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Background: Conventional ultrasound (CUS) technology has proven to be successful in the identification 
of thyroid nodules. Moreover, the American College of Radiology Thyroid Imaging Reporting and Data 
System (ACR TI-RADS) was developed for the purpose of evaluating the risk of thyroid nodules based on 
ultrasound imaging. Nevertheless, identifying papillary thyroid microcarcinoma (PTMC) from TI-RADS 3 
nodules using this system can be difficult due to overlapping morphological features. The main objective of 
this study was to investigate the efficacy of a machine learning model that utilizes ultrasound-based radiomics 
features and clinical information in accurately predicting the presence of PTMC in TI-RADS 3 nodules.
Methods: A total of 221 patients with TI-RADS 3 nodules were included, consisting of 91 cases of PTMC 
and 130 benign thyroid nodules. They were randomly divided into training and test cohort in an 8:2 ratio. 
Radiomics features were extracted from CUS images by manually outlining the targets, while clinical 
parameters were obtained from electronic medical records. The radiomics model, clinical model, and 
combined model were constructed and validated to distinguish between PTMC and benign thyroid nodules. 
Radiomics variables were extracted via the Pyradiomics package (V1.3.0). Moreover, least absolute shrinkage 
and selection operator (LASSO) regression was used for feature selection. Light Gradient Boosting Machine 
(LightGBM) was employed to build both radiomics and clinical models. Ultimately, a radiomics-clinical 
model, which fused radiomics features with clinical information, was developed.
Results: Among a total of 1,477 radiomics features, fifteen features that were found to be associated 
with PTMC through univariate analysis and LASSO regression were selected for the development of the 
radiomics model. The combined “radiomics-clinical” model demonstrated superior diagnostic accuracy 
compared to the clinical model for distinguishing PTMC in both the training dataset [area under receiver 
operating curve (AUC): 0.975 vs. 0.845] and the validation dataset (AUC: 0.898 vs. 0.811). We constructed a 
radiomics-clinical nomogram, and the clinical applicability was confirmed through decision curve analysis.
Conclusions: Utilizing an ultrasound-based radiomics approach has proven to be effective in predicting 
PTMC in patients with TI-RADS 3 nodules. 
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Introduction

Thyroid carcinoma is the most common malignant tumor in 
endocrine system. Over the years, there has been a gradual 
rise in its occurrence, making it a subject of growing concern 
within the medical and scientific community. Presently, 
the incidence of thyroid carcinoma has surpassed that of 
all other malignant tumors in terms of its increment (1).  
The escalation in its rates can be attributed to papillary 
carcinoma, particularly in its early stages (2-4). Another 
significant factor contributing to the upsurge in thyroid 
carcinoma cases is the higher occurrence of papillary 
thyroid microcarcinoma (PTMC), which comprises 
carcinomas measuring 1.0 cm or less (3). Thus, studying 
PTMC has gained more and more importance. 

The small size of the cancer, its subtle onset, slow 
advancement, lack of apparent clinical symptoms, and 
frequent co-occurrence with other thyroid disorders pose 
difficulties in making an accurate preoperative diagnosis, 
resulting in a certain degree of both underdiagnosis and 
misdiagnosis. Despite concerns regarding ultrasound’s 
ability to differentiate between benign and malignant 
thyroid nodules, it remains the preferred imaging technique 
for evaluating the morphological features of thyroid 
nodules. This is due to its numerous advantages, including 
high resolution, lack of ionizing radiation, portability, and 

ease of use (5-7). Recently, several ultrasound centers have 
embraced Thyroid Imaging Reporting and Data System 
(TI-RADS) criteria to evaluate benign and malignant 
thyroid nodules. However, due to significant overlap in 
the ecomorphological features of both types of nodules, 
some thyroid nodules categorized as TI-RADS 3 are later 
confirmed to be PTMC through pathology examination (8). 
Furthermore, the interpretation of conventional ultrasound 
(CUS) characteristics is subject to personal judgment and 
operator-dependent. This further leads to differences in 
readings by various individuals (9). A prior study has shown 
that the risk of malignancy for TI-RADS 3 thyroid nodules 
is 2.1% (10).

