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The recent emergence of Middle East respiratory syndrome (MERS) highlights the need to
engineer new methods for expediting vaccine development against emerging diseases.
However, several obstacles prevent pursuit of a licensable MERS vaccine. First, the lack of a
suitable animal model for MERS complicates the in vivo testing of candidate vaccines. Second,
due to the low number of MERS cases, pharmaceutical companies have little incentive to
pursue MERS vaccine production as the costs of clinical trials are high. In addition, the
timeline from bench research to approved vaccine use is 10 years or longer. Using novel
methods and cost-saving strategies, genetically engineered vaccines can be produced quickly
and cost-effectively. Along with progress in MERS animal model development, these obstacles
can be circumvented or at least mitigated.
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High-consequence pathogens continue to
emerge or re-emerge globally, leading to
increased public health concerns about poten-
tial pandemics [1]. Current human viral disease
outbreaks of concern include an ongoing
Ebola virus disease epidemic in West Africa [2],
avian influenza caused by a novel influenza A
virus subtype (H7N9) in China [3], enterovirus
D68 infections in the USA [4] and the topic of
this review, Middle East respiratory syndrome
(MERS) caused by Middle East respiratory
syndrome coronavirus (MERS-CoV) (2012–
present) [5]. Emerging infections often first
present as limited disease outbreaks caused by
rare or unknown pathogens, increasing the
likelihood that their significance is overlooked.
Consequently, financial resources are routed
toward other infectious diseases that are
deemed more ‘pressing’ at a given time. Exam-
ples of rare agents that caused very few human
infections for many years, only to then erupt
in outbreaks involving thousands are: Rift Val-
ley fever virus (more than 100,000 cases from
1930 to 2015) [6] and Ebola virus (1581 cases
and 1136 deaths since its discovery in
1976 until late 2013; 24,701 cases and

10,194 deaths from December 2013 to March
18, 2015) [2]. Other agents, such as severe
acute respiratory syndrome coronavirus (SARS-
CoV), emerge unexpectedly and eventually
cause large epidemics (8096 cases and
774 deaths), only to seemingly disappear
again [7]. Consequently, global public health
professionals are challenged with the ever more
important task of rapidly developing improved
methods for infectious disease detection, sur-
veillance, control, prevention and containment.

Through widespread efforts to provide a
swift response to an emerging disease, MERS,
an impressive spectrum of prevention and
treatment strategies was established in vitro in
a relatively short period of time. From antivi-
rals to monoclonal and polyclonal antibodies
and vaccines [8–18], in vitro and in vivo preclin-
ical testing led us to the same predicament
that the scientific community faced during the
SARS epidemic. Laboratory research is all too
often inefficiently translated into clinical test-
ing of candidate therapeutics and prophylac-
tics, delaying clinical licensure by the
authorities and final administration during
outbreaks. Here we summarize and evaluate
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the progress made in MERS vaccine development to provide
an example of various challenges that are encountered on the
path to medical countermeasure licensure.

Epidemiology of MERS
MERS was first recognized as a new disease in a 60-year-old
Saudi male patient with respiratory distress admitted to a hos-
pital in Jeddah, Saudi Arabia in June 2012 [19]. Soon after the
index case was detected, more and more people were identified
who suffered of the same ailment [20,21]. The majority of
MERS infections were reported from Western Asia (in particu-
lar from Saudi Arabia and the United Arab Emirates, but also
from Jordan, Lebanon, Kuwait, Oman, Qatar and Yemen).
Later, MERS was also diagnosed in Europe (Austria, France,
Germany, Greece, Italy, the Netherlands, UK), Northern Africa
(Algeria, Egypt, Tunisia), Northern America (USA), south-
eastern Asia (Malaysia, Philippines) and southern Asia (Iran)
among people with a travel history to Western Asia [5].

Human-to-human transmission of MERS-CoV is estimated
to account for approximately 60% of the total MERS cases [22],
and the origin of infection with MERS-CoV is unexplained in
the rest of the cases. The risk of virus transmission is substan-
tially greater from index cases than from secondary cases [22].
The increasing distribution of MERS cases within the Arabian
Peninsula is worrisome. For instance, for the past 2 years, con-
cerns about the initiation of a MERS pandemic prompted
travel restrictions to Makkah, Saudi Arabia, for millions of
Muslim pilgrims, preventing tens of thousands of potential
travelers from making the religiously significant Hajj journey.
Although a major outbreak of MERS has not occurred as a
direct result of recent Hajjes, trepidations remained high [23,24].

Studies revealed that older men and individuals with comor-
bid conditions (e.g., diabetes; hypertension; chronic cardiac,
lung or renal disease) are at greatest risk for developing fatal
MERS, although the gender bias is epidemiologically
unclear [20,25–29]. Whether physiological, genetic or cultural fac-
tors play a role in the increased risk toward men is unknown.
At the time of writing, 1075 MERS cases were confirmed,
including at least 404 deaths [5]. However, increasing evidence
of subclinical infections [30] suggests that the actual number of
human MERS cases is much higher than the currently con-
firmed number. The etiological agent of MERS, a novel beta-
coronavirus, was rapidly identified and named ‘Middle East
respiratory syndrome coronavirus (MERS-CoV)’ [19,31,32].

