BSW animals, 3

Fig 1. Detection of QTL for semen quality and fertility in BSW bulls. Manhattan plots representing the association

(–log10(P)) of haplotypes with (A) ejaculate volume (genomic inflation factor lambda = 1.25), (B) sperm concentration

(lambda = 1.12), (C) sperm motility (lambda = 1.05), (D) sperm head anomalies (lambda = 1.10), (E) sperm tail

anomalies (lambda = 1.12), (F) sperm per straw (lambda = 1.16), and (G) bull fertility (lambda = 1.06) assuming a

recessive mode of inheritance. Red color indicates significantly associated haplotypes (P< Bonferroni-corrected

significance threshold).

https://doi.org/10.1371/journal.pgen.1008804.g001

Fig 2. A recessive haplotype compromises semen quality and bull fertility. Boxplots representing the effect of the top haplotype on semen quality and

fertility in non-carrier, heterozygous and homozygous bulls (haplotype status 0, 1, and 2, respectively). (A) Sperm motility of homozygous bulls is reduced by

1.6 phenotypic standard deviations (σp) (82.77 ± 2.59% vs. 86.37 ± 2.14%). Scores for sperm head (B) and tail (C) anomalies are increased by 2 and 2.1 σp in

homozygous bulls. (D) The reduced semen quality of homozygous bulls is compensated with an increased number of sperm per dose (19.15 ± 2.83 vs.

16.29 ± 1.7 million). (E) Fertility of homozygous bulls is reduced by 1.2 σp (90.1 ± 12.3 vs. 101.27 ± 8.74).

https://doi.org/10.1371/journal.pgen.1008804.g002
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were homozygous and 10 heterozygous carriers of the top haplotype. The remaining 29 bulls

did not carry the top haplotype (S2 Table). The average sequencing depth of the 42 animals

was 13.9-fold. Analysis of the sequencing read alignments and sequencing depth along chro-

mosome 6 in three homozygous haplotype carriers using the Integrative Genomics Viewer [35]

and mosdepth software [36] did not reveal large sequence variants that segregate with the fertil-

ity-associated haplotype.

Fig 3. Detailed view of the associated region on chromosome 6. (A) Association (-log10(P)) of haplotypes located

between 48 and 72 Mb on BTA6 with head and tail anomalies (ANOHEAD, ANOTAIL), motility (MOTIL), number

of sperm per straw (NTARGET) and bull fertility (FERT) assuming recessive inheritance. The red line represents the

Bonferroni-corrected significance threshold. The grey shaded area contains haplotypes that were associated with at

least two traits. (B) A segment of extended autozygosity was detected in 46 bulls that were homozygous for the top-

haplotype. Blue and pale blue represent homozygous genotypes (AA and BB), heterozygous genotypes are displayed in

grey. The solid red bar indicates the common 2.38 Mb segment of extended autozygosity (from 57,465,157 to

59,846,532 bp). (C) The segment of extended autozygosity encompasses 23 protein-coding genes. Vertical bars at the

bottom represent variants that are compatible with recessive inheritance, including 126 that are located within the

segment of extended autozygosity. Dark grey, light grey, green and orange bars represent intronic, intergenic,

synonymous and missense variants, respectively.

https://doi.org/10.1371/journal.pgen.1008804.g003
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As causal variants might reside outside of top haplotypes (e.g., [37]), we considered a 10 Mb

interval (between 55 and 65 Mb, Fig 3A) that contained haplotypes that were associated with

at least two of the traits studied to identify variants that were compatible with recessive inheri-

tance. Within this interval, we detected 56,081 variants (47,686 SNPs and 8,395 Indels) that

were polymorphic in the 42 BSW animals. A variant filtration approach that takes into account

potential sequencing errors, flawed genotypes in animals with low sequencing coverage, and

misclassified haplotypes (see Material and Methods), yielded 824 variants that were compatible

with the inheritance pattern of the top haplotype (S3 Table). Of the compatible variants, 126

were located within the 2.38 Mb segment of extended autozygosity.

The same filtration approach was applied to 57 larger sequence variants (insertions, dele-

tions, duplications, inversions, translocations) that were detected between 55 and 65 Mb on

BTA6 in the 42 BSW animals. However, none of these variants was compatible with the reces-

sive inheritance of the top haplotype.

Because homozygosity for the top haplotype was associated with reduced semen quality

and fertility, we hypothesized that the causal variant might reside in the coding sequence of a

gene that is expressed in the testis tissue. Only four of 824 compatible variants were located in

protein-coding regions: three synonymous variants in TLR6 encoding Toll-like receptor 6

(rs68268274 at Chr6:58069459), in WDR19 encoding WD repeat-containing protein 19

(rs474302732 at Chr6:58373887) and in GABRA2 encoding Gamma-aminobutyric acid recep-

tor subunit alpha-2 (rs42595907 at Chr6:64905616), and a missense variant in FAM114A1
encoding family with sequence similarity 114 member A1 that had a SIFT score of 0.18

indicating that this amino acid change is tolerated (rs382246003 at Chr6:58099868,

ENSBTAP00000044312.1:p.Asn22Lys) (S3 Table). The TLR6, WDR19 and FAM114A1 genes

are within the 2.38 Mb segment of extended autozygosity. TLR6, WDR19 and FAM114A1 are

expressed at 4, 16 and 27 TPM, respectively, in testicular tissue of mature bulls (S2 Fig). The

GABRA2 gene is not expressed (TPM < 1) in testicular tissue of mature bulls. Moreover, the

synonymous variant in GABRA2 was more than 5 Mb from the segment of extended autozyg-

osity, suggesting that it is less likely causal for the reduced semen quality and fertility of homo-

zygous BSW bulls. We did not detect any sequence variants nearby the NSUN7 gene neither in

coding nor in non-coding sequences that were compatible with the inheritance pattern of the

top haplotype (Fig 3C and S3 Table).

Using data from our in-house variant database and the latest variant discovery and geno-

typing run (run 7) of the 1000 Bull Genomes Project (http://www.1000bullgenomes.com/),

we investigated the genotype distribution of the compatible variants in cattle from various

breeds (S3 Table and S4 Table). It turned out that the variants in TLR6, GABRA2 and

FAM114A1 frequently occur in either heterozygous or homozygous state in cattle from various

breeds including Fleckvieh. Such variants are not likely to be causal, because no QTL for

semen quality and bull fertility had been detected in Fleckvieh nearby the top haplotype on

bovine chromosome 6 [25,28]. In contrast, the Chr6:58373887 T-allele that is located in the

coding sequence of WDR19 was only detected in BSW cattle and in the heterozygous state in

one bull (SAMEA5064547) of the Nordic Red Dairy cattle breed. The Nordic Red Dairy cattle

breed has recently experienced considerable introgression of BSW haplotypes [38].