Ultrasound-guided fine-needle aspiration biopsy (FNAB) 
is widely utilized as the primary diagnostic approach for 
thyroid nodules. It is recognized as a highly efficient, 
uncomplicated, and secure technique for detecting head 
and neck anomalies, notably thyroid nodules (11-13). 
Research has revealed that diagnosing PTMC via FNAB of 
thyroid nodules can be difficult. In nodules with a size of 
less than 1 cm, there is a relatively high incidence of false-
negative outcomes due to inadequate cytology samples 
(14,15). Moreover, the rate of metastasis of PTMC to the 
cervical lymph nodes has been reported to be high (16-18). 
Importantly, lymph node metastasis is closely associated 
with PTMC recurrence. Additionally, certain patients may 
experience distant metastases to the lungs or bones (19). 
Therefore, the early and accurate diagnosis of PTMC holds 
immense importance. Consequently, there is an urgent 
need for a reliable and non-invasive method to classify and 
identify PTMC.

Radiomics is a rapidly developing research field by 
incorporating computational methods (9). Radiomics 
harnesses the extensive and intricate digital data obtained 
from imaging modalities to uncover a plethora of 
quantitative disease features that may not be visible to 
the human eye (20-22). This powerful technique allows 
us to extract and analyze a wide range of intricate details, 
providing valuable insights into the disease process. 
CUS-based radiomics has demonstrated good diagnostic 
performance for various diseases such as ovarian epithelial 
cancer, intrahepatic cholangiocarcinoma, and breast 
cancer (23-25). The integration of clinical information and 
radiomics may further improve diagnostic performance. 
Hence, the principal aim of this study was to assess the 
efficacy of CUS-based radiomics for distinguishing 
between benign thyroid nodules and PTMC. We present 
this article in accordance with the TRIPOD reporting 
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checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1375/rc).

Methods 

Patient enrollment and data acquisition 

From January 2019 to October 2022, a retrospective 
study was conducted on 221 patients who had TI-RADS 
3 nodules and were pathologically diagnosed with PTMC 
and benign thyroid nodules. The study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013). This study was approved by institutional ethics 
committee of the Second Affiliated Hospital of Wenzhou 
Medical University (No. 2023-K-43-01), which waived 
the need for informed consent from each patient. However, 
written consent was obtained from each patient before 
surgery or biopsy. The inclusion criteria consisted of the 
following categories: (I) patients with pathological results 
of PTMC or benign thyroid nodules; (II) patients with 
clear B-mode ultrasound images; (III) patients with detailed 
clinical information. The exclusion criteria consisted of the 
following categories: (I) patients with low-quality ultrasound 
images; (II) patients who received preoperative therapy; 
(III) patients who have a history of other malignancies or 
coexisting malignancies (Figure 1). 

CUS examination and interpretation of CUS features

All ultrasound examinations were carried out by board-

certified radiologists who possess a minimum of five years of 
experience in conducting ultrasound imaging specifically for 
superficial tissue, utilizing ultrasound machines, including 
Resona7 (Mindray, Shenzhen, China), Aplio 500 (Toshiba 
Medical Systems, Tokyo, Japan) and ESAOTE (MyLab 90 
X-vision, Genoa, Italy) with corresponding high-frequency 
probes. Images of the largest long axis cross-section of 
target nodules were obtained for subsequent analysis.

Two experienced radiologists (with over five years of 
experience in thyroid sonography) independently reviewed 
all images without knowledge of clinical information 
or final diagnoses. The CUS features reinterpreted 
included tumor dimension, echotexture (homogeneous, 
heterogeneous), echogenicity (hypoechoic, iso/hyperechoic, 
or mixed),  margin (well-defined and i l l-defined), 
presence of calcification (absent, macrocalcification, and 
microcalcification), aspect ratio (>1 or ≤1). 

The radiomics analysis process consisted of segmenting 
the lesions, extracting features, selecting relevant features, 
and constructing a model. Two blinded radiologists 
manually segmented the regions of interest to ensure 
accuracy. Prior to feature extraction, intensity normalization 
was performed. The patients were then randomly divided 
into a training and test cohort in an 8:2 ratio. This division 
provided a suitable dataset for training the model and 
evaluating its performance.

Segmenting the lesions and extracting radiomics features 

The radiomics analysis workflow is shown in Figure 2. An 

Figure 1 The patient exclusion flowchart. TI-RADS, Thyroid Imaging Reporting and Data System; PTMC, papillary thyroid 
microcarcinoma.