Epizootiology of MERS
How MERS-CoV was originally introduced into the human
population and why MERS cases were not recorded before
2012 remain to be determined. One-humped camels (Camelus
dromedarius) are currently suspected to be the animals from
which MERS-CoV is transmitted to humans. This suspicion
stems from the detection of MERS-CoV–neutralizing antibod-
ies in one-humped camel herds of Egypt [33], Ethiopia [34],
Kenya [35], Jordan [36], Nigeria [34], Oman [37], Qatar [36], Saudi
Arabia [38,39], Somalia [40], Spain [37], Sudan [40], Tunisia [34]

and United Arab Emirates [41,42]. MERS-CoV or MERS-CoV–
like genome fragments and coding-complete genomes, highly
similar to human MERS-CoV genomes, were detected in
one-humped camels [38,39,43–49], and MERS-CoV was directly
isolated from several one-humped camels and grown in tissue
culture [39,49,50]. One-humped camels experimentally infected
with MERS-CoV develop only minor clinical signs of respira-
tory disease, but MERS-CoV replicates in the upper airways [51].
Serologic evidence for MERS-CoV infection was not found in
people with potential exposure to infected one-humped camels
in three serosurveys [39,52,53]. Therefore, zoonotic transmission
from one-humped camels to people might be a rare event.
However, such a conclusion should be regarded with caution
until further serosurveys are performed and published. It is,
therefore, possible that MERS-CoV is widely distributed
among one-humped camels, but that particular genotype of the
virus had to evolve to allow a jump into the human popula-
tion. A genomic study, indeed, revealed the presence of several
genetic variants of MERS-CoV in individual one-humped cam-
els, whereas MERS-CoV in humans exposed to these one-
humped camels appears to be infected with clonal MERS-CoV
populations [44]. As one-humped camels are frequently exported
from Africa to the Arabian Peninsula of Western Asia, an ani-
mal native to Africa could be transmitting MERS-CoV to one-
humped camels prior to exportation (FIGURE 1).

Based on the presence of genome fragments, genomes or
replicating viruses, many betacoronaviruses seem to be main-
tained in Africa, Europe and Asia by phylogenetically highly
diverse bats. These viruses include SARS-CoV and SARS-
CoV–related viruses from horseshoe bats (Rhinolophus spp.) [54],
but several viruses even more closely related to MERS-CoV
have not been detected in humans [55–63]. Therefore, researchers
speculate that MERS-CoV could be a bat-borne virus. The bat-
origin hypothesis is based on betacoronavirus phylogeny and
receptor usage [55,56,64–67] and isolation of MERS-CoV from
one individual Egyptian tomb bat (Taphozous perforatus) [66].
However, these studies are suggestive and epidemiological evi-
dence of bat-to-human or bat-to-one-humped camel transmis-
sion of MERS-CoV (FIGURE 1A) has yet to be gathered [68].

Clinical presentation of MERS
After an incubation period of 9–12 days, MERS generally
presents in humans as a lower respiratory infection with fever
(often with chills or rigors), dry or productive cough and dys-
pnea. More infrequently, patients develop chest pain, head-
aches, hemoptysis, myalgia and/or sore throat. In severe cases,
the illness can quickly progress to severe atypical pneumonia,
acute respiratory distress syndrome and severe hypoxemic respi-
ratory failure [20,26,28,29,69]. MERS often includes extrapulmonary
manifestations involving the circulatory, renal and/or gastroin-
testinal systems (abdominal pain/nausea, diarrhea, emesis) that
can rapidly advance to septic shock, renal failure or refractory
multiple organ failure [20,28,70]. Chest x-ray or computed
tomography imaging often reveals subtle to extensive unilateral
or bilateral abnormalities, such as consolidation, increased
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bronchovascular markings, pleural or
bronchial wall thickening, reticulonodular
airspace opacities or cardiomegaly. Clini-
cal chemistry is characterized by increased
alanine transaminase and aspartate trans-
aminase concentrations in some patients
and increased L-lactate dehydrogenase
concentration in about 50% of the cases.
Low albumin and hemoglobin concentra-
tions are frequent findings, as are lym-
phopenia and thrombocytopenia, whereas
lymphocytosis occurs more
rarely [20,26,28,29,69]. Viral loads are usually
high in the respiratory tract (reaching
>106 genome copies/ml) but may be low
or absent in the blood [28,69,70].