The BTA6:58373887 T-allele in WDR19 activates cryptic splicing

A closer inspection of the BTA6:58373887C>T variant in the WDR19 gene

(ENSBTAG00000014512) revealed that it is located at the 3’ end of exon 12, 8 bp from the

splice donor site of intron 12. Although annotated as synonymous variant, we hypothesized

that the T-allele might activate a novel exonic splice donor site (Fig 4A and 4B). In silico
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prediction corroborated that the BTA6:58373887 T-allele very likely activates cryptic splicing

(prediction score: 0.88) that eliminates 9 bp from exon 12 and causes the in-frame deletion of

3 amino acids in the WD repeat-containing domain of WDR19. WDR19 is part of the intrafla-

gellar transport complex A that is essential for the physiological function of motile cilia and fla-

gella [39,40]. Thus, we considered the BTA6:58373887 T-allele in the WDR19 gene as a

plausible candidate mutation for the reduced semen quality and fertility of the BSW bulls.

To investigate functional consequences of the BTA6:58373887C>T variant, we sampled

testicular tissue of one wild-type, one heterozygous and two homozygous mutant AI bulls

from which between 24 and 93 ejaculates had been collected and analysed. The average pro-

portion of motile sperm was 40 and 69% in ejaculates of the two homozygous bulls. Sperm

motility was higher in non-carrier (80%) and heterozygous (84%) bulls. The proportion of

ejaculates that contained many sperm with either head or tail anomalies (scores 2 and 3) was

clearly higher in the two homozygous bulls (40 and 88%) than the heterozygous (0%) or non-

carrier bull (2%).

Histological sections of testicular tissue of two homozygous bulls showed no apparent path-

ological structures that might cause reduced semen quality. We extracted RNA from testicular

tissue in order to examine WDR19 transcription by reverse transcription PCR (RT-PCR).

Using primers located in exons 12 and 13, we obtained a 169 bp RT-PCR product in the wild-

type bull (Fig 4A, 4B and 4C). In bulls homozygous for the mutant BTA6:58373887 T-allele,

we primarily detected 160 bp RT-PCR products. Sequence analysis of the 160 bp RT-PCR

products confirmed that the mutant T-allele activates a cryptic exonic splice donor site result-

ing in 9 bp shorter sequence of exon 12 (Fig 4C). We also detected a weak band at 169 bp in

homozygous animals indicating the presence of the wild-type length RT-PCR product.

Sequence analysis confirmed that bulls homozygous for the BTA6:58373887 T-allele express

the wild-type length transcript at low levels. Both the wild-type and mutant RT-PCR products

were detected at approximately similar amounts in the heterozygous bull.

In order to quantify the abundance of the two WDR19 isoforms, we generated 63 million

150 bp sequencing reads from RNA prepared from testis tissue sampled from one BSW bull

(sample accession number SAMN14485268) homozygous for the BTA6:58373887 T-allele. Of

29 RNA-seq reads that overlap the junction of exons 12 and 13, 5 and 24 correspond to the

wild-type and mutant transcript, respectively, indicating that the wild-type and mutant iso-

forms are expressed at a ratio of 1:5 in the bull homozygous for the BTA6:58373887 T-allele

(S3 Fig).

The mRNA expression pattern of NSUN7 was similar in the BSW bull homozygous for the

BTA6:58373887 T-allele and two Angus bulls homozygous for the wild-type C-allele (S4 Fig).

Bioinformatic analysis of the sequences of the RT PCR products revealed that the altered

sequence of exon 12 leads to the in-frame deletion of three evolutionarily conserved amino

acids (positions 414–416) of the WDR19 protein (ENSBTAT00000019294.6) (Fig 4F). The

affected amino acids are located in the tenth WD repeat unit. The elimination of three amino

acids is predicted to alter hotspot residues of WDR19 that are supposed to be relevant for pro-

tein-protein interactions and the assembly of functional complexes [41] (Fig 4D).

Next, we analysed the effect of the alternative exon 12 sequence on the WDR19 mRNA and

protein expression in testicular tissue. Quantitative PCR analysis with primers located in exons

15 and 16 revealed no differences among the analysed samples indicating that the

BTA6:58373887 T-allele does not affect the WDR19 mRNA expression. However, western blot

analysis revealed that the amount of WDR19 is reduced in testicular tissue of heterozygous

and even stronger in homozygous mutant bulls, indicating that the BTA6:58373887 T-allele is

associated with WDR19 protein production (Fig 4E).
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The QTL on BTA6 can be validated in BSW bulls from Germany and Austria

In order to validate the effect of the fertility-associated haplotype in an independent popula-

tion, we analysed genotype and fertility data of 2481 BSW bulls from Germany and Austria.

The German, Austrian and Swiss BSW bulls are genetically connected. However, the bulls

from Austria and Germany were housed at different AI centers than the Swiss bulls and their

fertility was estimated using a separate genetic evaluation system, thus they qualify as valida-

tion cohort. Ejaculate data were not available for the German and Austrian bulls precluding

the analysis of semen quality.

Fig 4. Effect of the BTA6:58373887 C/T variant on WDR19 mRNA and protein expression. (A) Two WDR19

isoforms with 1342 (ENSBTAT00000019294.6) and 1242 (ENSBTAT00000069073.1) amino acids are annotated in

cattle. The BTA6:58373887C>T variant is located at the 3’ end of exon 12 (ENSBTAT00000019294.6), 8 basepairs from

the splice donor site of intron 12. The red triangle indicates the 58373887C>T variant, and green arrows indicate

RT-PCR primers. (B) Genomic sequence surrounding the 58373887C>T-variant. Grey background indicates exons of

the wild type (wt) and mutant (mt) transcripts, respectively. Underlined nucleotides indicate splice donor and splice

acceptor sites. Upper and lower case letters indicate exonic and intronic nucleotides, respectively. (C) RT-PCR analysis

on testis tissue samples from wild type, mutant and heterozygous bulls. Resequencing of the transcripts confirmed that

the BTA6:58373887 T-allele activates a novel exonic splice site that is predicted to eliminate 3 amino acids from the

resulting protein. (D) The mutation is located in the WD repeat domain of WDR19. The long

(ENSBTAT00000019294.6, upper figure) and short (ENSBTAT00000069073.1, lower figure) WDR19 isoform contains

13 and 10 WD repeats, respectively. Residues at predicted amino acid hotspot positions differ between the wild-type

and mutated protein for both WDR19 isoforms. (E) Western Blot analysis in wild type, mutant and heterozygous bulls.