The study examined 253 patients who had TI-RADS 3 nodules and underwent
pathological diagnosis of either PTMC or benign thyroid nodules.

Exclusion criteria (n=32):
(1) Patients with low-quality ultrasound images;
(2) Patients who received preoperative therapy;
(3) Patients who have a history of other 
malignancies or coexisting malignancies
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experienced radiologist carefully performed the manual 
segmentation of a region of interest (ROI). To ensure 
impartiality, both the radiologist who conducted the 
segmentation and the one who confirmed it were unaware 
of any clinical information associated with the patient. The 
ROI was delineated using itk-SNAP software (http://www.
itksnap.org; version 4.0.1) around the lesion contour, and 
intensity normalization was performed on ultrasound images 
prior to radiomics feature extraction to standardize gray 
intensity values. Then a total of 1,477 radiomics features 
were extracted. In this study, the handcrafted features can be 
classified into three distinct groups: geometry, intensity, and 
texture. The 3-dimensional (3D) shape characteristics of the 
tumor are described by the geometry features, whereas the 
first-order statistical distribution of voxel intensities within 
the tumor is described by the intensity features. On the 
other hand, texture features characterize patterns that are 
obtained from second- and high-order spatial distributions 
of intensities. In order to extract texture features, several 
methods were employed, including the utilization of 

techniques such as the gray-level co-occurrence matrix 
(GLCM), gray-level size zone matrix (GLSZM), gray-level 
run length matrix (GLRLM), and neighborhood gray-tone 
difference matrix (NGTDM). The Pyradiomics 2.2.0 open-
source python package was used for implementing feature 
extraction. More information about this package can be 
found at http://www.radiomics.io/pyradiomics.html. 

Feature selection and radiomics model establishment

To analyze our data statistically, we utilized different tests 
based on the distribution of the features. For features that 
followed a normal distribution, we conducted a Student’s 
t-test. On the other hand, for features that did not exhibit 
a normal distribution, we employed the Mann-Whitney 
U test. We set the significance level at 0.05 and retained 
only those features with a P value below this threshold. 
This rigorous approach allowed us to identify statistically 
significant features that could potentially contribute to the 
study findings. To ensure the reliability of our analysis, we 

ROI segmentation                                Feature extraction                               Feature selection                                        Prediction

Ratio of features

CUS imaging

Segmentation

Distribution of features

Coefficients of 
selected features

MSE of CV ROC

DCA

First order features
(n=309)
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(n=1,155)

Shape features
(n=13)

Coefficients of CV Predict score

Figure 2 The workflow of the radiomics model construction. ROI, region of interest; CUS, conventional ultrasound; GLSZM, gray-level 
size zone matrix; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLDM, gray-level dependence matrix; 
CV, cross validation; MSE, mean standard error; LightGBM, Light Gradient Boosting Machine; ROC, receiver operating characteristic; 
AUC, area under receiver operating curve; DCA, decision curve analysis. 
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examined the repeatability of features. For features that 
exhibited high repeatability, we calculated the correlation 
between them using Spearman’s rank correlation coefficient. 
If the correlation coefficient between any two features was 
greater than 0.9, we retained only one of them to avoid 
redundancy.

To further enhance the comprehensiveness of our feature 
set, we implemented a greedy recursive deletion strategy 
for feature filtering. This involved iteratively removing 
the feature with the highest redundancy in the current 
set. After this process, we retained fifteen features. In order 
to construct the signature, we employed the least absolute 
shrinkage and selection operator (LASSO) regression 
model on the discovery data set. The LASSO method 
shrinks regression coefficients towards zero based on the 
regularization weight λ and selectively forces coefficients 
of irrelevant features to be precisely zero. To determine 
the optimal λ, we conducted ten-fold cross-validation using 
minimum criteria, and selected the value of λ that resulted 
in the lowest cross-validation error. The features with 
nonzero coefficients were utilized for fitting the regression 
model, and subsequently combined to form a radiomics 
signature. To calculate the radiomics score for each patient, 
we computed a linear combination of the retained features, 
which were weighted by their respective model coefficients. 
The LASSO regression modeling was conducted using the 
Python scikit-learn package.