Treatment of MERS
At the moment, specific antiviral agents
for the treatment of MERS are not avail-
able. However, several in vitro studies
identified drugs already in clinical use
that potentially could be repurposed for treatment of MERS.
These drugs include an inosine monophosphate dehydrogenase
inhibitor (mycophenolic acid) used to treat other coronavirus
infections [13,15,16]; a pan-coronavirus inhibitor that targets
membrane-bound coronaviral RNA synthesis (K22) [71]; the
guanosine analog ribavirin used in the treatment of hepatitis C,
respiratory syncytial virus and arenavirus infections; interferon-b
[13,16,72]; inhibitors of estrogen receptor 1 used for cancer treat-
ment (toremifene citrate); inhibitors of dopamine receptors used
as antipsychotics (chlorpromazine hydrochloride and triflupro-
mazine hydrochloride); kinase signaling inhibitors (imatinib
mesylate and dasatinib) [12]; endocytosis inhibitors (chlorproma-
zine and chloroquine) [18]; an antidiarrheal agent (loperamide);
the HIV-1 protease inhibitor lopinavir [18]; and the transmem-
brane protease, serine 2 protease inhibitor camostat [73]. Unfor-
tunately, few of these drugs have been evaluated in animal
models of MERS (an exception is [72]), which, in part, is due to
the absence of animal models that truly reflect the human dis-
ease (see below).

In the absence of approved specific antiviral agents against
MERS-CoV, treatment, therefore, is based on supportive care.
After initial laboratory blood tests and chest radiography,
patients are treated with broad-spectrum antibiotics to control
(often nosocomial) secondary bacterial infections. However, the
majority of in-patient MERS cases escalate to respiratory fail-
ure, requiring intubation, mechanical ventilation or extracorpo-
real membrane oxygenation or renal replacement therapy and,
therefore, admission to an Intensive Care Unit [20,26,28,29,69].

Potential costs associated with MERS
Treatment and disease management for MERS can be a tre-
mendous financial burden to local economies. In the event of a
pandemic, the financial burden may prove to be catastrophic,

especially in countries with limited financial resources. Based
on the small number of treatment–cost analyses available from
the 2003 outbreak of SARS [74,75], at Tourcoing Hospital,
France, additional hospital administration and material resource
costs alone approximated US$79,150 per in-patient due to the
need for increases in staff, containment apparatuses and per-
sonal protective equipment required when dealing with a high-
consequence pathogen. Moreover, the average MERS in-patient
incurs the added costs of a prolonged Intensive Care Unit stay
(94.5% of cases) with mechanical ventilation (86% of cases)
and renal replacement therapy (50% of cases) (FIGURE 2).

The World Bank estimates global economic losses of trillions
of US dollars in the event of a severe influenza pandemic and
considers MERS to be a pathogen of pandemic potential [14].
Global costs for the 2003 SARS epidemic alone were estimated
at US$40 billion [76]. The cost of developing a successful vac-
cine is approaching US$500 million. An effective vaccine for a
high-consequence pathogen has the potential to save 10 times
its cost in a single year of use, as estimated for the smallpox
vaccine. However, a true cost-to-benefit analysis must be per-
formed to determine if vaccine development efforts will provide
benefit. If we assume that MERS cases continue at the rate of
roughly 450 per year with a 62% hospitalization rate [77] and
that the additional cost per in-patient is approximately
US$714,000 on average (cumulative average cost per day per
intervention per in-patient multiplied by median stay per
respective intervention), the cost of developing the vaccine
would be justified within 2.5 years (FIGURE 2). Therefore, if sus-
tained human-to-human MERS-CoV transmission were to
occur, the benefit would outweigh the cost. In general, vaccine
development is a worthwhile pursuit, and steps should be taken
to expedite approval of safe and effective vaccines for emerging
pathogens.

A BWestern Asia

MERS
vaccine

Dromedary

Africa
MERS-CoV

Bat? ?

Export

Figure 1. Hypothesized transmission of MERS-CoV from animal hosts to humans.
(A) MERS-CoV is potentially transmitted by infected bats to African one-humped camels,
which are often exported to the Arabian Peninsula. (B) Vaccination of one-humped cam-
els could, therefore, prevent further transmission of the virus to humans and subsequent
human-to-human transmission if one-humped camels are indeed the primary route of
infection for humans.
MERS: Middle East respiratory syndrome; MERS-CoV: Middle East respiratory syndrome
coronavirus.
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Overview of MERS-CoV genome & function of encoded
proteins
The emergence of MERS-CoV infection has spurred a con-
glomeration of traditional and novel vaccine strategies, the suc-
cess of which hinges on a thorough understanding of the
genetic makeup and mechanism of action of this virus. MERS-
CoV is a member of the genus Betacoronavirus, subfamily Coro-
navirinae (Nidovirales: Coronaviridae) [78]. Like all nidoviruses,
MERS-CoV has a positive-sense, single-stranded RNA, linear,
monopartite genome. The MERS-CoV genome encodes
16 nonstructural proteins, 4 major structural proteins and
7 accessory structural proteins (TABLE 1) [31]. The nonstructural
proteins, produced through proteolytic cleavage of two polypro-
teins coded from two open reading frames, are the major com-
ponents of the polymerase complex and manage replication
and transcription.