GAPDH was used as the control. (F) Multi-species alignment of the WDR19 protein sequence. Bold type indicates

residues that are missing in the mutated (mt) WDR19 protein. Protein sequences were obtained from Ensembl for Bos
taurus (ENSBTAT00000019294.6), Rattus norvegicus (ENSRNOT00000003991.6), Homo sapiens
(ENST00000399820.8), Macaca mulatta (ENSMMUT00000003922.4), Equus caballus (ENSECAT00000026479.2),

Felis catus (ENSFCAT00000060823.2) and Canis lupus familiaris (ENSCAFT00000025574.4).

https://doi.org/10.1371/journal.pgen.1008804.g004
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The haplotype-based association study (recessive model) yielded strong association of the

QTL on BTA6 (Fig 5A). An inflation factor of 1.03 indicated that population stratification was

properly taken into account. On BTA6, we detected 69 haplotypes between 55,423,341 and

64,927,963 bp that exceeded the Bonferroni-corrected significance threshold (P < 4.4 x 10−7).

The most significantly (P = 7.09x10-32) associated haplotype was located between 57,335,668

and 57,624,763 bp. The frequency of this haplotype was 26% in the German and Austrian

BSW population, i.e. slightly higher than the frequency of the top haplotype in the Swiss popu-

lation. 127 and 1022 bulls from Germany and Austria were homozygous and heterozygous

haplotype carriers, respectively.

The haplotype that showed the strongest association in the Swiss population (between

57,538,068 and 57,993,128 bp) was the second top haplotype in the German and Austrian

BSW population and the P value was only slightly higher (P = 7.8x10-30) compared to the top

haplotype. The fertility of homozygous bulls was lower than that of heterozygous and non-car-

rier bulls (Fig 5B). The association signal on chromosome 6 was absent when the association

analysis was conditioned on the top haplotype from the Swiss population, indicating that the

BTA6:58373887 T-allele also tags the QTL detected in the German and Austrian BSW

population.

Fig 5. Detection of QTL for male fertility in 2481 Austrian and German BSW bulls. (A) Manhattan plot

representing the association (-log10(P)) of 112,667 haplotypes with male fertility assuming a recessive mode of

inheritance. Red color indicates significantly associated haplotypes (P< Bonferroni-corrected significance threshold).

(B) The fertility of homozygous haplotype carriers is reduced by 1.01 phenotypic standard deviations.

https://doi.org/10.1371/journal.pgen.1008804.g005
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Discussion

Our haplotype-based association study uncovered a QTL on BTA6 for semen quality and fer-

tility in BSW cattle. Response variables for genome-wide association testing were derived from

33 ejaculates per bull in average. Thus, our results confirm that variation in semen quality is

partly due to genetic differences that can be identified in genome-wide association studies

[42]. It is well known that bulls suffering from undetected diseases and stress may temporarily

produce ejaculates that do not fulfill the requirements for artificial insemination [43,44]. Bulls

that produce ejaculates of low quality despite being healthy might carry rare genetic variants

that can be identified using case-control association testing [29,30]. We considered only ejacu-

lates that fulfill minimum requirements for AI. The exclusion of ejaculates with low semen

quality likely removes phenotypic outliers that could lead to false-positive association signals

[45]. Low genomic inflation factors indicated that the results of our association studies were

not enriched for spurious associations. However, we detected only very few haplotypes on

chromosomes other than BTA6 that exceeded the Bonferroni-corrected significance threshold.

Our rigorous approach to retain only ejaculates that comply with the requirements of AI may

have reduced the amount of genetic variation that is amenable to association testing, thus pos-

sibly reducing the statistical power to detect QTL with small effects. Moreover, the heritability

was less than 0.26 for all semen quality traits considered, which corroborates previous results

in cattle [9–12]. Repeatability was higher than heritability indicating that the semen quality of

AI bulls is markedly influenced by permanent environmental effects that may also capture

non-additive genetic effects [46], which agrees with previous findings in boars and bulls [9],

[47]. Detecting QTL with small to medium effects requires large mapping populations particu-

larly for traits with low heritability [31]. Our mapping cohort consisted of 794 BSW bulls that

were used for AI in the past 20 years. The size of this cohort is too small to detect QTL for

semen quality that are either rare or explain only a small fraction of the trait variation. Thus,

our findings suggest that, apart from the QTL on BTA6, variants with small effects contribute

to the genetic variance of semen quality from BSW bulls, otherwise they should have been

detected in our study. The analysis of data from multiple countries might increase the statisti-

cal power to detect trait-associated variants and provide additional insight into the genetic

determinants of quantitative variation in semen quality. However, this requires a uniform

assessment of semen quality across AI centers.

The QTL detected on BTA6 acts in a recessive manner. Ejaculates of bulls homozygous for

the top haplotype contain an increased proportion of sperm with head and tail anomalies and

lower proportion of motile sperm. However, the semen quality of homozygous bulls is only

slightly reduced in comparison to the average semen quality of BSW bulls. Thus, the BTA6 QTL

contributes to the quantitative variation in semen quality and male fertility. Most ejaculates of

bulls that are homozygous for the top haplotype fulfill the requirements for AI. Because the

reduced semen quality of homozygous bulls is recognized during the routine quality assessment

at the AI center, the insemination straws produced from their ejaculates contained more sperm

per dose than standard doses. Increasing the number of sperm per dose typically increases the

fertilization rates for ejaculates that contain sperm with compensable defects [15]. However, the

insemination success of homozygous bulls is significantly reduced, indicating that an increased

number of sperm per dose is not sufficient to enable normal fertility in homozygous haplotype

carriers. Moreover, ejaculates from homozygous bulls are more often discarded due to insuffi-

cient semen quality than ejaculates produced by either heterozygous or non-carrier bulls.

Because we did not consider discarded ejaculates to calculate average semen quality, the actual

effect of the haplotype on semen quality might be greater than estimated in our study. Neverthe-

less, it is important to emphasize that homozygous bulls are fertile. Therefore, the consequences
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of the BTA6 haplotype on male reproduction are less detrimental than, e.g., of recessive haplo-

types that severely compromise semen quality and lead to male infertility [28–30].

We make the remarkable observation that the BTA6 haplotype compromising male fertility

segregates in the BSW population at a frequency of 24%. Balancing selection may maintain

deleterious alleles at high frequency in natural populations [48]. However, if the haplotype has

desirable effects on economically relevant traits, the effects must be very small; otherwise, they

would have been detected in a recent study that carried out genome-wide association studies

for more than 50 economically important traits in 4578 BSW bulls [49]. We can not exclude

the possibility that the haplotype affects traits that are not routinely recorded in BSW cattle.

Hitchhiking with favourable alleles may also explain the high frequency of the deleterious hap-

lotype on BTA6 [50]. Yet, the haplotype is more than 20 million basepairs from the NCAPG
gene and the casein cluster, which are targets of selection for stature and milk production in

many dairy cattle breeds [51,52]. Signatures of selection were not detected in BSW cattle

nearby the male fertility-associated QTL on BTA6 [49,53]. Random drift and the frequent use

of haplotype carriers in AI most likely propagated the haplotype in spite of its negative effect

on male reproduction. Founder effects caused the frequent phenotypic manifestation of delete-

rious recessive alleles also in the Fleckvieh and Belgian Blue cattle breeds [28,54]. Another rea-

son that likely contributed to the high haplotype frequency is the fact that reduced fertility

becomes evident only in homozygous AI bulls. Nevertheless, close monitoring of the haplotype

seems warranted in order to prevent a further increase in frequency and the emergence of

many homozygous bulls with low semen quality and fertility.

Low effective population size and the resulting long range linkage disequilibrium typically

result in large QTL confidence intervals that contain many candidate causal variants. We

detected significantly associated haplotypes that were in linkage disequilibrium with the top

haplotype within a 15 Mb interval on chromosome 6 (Fig 3A). Multi-breed association analysis

can be used to refine QTL because linkage disequilibrium is conserved over shorter distances

across breeds than within breeds. However, association testing of semen quality and fertility

across breeds was not possible because ejaculate data were only available for BSW bulls. Using

whole-genome sequencing data of 42 BSW cattle with known haplotype status at the BTA6

QTL, we identified 824 variants that were compatible with the inheritance of the top haplotype.

Variants segregating in breeds other than BSW can be discarded as candidate causal variants if

the trait-associated mutation occurred after the formation of breeds. A filtration approach

based on this assumption has been frequently applied to detect causal variants for recessive

conditions in livestock and companion animals [37,55,56]. The removal of variants that segre-

gate in breeds other than BSW would have excluded many of the 824 variants as potential can-

didate causal variants for the impaired fertility associated with homozygosity for the BTA6

QTL. Nevertheless, such a variant filtration approach does not take into account that deleteri-

ous alleles may segregate across populations [57–60]. It is possible that the QTL detected in

our study also segregates in breeds other than BSW. However, QTL for semen quality and bull

fertility were not detected in Fleckvieh cattle nearby the BTA6 QTL [25,28]. Thus, variants that

occur at high frequency also in the Fleckvieh population are less likely to be causal for impaired

reproductive performance. We applied an appropriate variant filtration approach to prioritize

a variant (BTA6:58373887) in the coding sequence of the WDR19 gene. Although annotated as

synonymous variant, our analyses demonstrated that the BTA6:58373887 T-allele activates a

novel exonic splice site that eliminates 3 amino acids from the resulting protein. Thus, our

results indicate that nondescript synonymous variants warrant close scrutiny because they

might affect exonic splicing enhancers [61] or activate cryptic splice sites, which is not imme-

diately apparent from standard variant annotation as it was the case for the BTA6:58373887 T-

allele in WDR19.
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The WD repeat-containing protein 19 is part of the intraflagellar transport complex A

(IFT-A) that is essential for the assembly and physiological function of motile cilia and flagella

[39,40,62,63]. Loss-of-function mutations in the WD repeat domain of the WDR19 gene lead

to severe ciliopathies in humans [64–67]. The consequences of these mutations on semen qual-

ity and male fertility are unknown, because affected individuals do not reach reproductive age

[68]. The BTA6:58373887 T-allele is not a loss-of-function mutation because we detected the

allele in the homozygous state in mature bulls, which were healthy apart from producing ejacu-

lates with reduced semen quality and fertility. However, an excess of sperm with morphologi-

cal anomalies and low motility indicates that spermatogenesis of bulls homozygous for the

BTA6:58373887 T-allele is impaired. Our results show that WDR19 is expressed in the testes of

mature bulls. The BTA6:58373887 T-allele activates alternative splicing that eliminates 3

amino acids from the resulting protein. The loss of evolutionary conserved amino acids within

the WD repeat domain alters hotspot residues at the surface of the WDR19 protein, which

might compromise its secondary structure and interaction with other proteins including the

constituents of the IFT-A complex [41,69]. We observed markedly reduced WDR19 protein

expression in testicular tissue of heterozygous and homozygous bulls indicating that changes

in the secondary structure may compromise protein stability and result in either protein deg-

radation or post-translational modification of this WDR19 isoform. A lower amount of

WDR19 may compromise spermiogenesis due to impaired intraflagellar transport thus caus-

ing abnormal sperm with low fertility in homozygous bulls. We also detected the wild-type

length transcript at low levels in bulls homozygous for the BTA6:58373887 T-allele indicating

differential splicing. Factors controlling splice site selection may contribute to the marked phe-

notypic variability in the semen quality of bulls homozygous for the BTA6:58373887 T-allele.

The presence of a low amount of wild-type WDR19 protein seems to be sufficient to produce

normal sperm. However, semen quality of individuals that exceed a certain threshold of

mutant protein or undercut a certain threshold of wild-type protein might have a higher pro-

portion of abnormal sperm, thus resulting in lower fertility.

This is the first report providing evidence that naturally occurring variation in WDR19 is

associated with reduced semen quality and fertility. However, variants affecting other constitu-

ents of the IFT-A complex have been shown to compromise male reproduction. Mice with a

loss-of-function variant in the IFT140 gene show multiple morphological aberrations of the

sperm including short and/or bent sperm tail and abnormal heads [70]. Compound heterozy-

gosity in human IFT140 is associated with reduced sperm count and an excess of sperm with

head and tail anomalies in an otherwise healthy individual [71]. This indicates that mutations

of the IFT-A complex may reduce semen quality without compromising the general health,

which agrees with our findings of a deleterious allele in bovine WDR19 that affects semen qual-

ity and fertility in otherwise healthy bulls.

Methods

Ethics approval and consent to participate

Semen was collected at approved AI centers. Testis tissue was collected after regular slaughter

at an approved slaughterhouse. The decision to slaughter the bulls was independent from our

study. None of the authors of the present study was involved in the decision to slaughter the

bulls. No ethics approval was required for the analyses.

Consent for publication

Breeding associations and AI centers provided written consent to the analyses performed and

the publication of results and data.
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Genotypes of Brown Swiss bulls

Genotypes of 4549 BSW bulls were provided by Swiss, German and Austrian breeding associa-

tions. A subset (N = 870) of the bulls was genotyped using the Illumina BovineHD (HD) bead

chip that comprises 777,962 SNPs. All other bulls (N = 3679) were genotyped at approximately

50,000 SNPs using medium density (MD) chips (e.g., the Illumina BovineSNP50 bead chip

that comprises 54,001 (version 1) or 54,609 (version 2) SNPs). The position of the SNPs corre-

sponded to the ARS-UCD1.2-assembly of the bovine genome [72]. Quality control on the

genotype data was carried out separately for the HD and MD datasets using the plink (version

1.9) software [73]. Animals and SNPs with more than 20% missing genotypes were excluded

from the data. We removed SNPs with minor allele frequency (MAF) less than 0.005 and SNPs

for which the observed genotype distribution deviated significantly (P< 0.00001) from

Hardy-Weinberg proportions. After quality control, 36,131 and 607,511 SNPs remained in the

MD and HD dataset, respectively. Sporadically missing genotypes were imputed in the MD

and HD datasets separately using the Beagle (version 5.0) software [74]. Subsequently, we

inferred haplotypes for both datasets using the Eagle (version 2.4) software [75]. We consid-

ered the HD genotypes of 870 bulls as a reference to impute MD genotypes to higher density

using the haplotype-based imputation approach implemented in the Minimac3 (version 2.0.1)

software [76]. Following imputation, the genotype panels were merged to obtain the final data-

set consisting of 4549 bulls genotyped at 607,511 autosomal SNPs. Principal components of

the genomic relationship matrix were calculated using the plink (version 1.9) software [73].