Similar to many other coronaviruses, the major structural
proteins, spike protein (S), envelope protein (E), membrane
protein (M) and nucleoprotein (N), are the primary targets of

the host antibody-mediated immune
response and are the focus in vaccine
development efforts. S is the surface gly-
coprotein of the MERS coronavirion.
S mediates the attachment of the virion
to target cells and its subsequent entry
into the cell by fusing viral and host cell
membranes [79]. These functions involve
two distinct domains of S, referred to as
S1 and S2, respectively. S1 contains the
host cell receptor-binding domain [42,80,81],
which engages the primary MERS-CoV
cell-surface receptor CD26/DPP4 [11].
S2 contains epitopes that are cross-
reactive with homologous epitopes of
other group A and B betacoronavi-
ruses [79,82], suggesting that the develop-
ment of a general, multivalent,
betacoronavirus vaccine might be possi-
ble. The E and the M work to secure the
structural integrity of the virion. The
nucleoprotein (N) encapsidates the viral
genomic RNA [83].

Targeting the source of transmission
through vaccination programs
The identification of the natural host res-
ervoir of an emerging human pathogen is
the first ideal step toward prevention of
transmission. Then, the human popula-
tion could be educated to avoid the host
or to implement proper safety measures
when coming in contact with the reser-
voir. If contact with the reservoir host
cannot be avoided (e.g., abundance, eco-
nomic importance), vaccination of such a

host may be a straightforward approach to prevent host-to-
human transmission. In addition, the development of an animal
vaccine may ultimately be cheaper to produce and faster to
achieve as regulatory hurdles to obtain licensure may not be as
stringent as those in place for human vaccine development. For
example, vaccination of wildlife reservoirs against rabies reduced
human cases in the USA by 98% [84]. This strategy is also a rel-
atively new pursuit for the eradication of tuberculosis in parts
of Europe through vaccination of cattle and wildlife [85,86].

Unfortunately, as described above, the natural MERS-CoV
reservoir and the MERS-CoV transmission cycle remain to be
defined. Vaccination of one-humped camel herds could be fea-
sible as these animals are often kept/raised/sold by humans,
and wild animals could be identified relatively easily. However,
some adult one-humped camels tested positive for MERS-CoV
despite the presence of anti-MERS-CoV antibodies [38,39], and
pre-existing neutralizing anti-MERS-CoV antibodies do not
necessarily protect against re-infection with MERS-CoV [39].
This observation suggests that camel vaccination may have to

% of in-patients
requiring intervention
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Figure 2. Estimation of major hospital costs affiliated with a MERS outbreak.
Average cost per day per in-patient [147,148] was multiplied by the median number of
days for total cost per treatment. In-patient stay: US average of US$3145/day � 14 days
median for a MERS in-patient = US$44,030.00; intensive care unit stay: †US$16,474 �
22 days = US$362,430; mechanical ventilation: †US$23,750 � 11.5 days = US$273,139;
renal replacement therapy: US$3819 � 7 days = US$26,734; total: sum of in-patient
costs after multiplying by the percentage required and adding the additional administra-
tive costs of US$79,150 per in-patient = US$713,942. An in-patient requiring all inter-
ventions would incur expenses of more than US$785,000.
†Current cost estimate after adjustment for inflation from the time of report.
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be repeated regularly or may not be effective at all. Probably
even more unrealistic is the vaccination of bats due to sheer
number of these relatively small and (dependent on species)
often quite abundant animals.

The absence of a clearly defined zoonotic virus ecology
prompts researchers to contemplate development of human
vaccines. As MERS tends to be acute and is not yet wide-
spread, targeting specific human populations at high risk of
infection for vaccination is a logical strategy for prevention or
limitation of infections. Development and distribution of vac-
cines should, therefore, be expedited for one-humped camel

handlers and herders, healthcare workers and veterinarians, and
travelers to areas where MERS-CoV infection is prevalent. If
widespread infection throughout the general population is
expected, other high-risk populations (e.g., aged people, persons
with cormorbidities) should be targeted for vaccination.

MERS-CoV immunology
Given the lack of a suitable MERS animal model and relatively
few clinical data on MERS-CoV patients, the nature of a suc-
cessful immune response to MERS-CoV infection is difficult to
establish. Serology and PCR-based assays indicate that many

Table 1. Functions of nonstructural, major structural and accessory structural proteins of Middle East
respiratory syndrome coronavirus.