Semen quality data of Swiss BSW bulls

The Swiss AI center Swissgenetics provided data on 70,990 ejaculates that were collected

between January 2000 and March 2018 from 1,343 BSW bulls at the AI center in Mülligen,

canton of Aargau, Switzerland. All ejaculates were collected as part of the breeding and repro-

duction service of the AI center to Swiss cattle farming. Semen quality was assessed by lab tech-

nicians immediately after ejaculate collection in order to identify and discard ejaculates of low

quality. The parameters recorded for fresh ejaculates were semen volume (in ml), sperm con-

centration (million sperm cells per ml) quantified using photometric analysis, and sperm

motility (percentage of sperm with forward motility) assessed visually using a heated-stage

microscope at 200-fold magnification. Moreover, the presence of erythrocytes, leucocytes and

other non-sperm cells was documented for each ejaculate. Each ejaculate received a score

between 0 and 3 indicating the proportion of sperm with head and tail anomalies (0: no or

very few anomalies, 1: less than 10% sperm with anomalies, 2: between 10 and 30% sperm with

anomalies, 3: more than 30% sperm with anomalies). Ejaculates that fulfilled minimum

requirements for artificial insemination (semen volume above 1 ml, more than 300 million

sperm per ml, at least 70% motile sperm, no apparent impurities and no excessive abnormali-

ties of sperm heads and tails) were diluted using a Tris-egg yolk based extender, filled in straws

containing between 15 and 25 million sperm cells and cryoconserved in liquid nitrogen.

We removed records of ejaculates that were pooled before semen analysis and considered

only the first ejaculate per day that was collected from bulls between 400 and 1000 days of age

(sometimes more than one ejaculate is collected per bull and day). Records for which either

the interval between successive ejaculates or the semen collector were missing were excluded

from our analysis. We retained only ejaculates that complied with minimum requirements for

artificial insemination because insufficient semen quality might be attributable to rare genetic

conditions [28,29]. Eventually, we retained only ejaculates of bulls for which at least 8 ejacu-

lates were available. Our final dataset contained 26,090 ejaculates for 794 genotyped bulls (ø
33 ± 29 ejaculates per bull; median: 20) (Table 2). We considered six semen quality traits for
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our genetic investigations: ejaculate volume, sperm concentration, sperm motility, sperm head

and tail anomaly score, and number of sperm filled per insemination straw.

Estimation of genetic parameters for semen quality

The heritability and repeatability of six semen quality traits was calculated using the average

information restricted maximum likelihood (REML) estimation algorithm implemented in

the AIREMLF90 program [77]. We fitted the following univariate linear mixed model: y = 1μ
+ha+df+Ct+Sn+Zuu+Zpp+e, where y is a vector of each phenotype tested, μ is the intercept (1

is a vector of ones), h and d are vectors of age and interval between successive semen collec-

tions in days and a and f are their respective effects; C, S, Zu and Zp are incidence matrices

relating collector (person collecting the ejaculate), season (4 seasons per year), random indi-

vidual polygenic and random permanent environment effects to their respective records

respectively, t is the vector of effects of different semen collectors, n is the vector of effects of

different seasons, u is the vector of random individual polygenic effects assumed to be nor-

mally distributed (Nð0;As2
gÞ, where A is the additive relationship matrix estimated from the

pedigree and σg
2 is the additive genetic variance), p is the vector of permanent environmental

effects assumed to be normally distributed (Nð0; Is2
peÞ, where σpe

2 is the permanent environ-

ment variance), and e is the vector of individual error terms assumed to be normally distrib-

uted (Nð0; Is2
eÞ, where σe

2 is the residual variance). Standard errors of heritability and

repeatability were estimated using the Monte-Carlo method [78] implemented in

AIREMLF90.

Semen quality phenotypes for association testing

Phenotypes for the association studies were the average values either from the filtered unad-

justed data or from the residuals of the following linear model: y = 1μ+ha+df+Ct+Sn+e, where

y is a semen quality parameter of each ejaculate, μ is the intercept, 1 is a vector of ones, h and d

are vectors of the bulls’ age (in days when the ejaculate was collected and the interval (in days)

to the preceding ejaculate, respectively, a and f are their respective effects. C and S are

Table 2. Quality control on the raw semen quality data.

Filtering parameter Number of

ejaculates

Number of BSW

bulls

Raw dataset 70,990 1343

Interval to preceding ejaculate known (excluding first ejaculate of bull

in dataset)

69,647 1343

Age at semen collection between 400 and 1000 days 56,200 1302

Ejaculate volume recorded 47,956 1294

Fresh sperm motility recorded 47,941 1294

No (biological / technical) cause of rejection recorded 43,733 1250

Fresh sperm motility� 70% 43,571 1235

Ejaculate was not pooled before semen analysis 35,888 1224

Only first ejaculate per day 32,584 1221

Semen collector recorded 30,966 1201

Plausible sperm head and tail anomaly score 30,964 1201

Target number of sperm in insemination straw between 15 and 25

million

30,832 1201

At least 8 ejaculates collected per bull 29,751 946

Bull had (partially imputed) genotypes 26,090 794

https://doi.org/10.1371/journal.pgen.1008804.t002
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incidence matrices relating the person collecting the ejaculate and semen collection date (4

seasons per year), t and n are their respective effects and e is a vector of random residuals. The

correlation between the average values from the filtered data and the average values from the

random residuals were high (r> 0.90) for all traits analysed. To facilitate a better interpreta-

tion of the effect estimates, we used the average values calculated from the filtered data as

input variables throughout the manuscript.

Insemination success in the Swiss BSW population

Bull fertility (as at February 2019) was provided by Swissgenetics for 941 BSW bulls that had

between 232 and 15,690 first inseminations with conventional (i.e., semen was not sorted for

sex) frozen-thawed semen. Male fertility was estimated using a linear mixed model similar to

the one proposed by Schaeffer et al. [79]: yijklmnopq = μ+MOi+PAj+PRk+(RS x RK)lm+BEn+-

ho+slp+eijklmnopq, where yijklmnopq is either 0 (subsequent insemination recorded within 56

days of the insemination) or 1 (no subsequent insemination recorded within 56 days after the

insemination), μ is the intercept, MOi is the insemination month, PAj is the parity (heifer or

cow), PRk is the cost of the insemination straw, (RS x RK)lm is the combination bull’s breed x

cow’s breed, BEn is the insemination technician, ho is the herd, slp is the fertility of the bull

expressed in % deviation from the average non-return rate, and eijklmnopq is a random residual

term. Bull fertility was subsequently standardized to a mean of 100 ± 12. Three bulls with very

low fertility (i.e., more than 3 standard deviations below average) were not considered for our

analyses because they might carry rare genetic conditions [28] and including such phenotypic

outliers in genome-wide association testing might lead to spurious associations [45]. For the

GWAS on bull fertility, we considered 591 bulls that had records for both male fertility and

semen quality.

Male fertility in the German and Austrian BSW populations

Phenotypes for bull fertility (as at December 2017), were provided by ZuchtData EDV-Diens-

tleistungen GmbH, Austria, for 4617 BSW bulls from Germany and Austria that were used for

4,267,990 and 1,646,254 inseminations in cows and heifers, respectively. Bull fertility in the

German and Austrian BSW populations is estimated using a multi-trait animal model that was

proposed by Fuerst & Gredler [4]. The model includes a fixed effect for the service sire that

represents bull fertility as deviation from the population mean. Four phenotypic outliers were

not considered for subsequent analyses (see above). The final dataset included fertility records

for 2481 bulls that also had (partially imputed) genotypes at 607,511 SNPs.

Haplotype-based association testing of phenotypes

Haplotype-based association testing was implemented in R using a sliding-window-based

approach that we applied previously to investigate genetic conditions in cattle [58]. In brief, a

sliding window of 50 contiguous SNPs corresponding to a haplotype length of ~200 kb was

shifted along the autosomes in steps of 15 SNPs. Within each sliding window (N = 40,444),

pre-phased haplotypes (see above) with frequency greater than 1% were tested for association

using the linear model y ¼ mþ
P10

j¼1
ajPCj þ bHTþ e, where y is a vector of phenotypes (see

above), μ is the intercept, PCj are the top ten principal components of the genomic relationship

matrix (see above), a and b are effects of the principal components and the haplotype (HT)

tested, respectively, and e is a vector of residuals that are assumed to be normally distributed.

Haplotypes were tested for association assuming either additive, dominant or recessive mode

of inheritance. Recessive tests were carried out for haplotypes that were observed in the
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homozygous state in at least 1% of the individuals. The genomic inflation factor lambda was

calculated in R using the following formula: lambda = median(qchisq(1-p, 1)) / qchisq(0.5, 1)

where p is a vector of P values.

Whole-genome sequencing and sequence variant genotyping

We used paired-end whole-genome sequencing reads (2x101 bp, 2x126 bp or 2x150 bp) of 42

BSW animals (3 homozygous, 10 heterozygous, 29 non-carrier) that were generated using Illu-

mina HiSeq or NovaSeq instruments to identify candidate causal variants for the impaired

reproductive performance of homozygous haplotype carriers. Some sequenced animals were

key ancestors of the Swiss BSW population that had been sequenced previously [80]. Sequenc-

ing data of all animals are available from the European Nucleotide Archive (http://www.ebi.ac.

uk/ena) under the accession numbers listed in S4 Table.

We removed from the raw data reads for which the phred-scaled quality was less than 15

for more than 15% of bases, and trimmed adapter sequences using the fastp software [81]. Sub-

sequently, the sequencing data were aligned to the bovine linear reference genome

(ARS-UCD1.2) using the BWA mem algorithm [82]. Duplicates were marked and read align-

ments were coordinate sorted using the Picard tools software suite [83] and Sambamba [84],

respectively. The average depth of the aligned sequencing reads was 13.9-fold and it ranged

from 6.6 to 28.9-fold.

We discovered and genotyped SNPs and Indels from the linear alignments using the multi-

sample variant calling approach implemented in the Genome Analysis Toolkit (GATK, version

4.1.0) [85]. Specifically, we followed GATK’s best practice recommendations for sequence vari-

ant discovery and filtration when variant quality score recalibration (VQSR) is not possible

because the truth set of variants required for VQSR is not publicly available in cattle. Addi-

tional details on the applied variant calling and filtration approach can be found in Crysnanto

et al. [86]. The mosdepth software (version 0.2.2) [36] was used to extract the number of reads

that covered a genomic position.

Structural variants including large insertions, deletions, inversions, duplications and trans-

locations were detected and genotyped in the sequenced BSW animals using the delly software

with default parameter settings [87].

Identification of candidate causal variants

The status of the BTA6 top haplotype was determined for the 42 sequenced BSW animals

using (partially) imputed SNP microarray-derived genotypes at 607,511 SNPs (see above).

Sequence variant genotypes within a 10 Mb region on bovine chromosome 6 (from 55 to 65

Mb) encompassing the 2.38 Mb segment of extended homozygosity were filtered to identify

variants compatible with recessive inheritance. In order to take into account possible haplo-

type phasing errors, inaccurately genotyped sequence variants and the undercalling of hetero-

zygous genotypes due to low sequencing coverage, we applied a conservative filtering strategy.

Specifically, we screened for variants that had following allele frequencies:

• � 0.8 in three homozygous haplotype carriers (5 out of 6 alleles),

• between 0.4 and 0.6 in ten heterozygous haplotype carriers,

• � 0.05 in 29 non-carriers of the haplotype.

This filtration identified 824 variants that were compatible with recessive inheritance. We

annotated the candidate causal variants according to the Ensembl (release 95) annotation of

the ARS-UCD1.2-assembly of the bovine genome using the Variant Effect Predictor (VEP)
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software tool [88]. The frequency and genotype distribution of candidate causal variants were

also investigated in cattle from breeds other than BSW using polymorphism information from

an in-house sequence variant database of 295 cattle (accession numbers and corresponding

breeds are listed in S4 Table) and the most recent release (run 7) of the 1000 Bull Genomes

Project (3078 cattle).

Quantification of transcript abundance in testis tissue

We downloaded between 47 and 58 million 2x150 bp paired-end sequencing reads from the

ENA sequence read archive that were generated using RNA extracted from testicular tissue

samples of three mature bulls and three newborn male calves of the Angus beef cattle breed

(ENA accession numbers: SAMN09205186-SAMN09205191; [89]). The RNA sequencing data

were pseudo-aligned to an index of the bovine transcriptome (ftp://ftp.ensembl.org/pub/

release-98/fasta/bos_taurus/cdna/Bos_taurus.ARS-UCD1.2.cdna.all.fa.gz) and transcript

abundance was quantified using the kallisto software [90]. We used the R package tximport

[91] to aggregate transcript abundances to the gene level.

Testicular tissue sampling

Testicular tissue was sampled at a commercial slaughterhouse from four AI bulls (two bulls

homozygous for the mutant (mt) T-allele at Chr6:58373887, one heterozygous bull and one

bull homozygous for the wild-type (wt) C-allele Chr6:58373887). At the time of slaughter, the

bulls were between 595 and 778 days old and they had been kept under identical conditions at

the AI center Swissgenetics. The haplotype status of the bulls was determined before slaughter

using SNP microarray-derived genotypes. Tissue samples were frozen on dry ice immediately

after collection and subsequently stored at –80˚C. Additionally, testis and epididymis tissues

were formalin-fixed and paraffin-embedded. Sections of embedded tissue were stained with

hematoxylin and eosin for microscopic examination.