Open
reading
frame

Expressed protein Category Function Approach for candidate
vaccine development

1a, 1ab . Polyproteins pp1a and

pp1ab; proteolytically

processed to Nsp 1–16

[140,141]

Nonstructural . RNA synthesis via RNA-dependent

RNA polymerase (genome replication,

transcription)
. Proteolytic cleavage: interferon

antagonist, deubiqutinylation

Conserved epitope among

coronavirus strains [125]

S Spike glycoprotein,

proteolytically cleaved into

S1 and S2 fragments

Major

structural

. Mediates attachment and entry into

host cells [142]

. Elicits neutralizing antibodies

. VEEV replicons expressing S alone

or with N [14,89,142]

. Conserved S epitope found to

interact with most MHC-1 alleles

[17]

. Adenovirus 5 vector expressing S

or S1 [116]

. RBD fused with IgG-Fc fragment

[40,42,80,81,143]

3 3 Accessory

structural

Unknown, but not essential for

replication [101]

4a 4a Accessory

structural

. Unknown, but not essential for

replication [101]

. Interferon antagonist [144,145]

4b 4b Accessory

structural

. Unknown, but not essential for

replication [101]

. Interferon antagonist [144]

5 5 Accessory

structural

. Unknown, but not essential for

replication [101,142]
. Interferon antagonist [144]

E Envelope protein Major

structural

Structural integrity of the virion;

required for propagation [101]

Recombinant MERS-CoV lacking

E [14]

M Membrane protein Major

structural

Structural integrity of the virions;

interferon antagonist [144]

N Nucleoprotein Major

structural

Encapsidates viral RNA into

ribonucleoprotein complexes

VEEV replicons expressing N alone

or with S [14,142,146]

8b 8b Accessory

structural

Uncharacterized

MERS-CoV: Middle East respiratory syndrome coronavirus coronavirus; Nsp: Nonstructural proteins; RBD: Receptor-binding domain; VEEV: Venezuelan equine encephalitis
virus.
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people may test positive for MERS-CoV despite being asymp-
tomatic [25,30,87]. It is unknown if all of the asymptomatic, posi-
tive individuals were transiently exposed, established a carrier
state, or developed a subclinical, easily controlled infection.
Few human patient data are available; however, Faure et al.
performed an ex vivo comparison of two MERS patients to
determine the immune response to infection [88]. The experi-
ment was based on bronchoalveolar lavages obtained from two
patients and identified that the one who succumbed to MERS
did not develop a Th1 response. This patient had lower con-
centrations of interferon-a, interleukin-12 and interferon-g ,
compared to the patient who did not succumb. Although the
experiment involved a limited sample size, the data support the
necessity of a Th1 response.

Zhao et al. investigated knockout mice to evaluate the immu-
nological requirements of clearance of MERS-CoV [89]. The
authors demonstrated that interferon-a– and MyD88-deficient
mice could not clear MERS-CoV as rapidly as wild-type mice.
Similarly, T-cell and B-cell knockout mice could not clear the
virus as efficiently as control mice. Furthermore, vaccinated mice
had reduced viral titers, and serum transfer experiments provided
protection against homologous MERS-CoV infection. These
data suggest that both an efficient T- and B-cell response are
required for protection. Indirect or direct B- and T-cell func-
tional response should be included as criteria for candidate vac-
cine evaluation. Until more clinical data become available,
correlates of protection will be difficult to establish.

Vaccine design strategies applicable to MERS
Historically, the first vaccines against viral pathogens were
homotypic live-attenuated viruses. The virus isolate was passaged
in an animal host or cell line until a nonvirulent (live-attenuated)
strain evolved, and this nonvirulent virus was then used for vac-
cination [90]. A more recent method for developing vaccines is to
genetically engineer the virus to be avirulent or replication
incompetent [91,92]. Replication-deficient vaccine virus constructs
were generated that expressed human parainfluenza virus-3 or
human respiratory syncytial virus [93,94]. Similarly, replication-
deficient adenoviruses were developed as vaccines against Ebola
virus and HIV-1 infection [95,96]. A Phase IIa clinical trial was
initiated to evaluate the efficacy of a replicating modified vac-
cinia Ankara (MVA) expressing influenza A virus proteins [97].
Replicating MVA has also been used to boost the effect of
replication-deficient adenovirus-based vaccine responses [98].

The main concern with replicating (live) viral vaccines is the
possibility of disseminated infection in immunosuppressed pop-
ulations (e.g., disseminated vaccinia virus infection) with het-
erotypic vaccine platforms or the possibility of reversion to
virulence in the case of homotypic candidates [99]. New meth-
ods of replicating vaccine development typically incorporate
fail-safe mechanisms. Such mechanisms include deletion of a
gene encoding a protein required for viral propagation or intro-
duction of a sufficient number of genomic mutations to make
reversion extremely unlikely [91,100]. For instance, Almazan et al.
engineered a recombinant MERS-CoV lacking the E open

reading frame as a MERS candidate vaccine; however, its pro-
tective efficacy has not yet been demonstrated [101].

Whole inactivated virion preparations often provide the
immunogenicity of a replicating viral vaccine without the possi-
bility of reversion to a virulent phenotype. Virions are killed or
inactivated by chemical or radiological methods prior to use in
a vaccine. While the preparation is not able to replicate in the
host, the recipient’s immune system still mounts a response
against the presented antigens. Although examples of inacti-
vated MERS-CoV virions are not yet published, inactivated
SARS-CoV particle vaccines have been tested with minimal
success in laboratory mice and domestic ferrets [102–104].