Transcription analysis using RT-PCR

Total RNA from testicular tissue samples of the four bulls was extracted using Direct-zol RNA

Mini Prep Kit (Zymo Research) according to the manufacturer’s instructions. The integrity

and concentration of RNA was analysed by agarose gel electrophoresis and using the Nano-

drop ND-2000 spectrophotometer (Thermo Scientific), respectively. Total RNA was reverse

transcribed using FastGene ScriptaseII (Fast Gene). RT-PCR was done with the GoTaq Poly-

merase (Promega) using forward primer (5’-ACGTGGAGCCCAACTTTGTA-3’) and reverse

primer (5’-AGTGCAGACGCATAGTCAGAA-3’). The RT-PCR products were separated on a

3% agarose gel and the length of the products was analysed using Quantum (Vilber Lourmat).

The sequence of the RT-PCR products was obtained using Sanger sequencing.

Quantitative RT-PCR

200 ng total RNA was used to synthesise complementary DNA (cDNA) using FastGene Scrip-

taseII (Fast Gene). Two-step qPCR experiments were performed using Fast SybrGreen Master-

Mix (Applied Biosystems) using forward primer (5’-TGATTATCGACATCCCGTCA-3’) and

reverse primer (5’-GTCTGGAATCTCATAGGTAG-3’) and run on an ABI 7500 thermocycler

(Applied Biosystems). Primer specificity and capture temperature were determined by melt

curve analysis. The relative expression difference between the genotypes in all tissues was cal-

culated for each sample (ΔΔCT). All cDNA samples were assayed in triplicate and relative

expression levels normalised to the GAPDH reference gene.
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Whole transcriptome sequencing and read alignment

A paired-end RNA library (2x150 bp) was prepared from total RNA from a testicular tissue

sample of one BSW bull homozygous for the mutant T-allele at Chr6:58373887 using the Illu-

mina TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA). The library was

sequenced using an Illumina NovaSeq6000 instrument. Quality control on 63,473,978 raw

RNA sequencing reads was performed using the fastp software [81]. We removed adapter

sequences and reads for which the phred-scaled quality was less than 15 for more than 15% of

bases. The filtered reads (N = 63,138,436) were aligned to the ARS-UCD1.2 reference sequence

and the Ensembl gene annotation (release 99) using the splice-aware read alignment tool

STAR (version 2.7.3a) [92]. The mosdepth software (version 0.2.2) [36] was used to extract the

number of RNA sequencing reads that covered a genomic position. The RNA sequencing data

have been deposited at the Sequence Read Archive of the NCBI under sample and study acces-

sions SAMN14485268 and PRJNA616249, respectively.

Western blot

Total protein from testicular tissue was extracted using T-PER1 Tissue Protein Extraction

Reagent (Thermo Scientific) according to the manufacturer’s instructions. Western blot was

performed using iBind Western Blot System (Life Technologies). The bovine WDR19 protein

was detected using rabbit abx316410 anti-human-WDR19 antibody (diluted 1:2000 in iBind

solution) and horseradish peroxidase-labelled goat anti-rabbit sc-2005 (diluted 1:5000 in iBind

solution). GADPH was detected using mouse monoclonal anti-GADPH #G8795, (diluted

1:3000) and rabbit anti-mouse IgG H&L (HRP) ab6728 (diluted 1:5000).

Bioinformatic analyses of the mutant allele and WDR19 topology

prediction

The NNSPLICE software tool (https://www.fruitfly.org/seq_tools/splice.html, [93]) was used to

predict putative splice sites within 1000 bp on either side of the BTA6:58373887C>T-variant.

Multi-species alignment of the WDR19 protein sequence was performed using Clustal Omega
[94,95]. The topology of bovine WDR19 isoforms ENSBTAT00000019294.6 (1342 amino

acids) and ENSBTAT00000069073.1 (1242 amino acids) was predicted using the WD40-repeat
protein Structure Predictor version 2.0 (http://www.wdspdb.com/wdsp/ [96]).

Supporting information

S1 Table. Phenotypic correlations (off-diagonal) and heritability (diagonal) of the traits

studied. Correlation and heritability of seven traits relevant for semen quality and fertility.

(DOCX)

S2 Table. Accession numbers of 42 BSW animals. The numbers listed indicate accession

numbers from the sequence read archive of the European Nucleotide Archive (http://www.ebi.

ac.uk/ena). The second and third column indicates the status of the sequenced animals with

regard to the top haplotype and the sequencing coverage, respectively.

(CSV)

S3 Table. Variants compatible with recessive inheritance. Functional consequences of 824

variants were predicted using the VEP software tool. The frequency of the alternate allele is

presented for homozygous, heterozygous and non-carrier animals of the BSW cattle breed

(n = 42), as well as for animals from breeds other than BSW (n = 253) that are part of our in-
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house variant database.

(CSV)

S4 Table. Accession numbers of 295 animals from different cattle breeds. The numbers

listed indicate accession numbers from the sequence read archive of the European Nucleotide

Archive (http://www.ebi.ac.uk/ena). The second column indicates the breed of the sequenced

animals (BSW–Brown Swiss; FV–Fleckvieh; HOL–Holstein; NRC–Nordic Red Dairy Cattle;

OBV–Original Braunvieh; TGV–Tyrolean Grey).

(CSV)

S1 Fig. Detection of QTL for semen quality and fertility in BSW bulls. Manhattan plots rep-

resenting the association (–log10(P)) of haplotypes with (A) ejaculate volume (genomic infla-

tion factor lambda = 1.67), (B) sperm concentration (lambda = 1.29), (C) sperm motility

(lambda = 1.35), (D) proportion of sperm with head anomalies (lambda = 1.10), (E) propor-

tion of sperm with tail anomalies (lambda = 1.14), (F) sperm per straw (lambda = 1.22), and

(G) bull fertility (lambda = 1.22) assuming an additive mode of inheritance. Red color indi-

cates significantly associated haplotypes (P < Bonferroni corrected significance threshold).

(TIF)

S2 Fig. Expression of genes located within the segment of extended homozygosity in testis

tissue. Transcripts per million (TPM) in testis tissue of three mature bulls (grey) and three

newborn male calves (black). The horizontal line represents the median expression (5.9 TPM)

of 22,372 genes. To improve readability, the expression for RPL is only shown in the inset.

(PNG)

S3 Fig. Activation of cryptic splicing through the BTA6:58373887 T-allele. Screen captures

of IGV outputs from testis RNAseq alignments of a BSW bull (SAMN14485268) homozygous

for the mutant (mt) T-allele (A) and two control bulls from the Angus breed (SAMN09205187,

SAMN09205188) that are homozygous for the wild-type (wt) C-allele at Chr6:58373887 (B, C).