Use of inactivated virion preparations has prompted several
concerns. One concern is that toxic reagents used in virion inacti-
vation must be completely removed from the product before
administration. Another concern is that irradiation, used as an
alternative to toxic agents, may destroy crucial epitopes and, there-
fore, render the preparation nonimmunogenic. The third concern
is that inactivation could be, for whatever reason, incomplete,
resulting in preparations containing fully virulent viruses. These
concerns are exacerbated by the increasing stigma that exists
among the general public regarding vaccines, in general, and
chemical additives in vaccine preparations, in particular [105,106].

Recombinant viral vectors are an upgrade to the replicating
viral vaccine strategy. The ability to optimize for safety and
immunogenicity via bioengineering is an obvious benefit. Using
vaccine platforms such as adenoviruses [107], vesiculoviruses [108]

or MVA [109–112], the foreign gene of immunological interest
can be inserted into a heterotypic viral genome with proven
success as a vaccine. The recombinant virus will express the for-
eign protein, which will stimulate a protective immune
response in the inoculated host. This approach has also been
used successfully to develop multivalent vaccines. Such vaccines
can confer protection against not only multiple variants or
strains of the same pathogen but also multiple pathogens
simultaneously [98,113–115]. Recently, Escriou et al. showed evi-
dence of bivalent protection of laboratory mice from measles
virus and SARS-CoV infection [115]. For such constructs, codon
optimization for host recognition may increase attenuation and
protein expression, yielding greater safety and immunogenicity
of the vaccine. For instance, two vaccines, an MVA vaccine
and an adenovirus-based vaccine, expressing codon-optimized
MERS-CoV S elicited serum antibodies in laboratory mice that
were used to neutralize MERS-CoV in vitro [111,116].

As an alternative method to immunogen presentation by a viral
vector, nanoparticles of the protein of interest can be formulated
with a suitable adjuvant for use as a candidate vaccine. For
instance, micellular nanoparticles with MERS-CoV S trimers
expressed on the surface (Novavax, Inc., Gaithersburg, MD, USA)
were concentrated from preparations of a recombinant baculovirus
(autographa californica multicapsid nucleopolyhedrovirus
[AcMNPV]) expressing MERS-CoV S. The AcMNPV genes were
codon-optimized for expression in the insect cells in which the
virus was propagated [117]. Again, MERS-CoV–neutralizing anti-
bodies were induced in immunized laboratory mice.
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DNA vaccines typically consist of a viral genomic segment
encoding a neutralizing epitope contained in a plasmid and
combined with an adjuvant for administration [118]. While
early fabrications failed to yield protective immune responses,
more recent studies testing DNA vaccines corrected this short-
coming by optimizing constituents and delivery methods.
Also, due to the relatively simple and low-cost processes for
production and manufacturing, DNA vaccines are a competi-
tive pursuit. One such DNA vaccine, a quadrivalent vaccine
against HPV infection caused by types 6, 11, 16 and 18, is
widely used in vaccination programs in numerous coun-
tries [119–123]. Unpublished data from Inovio Pharmaceuticals
suggest strong neutralizing antibody elicitation, possible mul-
tiple strain coverage and broad CD8+ T-cell responses in mice
after immunization with a MERS-CoV DNA vaccine.
Inovio’s proprietary technology involves using the SynCon
DNA vaccine platform. Inovio’s proprietary technology
involves using the SynCon DNA vaccine platform. This plat-
form incorporates DNA from multiple strains and/or anti-
gens. The DNA is transfected by electroporation, resulting in
a more efficient delivery into muscle or skin cells [124].

Other novel vaccine development strategies of interest use
immunoinformatics to predict the most immunogenic parts of
a virus that should be included in a vaccine to achieve the
most potent and relevant neutralization. The resulting candi-
date vaccines are also known as subunit vaccines. Current
MERS candidate vaccines focus on the receptor-binding
domain of S1 as a precise source from which the adaptive
immune response would generate effective neutralizing antibod-
ies [40,42,81]. Using immunoinformatics, Sharmin and Islam
chose to focus on an epitope found in RNA-dependent RNA
polymerase (RdRp) that is conserved across all human corona-
viruses [125]. While blocking viral replication by affecting the
RdRp may be effective in vitro, this method has yet to be
proven effective in protecting a host from infection by an RNA
virus. One drawback to this approach is that the RdRp epito-
pes may not be readily detected by the host immune system as
the RdRp is usually not a major structural component of viri-
ons. Also, antigenic processing should lead to a wide range of
T-cell and B-cell immunoreactive epitopes. Therefore, focusing
on RdRp epitopes would not provide broad, effective cellular
and humoral responses.

In combination with the aforementioned immunoinformatics
technology, a more realistic approach is based on the use of
B-cell and T-cell epitope predictions based on viral genome
sequence. Neutralizing antibodies to MERS-CoV structural
proteins, primarily S, are believed to be required to inhibit
infection [81,111,116,117]. In addition to humoral immunity, T-cell
responses are now considered to be a major determinant of
protection from infectious diseases [126,127]. Such an approach
using B-cell and T-cell epitopes was used by researchers such as
Terry et al. and Oany et al. to develop a MERS candidate vac-
cine [128,129]. While this approach is innovative, no actual
in vivo MERS-CoV neutralization has been demonstrated to
date.