The red bar indicates nine nucleotides that are truncated from exon 12 of WDR19 in the BSW

bull (A) due to cryptic splicing activated by the T-allele. A low number of sequence reads cor-

responding to the wild-type transcript were also detected in the bull homozygous for the

BTA6:58373887 T-allele.

(PDF)

S4 Fig. Expression of NSUN7. Expression of NSUN7 quantified using testis RNAseq align-

ments of a BSW bull (SAMN14485268) homozygous for the mutant (mt) T-allele (A) and two

control bulls from the Angus breed (SAMN09205187, SAMN09205188) that are homozygous

for the wild-type (wt) C-allele at Chr6:58373887 (B, C). The number of reads covering a geno-

mic position was extracted from coordinate sorted BAM files using the mosdepth software and

subsequently divided by the total number of reads (in million) mapped to transcripts.

(PDF)

S1 Data. Data of 794 bulls used to detect the QTL on BTA6. The archive contains phased

genotypes (haplotypes_6) at 28,872 SNPs located on chromosome 6 (markers_6), the top 20

principal components (evecs) and the average sperm motility of 794 BSW bulls.

(ZIP)

S2 Data. R script used to perform the haplotype-based association testing. This archive

contains the R script that was used to carry out the haplotype-based association testing, a

README file that provides information how the script can be applied to analyse the raw data

provided in S1 Data and a Jupyter notebook file (GWAS.html) that explains how to process
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the output file.
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genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic

selection. Proceedings of the National Academy of Sciences of the United States of America. 2016;

113: E3995–E4004. https://doi.org/10.1073/pnas.1519061113 PMID: 27354521

17. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum RF, et al. Whole-genome

sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics.

2014; 46: 858–865. https://doi.org/10.1038/ng.3034 PMID: 25017103

18. Pausch H, MacLeod IM, Fries R, Emmerling R, Bowman PJ, Daetwyler HD, et al. Evaluation of the

accuracy of imputed sequence variant genotypes and their utility for causal variant detection in cattle.

Genetics Selection Evolution. 2017; 49: 24. https://doi.org/10.1186/s12711-017-0301-x PMID:

28222685

19. Fortes MRS, DeAtley KL, Lehnert SA, Burns BM, Reverter A, Hawken RJ, et al. Genomic regions asso-

ciated with fertility traits in male and female cattle: Advances from microsatellites to high-density chips

and beyond. Animal Reproduction Science. 2013; 141: 1–19. https://doi.org/10.1016/j.anireprosci.

2013.07.002 PMID: 23932163

20. Puglisi R, Gaspa G, Balduzzi D, Severgnini A, Vanni R, Macciotta NPP, et al. Genomewide analysis of

bull sperm quality and fertility traits. Reproduction in Domestic Animals. 2016; 51: 840–843. https://doi.

org/10.1111/rda.12747 PMID: 27550832

21. Qin C, Yin H, Zhang X, Sun D, Zhang Q, Liu J, et al. Genome-wide association study for semen traits of

the bulls in Chinese Holstein. Animal Genetics. 2017; 48: 80–84. https://doi.org/10.1111/age.12433

PMID: 27610941

22. Fortes MRS, Reverter A, Kelly M, McCulloch R, Lehnert SA. Genome-wide association study for inhibin,

luteinizing hormone, insulin-like growth factor 1, testicular size and semen traits in bovine species.

Andrology. 2013; 1: 644–650. https://doi.org/10.1111/j.2047-2927.2013.00101.x PMID: 23785023

23. Hering DM, Olenski K, Kaminski S. Genome-wide association study for poor sperm motility in Holstein-

Friesian bulls. Animal Reproduction Science. 2014; 146: 89–97. https://doi.org/10.1016/j.anireprosci.

2014.01.012 PMID: 24612955

PLOS GENETICS WDR19 isoform reduces male fertility

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008804 May 14, 2020 23 / 27

https://doi.org/10.3168/jds.2010-3875
http://www.ncbi.nlm.nih.gov/pubmed/22118101
https://doi.org/10.3168/jds.S0022-0302(88)79866-5
http://www.ncbi.nlm.nih.gov/pubmed/3204190
https://doi.org/10.3168/jds.2013-6885
http://www.ncbi.nlm.nih.gov/pubmed/23992975
https://doi.org/10.3168/jds.2018-15810
http://www.ncbi.nlm.nih.gov/pubmed/30712930
https://doi.org/10.3168/jds.S0022-0302(98)75898-9
https://doi.org/10.3168/jds.S0022-0302(98)75898-9
http://www.ncbi.nlm.nih.gov/pubmed/9891279
https://doi.org/10.1111/j.1439-0388.2008.00788.x
http://www.ncbi.nlm.nih.gov/pubmed/19630877
https://doi.org/10.1016/j.theriogenology.2018.10.006
https://doi.org/10.1016/j.theriogenology.2018.10.006
http://www.ncbi.nlm.nih.gov/pubmed/30317043
https://doi.org/10.1111/rda.13492
https://doi.org/10.1111/rda.13492
http://www.ncbi.nlm.nih.gov/pubmed/31206856
https://doi.org/10.1071/RD06104
http://www.ncbi.nlm.nih.gov/pubmed/17389138
https://doi.org/10.1002/9781118833971.ch74
https://doi.org/10.1016/j.theriogenology.2016.04.054
http://www.ncbi.nlm.nih.gov/pubmed/27173954
https://doi.org/10.1073/pnas.1519061113
http://www.ncbi.nlm.nih.gov/pubmed/27354521
https://doi.org/10.1038/ng.3034
http://www.ncbi.nlm.nih.gov/pubmed/25017103
https://doi.org/10.1186/s12711-017-0301-x
http://www.ncbi.nlm.nih.gov/pubmed/28222685
https://doi.org/10.1016/j.anireprosci.2013.07.002
https://doi.org/10.1016/j.anireprosci.2013.07.002
http://www.ncbi.nlm.nih.gov/pubmed/23932163
https://doi.org/10.1111/rda.12747
https://doi.org/10.1111/rda.12747
http://www.ncbi.nlm.nih.gov/pubmed/27550832
https://doi.org/10.1111/age.12433
http://www.ncbi.nlm.nih.gov/pubmed/27610941
https://doi.org/10.1111/j.2047-2927.2013.00101.x
http://www.ncbi.nlm.nih.gov/pubmed/23785023
https://doi.org/10.1016/j.anireprosci.2014.01.012
https://doi.org/10.1016/j.anireprosci.2014.01.012
http://www.ncbi.nlm.nih.gov/pubmed/24612955
https://doi.org/10.1371/journal.pgen.1008804


24. Han Y, Peñagaricano F. Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC

Genetics. 2016; 17: 143. https://doi.org/10.1186/s12863-016-0454-6 PMID: 27842509
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