In vivo evaluation of MERS-CoV candidate vaccines
The evaluation of any candidate vaccine against a high-
consequence viral disease is critically dependent on the avail-
ability of animal models. The US FDA ‘Animal Rule’ permits
use of efficacy data from animal models that closely mimic
human disease for approval of medical countermeasures, when
evaluation in humans is not ethically feasible due to the high
lethality of the virus under evaluation [130]. To the best of our
knowledge, the FDA has not determined that MERS medical
countermeasure development falls under the Animal Rule.
However, the identification and development of a suitable ani-
mal model for any human disease has many challenges and cav-
eats. Upon exposure to MERS-CoV, animals should display
respiratory distress, fever, tussis, dyspnea, gastrointestinal signs
such as vomiting and diarrhea, and renal failure [20,26,29].

Since MERS-CoV was first identified, several groups have
attempted to develop such MERS animal models. Laboratory
mice, Syrian hamsters (Mesocricetus auratus) and domestic ferrets
(Mustela putorius furo) were evaluated as potential models for
medical countermeasure screening and for understanding
MERS-CoV–induced pathogenic mechanisms [117,131]. Initial
experiments included screening of wild-type BALB/c and
STAT-1 knockout laboratory mice for susceptibility to MERS-
CoV infection and development of disease. However, the mice
did not develop clinical signs of disease, and infectious virus
could not be recovered [117]. Zhao et al. overcame this hurdle by
transducing BALB/c mice with human CD26/DPP4 using an
adenovirus construct [89]. Transduced mice were permissive to
MERS-CoV infection and demonstrated minimal weight loss.
However, candidate medical countermeasures in this mouse
model can only be evaluated by comparing the changes in viral
titer in the lungs at 4 days post-inoculation between treated and
untreated animals. Transduction-based models may also prove
quite variable due to infection efficacy of the transducing vector.

Nonhuman primates, such as rhesus monkeys (Macaca
mulatta), crab-eating macaques (Macaca fascicularis), grivets
(Chlorocebus aethiops) or common marmosets (Callithrix jacchus),
are frequently used in the development of animal models for
human viral disease because of their immunological similarity to
humans. MERS-CoV inoculation into rhesus monkeys gave var-
ied results, leading to disease with limited similarity to human dis-
ease [72,132,133] For instance, a study by Yao et al. revealed that
intratracheal inoculation of rhesus monkeys with MERS-CoV
resulted in a nonlethal disease, and some limited pathology could
be observed at 28 days post-inoculation [133]. de Wit et al.
described a study of nonhuman primates following inoculation
with a combination of intratracheal, intranasal, oral and conjunc-
tival routes [132]. Rhesus monkeys were euthanized on days 3 and
6 post-inoculation with MERS-CoV and evaluated for virological,
immunological and histopathological changes [132,134]. At the
euthanasia time points, the animals had signs of pneumonia, and
replicating virus could be demonstrated in tissues and mucous
membranes by quantitative PCR. However, inherent in the serial-
sampling design, the disease progression induced by viral infec-
tion was truncated, limiting the data gleaned from the study.
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A follow-up study by Falzarano et al. demonstrated that adminis-
tration of anti-inflammatory immunomodulators, interferon-a2b
and ribavirin, reduced the viral burden and lessened disease
severity following intratracheal, intranasal, oral and ocular chal-
lenge with MERS-CoV [72]. X-ray radiographs indicated lung
infiltrates at days 3 and 5 post-inoculation, suggesting virus-
induced lung disease. However, these two studies did not include
mock-inoculated controls to demonstrate that the observed clini-
cal signs were not due to generalized inflammation from inocula-
tion and handling procedures. More recently, Falzarano et al.
described intratracheal inoculation of common marmosets with
MERS-CoV, which resulted in partially lethal disease [135]. How-
ever, the animals received a large volume bolus of MERS-CoV
(0.5 ml) intratracheally, which was disproportionate based on the
small lung volume (15–25 ml) of a common marmoset [JOHNSON

RF, UNPUBLISHED OBSERVATION MEASURED BY COMPUTED TOMOGRAPHY (N = 10)]. In addi-
tion, the experiment did not include animals that only received
control inocula. Therefore, the extent of virus-induced pathology
compared to pathology due to animal manipulation remains
unclear. Overall, a suitable nonhuman primate model of human
MERS is still lacking.

If one-humped camels are the reservoir of MERS-CoV (see
above), then their vaccination against MERS-CoV infection
may provide an intervention opportunity (FIGURE 1B). Indeed,
three one-humped camels, inoculated by intranasal, intratra-
cheal and conjunctival routes with MERS-CoV developed
benign clinical signs, but shed large quantities of the virus from
the upper respiratory tract [51]. Comparisons drawn from a uni-
formly lethal animal model against this one-humped camel
model would be interesting.

A MERS animal model based on one-humped camels has
many challenges. The large size of these animals, their relative

scarcity in the Western world and the classification of MERS-
CoV as a WHO Risk Group 3 pathogen (requiring biosafety
level 3 [BSL-3] containment) limit the number of facilities that
could perform such studies. Colorado State University, Kansas
State University, United States Department of Agriculture
(Ames, IA, USA) and Commonwealth Scientific and Industrial
Research Organisation (commonly known as CSIRO, Clayton
South, Australia) all have BSL-3 labs that could handle such
large animals. An alternative is the use of other camelids, such
as alpacas (Vicugna pacos), guanacos (Lama guanicoe), llamas
(Llama glama) or vicuñas (Vicugna vicugna), as these camelids
are smaller and may be easier to obtain than bactrian camels
(Camelus bactrianus). Such camels are as big as one-humped
camels and rarer). However, the consequence of MERS-CoV
inoculation in these animals requires evaluation.

Expert commentary
The recent emergence of MERS-CoV and the re-emergence of
several other high-consequence pathogens in recent years have
spurred a retooling of current vaccine strategies and develop-
ment procedures. Many current MERS vaccine development
strategies are based on SARS research [136]. However, in the
11 years since the first description of SARS, no vaccine to pre-
vent SARS-CoV infection has been approved. This fact does
not bode well for researchers and clinicians. While researchers
are not deficient in MERS candidate vaccines, more emphasis
should be placed on improving translational research, licensure
procedures and animal model development for emerging
pathogens [89,133].

For transient outbreaks of infectious diseases, such as MERS,
that appear to subside relatively quickly on their own, justifica-
tion of funding and research efforts for vaccine development is
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Figure 3. Idealized vaccine development timeline from post-discovery to pre-regulatory submission. A simplified timeline illus-
trates the potential pitfalls encountered throughout the development process. Optimistic estimates for vaccine development from candi-
date selection to industrial production fall between 3.5 and 4 years, depending on the type of vaccine. After adding 2–3 years for
research prior to candidate selection and 2–3 years for regulatory submission and licensure once a final formulation is in hand, total time
is approximately 10 years. As discovery methods and bureaucratic processes and approvals are accelerating, the overall timeline could
realistically shrink to 6–7 years.
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not always straightforward. Unfortunately, vaccine development
often seems reactionary rather than prospective. For instance,
vaccine development against Ebola virus disease was overall a
niche activity until the current 2013–2015 outbreak affected
thousands of people. For any rare or emerging pathogen, cost–
benefit analyses for vaccine development must be calculated
based on a limited knowledge of its pandemic and/or
re-emergence potential. As the example of MERS-CoV shows,
even with sparse economical data available, cost estimates as
shown in FIGURE 2 warrant MERS vaccine development, as eco-
nomic losses from even small infectious disease outbreaks far
outweigh the costs associated with vaccine development. How-
ever, faster methods to move a candidate vaccine from the lab-
oratory bench into the clinic are essential. Such on-demand
acceleration strategies are in current evaluation, and support for
these efforts should be advanced [137–139].

Five-year view
In light of the 2014 Ebola virus disease outbreaks, added
efforts to accelerate clinical trials, regulatory filings and licen-
sure approvals will affect vaccine development for high-
consequence pathogens in future. Companies like Novavax and
Inovio Pharmaceuticals have an advantage of established pipe-
lines for developing an approved MERS vaccine. A MERS

wildlife vaccine targeting one-humped camels should also be
evaluated. Considering the encouraging rate at which new tech-
nologies are being developed for emerging pathogen treatment
strategies, a licensed MERS vaccine is feasible within 5 years
after an appropriate MERS animal model becomes available.
A typical timeline for vaccine development by the manufacturer
prior to regulatory submission is approximately 3.75 years
(FIGURE 3).
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Key issues

. The control of emerging pathogen diseases is a perpetual challenge requiring constant re-evaluation and ingenuity in containment,

treatment and prevention methods.

. The lack of a proper animal model for Middle East respiratory syndrome (MERS) is inhibiting the progress of vaccine testing. Animal

models thus far have demonstrated limited pathology.

. The prediction of clinical trial success based on in vitro research results remains a major obstacle to timely vaccine development,

particularly for vaccines against emerging diseases with high lethality as seen with MERS.

. Emerging pathogen control via accelerated on-demand vaccine development is an idealistic approach.

. The usual lag in disease identification from accurate clinical reporting of presentation and pathogenesis should be shortened, and the

difficulties related to regulatory submission and licensure for vaccines should be addressed before on-demand methods can be practi-

cally implemented.

. Thus far, the most promising MERS vaccine candidates are those that are proven to elicit MERS coronavirus (MERS-CoV)-neutralizing

antibodies and that use an approved platform for administration. These include vaccines by Novavax (MERS-CoV S nanoparticles) and

Inovio Pharmaceuticals (DNA MERS vaccine targeting multiple antigens). MERS vaccines that focus on targeting the MERS-CoV receptor-

binding domain also look promising.
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