Following the LASSO feature screening, we selected 
the final set of features to be used for constructing the 
risk model. To achieve this, we employed the Light 
Gradient Boosting Machine (LightGBM) model. To 
ensure the reliability and generalizability of our model, we 
implemented five-fold cross-validation. By averaging the 
results across the five folds, we obtained the final radiomics 
signature.

The building of the clinical model and radiomics-clinical 
model

All of the thyroid nodules that were classified as TI-RADS 
3 had well-defined margins, no calcifications, and an aspect 
ratio of ≤1. We just selected ultrasound features of tumor 
dimension, echotexture (homogeneous or heterogeneous), 
and echogenicity (hypoechoic, iso/hyperechoic, or 
mixed) to differentiate between benign thyroid nodules 
and PTMC. The term “tumor dimension” refers to the 
measurement of the largest long axis cross-section of 
the target thyroid nodule on the image, indicating its 

diameter. The term “echotexture” refers to the overall 
appearance and texture of an ultrasound image. It describes 
the patterns and characteristics observed within tissues 
or structures visualized through ultrasound scans, such as 
the level of echogenicity, homogeneity, and presence of 
any abnormalities or variations. In this study, we focus on 
investigating whether the echotexture of thyroid nodules 
is homogeneous or heterogeneous. In brief, the term 
“echogenicity” refers to the ability of a tissue or structure 
to reflect ultrasound waves. In this study, the echogenicity 
is defined based on a comparison with the surrounding 
parenchyma, categorized as hypoechoic, isoechoic, 
hyperechoic, or mixed. The process of constructing the 
clinical model closely resembled that of the radiomics 
model. The selection of features for the clinical model was 
based on baseline statistics, considering features with a  
P value <0.05. Additionally, the same machine learning 
model was employed in both the radiomics and clinical 
model building procedures.  To ensure fairness in 
comparison, we maintained a fixed test cohort and 
implemented five-fold cross-validation during the process.

To efficiently evaluate the prognostic significance of 
the radiomics signature alongside clinical risk factors, we 
introduced a radiomics nomogram on the validation data 
set. Utilizing logistic regression analysis, the nomogram 
was developed by combining the radiomics signature with 
clinical risk factors. 

Statistical analysis

In order to evaluate the comparabil ity of patient 
characteristics among different cohorts, we conducted 
independent t-tests for normally distributed data and used 
Mann-Whitney U tests to express non-normally distributed 
data as medians (interquartile range). The Chi-squared 
tests were utilized to analyze the categorical variables. 
To assess the predictive performance of the models, we 
employed several evaluation metrics. First, we constructed 
receiver operating characteristic (ROC) curves, which 
illustrate the trade-off between sensitivity and specificity 
at various classification thresholds. We calculated the area 
under receiver operating curve (AUC), which serves as an 
indicator of the model’s discriminatory ability. Additionally, 
we determined the balanced specificity and sensitivity of 
the cut-off point that maximized the Youden index. To 
ensure the generalizability of the models, we evaluated 
their performance in both the training and test cohorts. 
To compare the AUC between the three models, we used 
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the Delong test. To assess the clinical utility of the three 
models, decision curve analysis (DCA) was employed. We 
conducted all statistical analyses using SPSS (version 21.0; 
IBM Corp., Armonk, NY, USA), with statistical significance 
defined as a two-sided P value ≤0.05.

Results

Baseline characteristics of patients 

A total of 130 patients with benign thyroid nodules and 
91 patients with PTMC were enrolled for the study. We 
conducted independent sample t-tests, Mann-Whitney  
U tests, or Chi-squared tests, as appropriate, to compare the 
clinical characteristics of the patients. Tables 1,2 display the 
baseline characteristics of patients.

Establishment and evaluation of the radiomics model

A total of 1,477 handcrafted features were extracted 
across  s ix  categories ,  compris ing 309 f irst-order 
features, 13 shape features, and the remaining texture 
features (Figure 3A) (table available at https://cdn.
amegroups.cn/static/public/tcr-23-1375-1.xlsx) provides 
a detailed list of the handcrafted features. To extract all 
handcrafted features, we utilized an in-house feature 
analysis program implemented in Pyradiomics. For 
more information on Pyradiomics, please refer to its 
documentation at http://pyradiomics.readthedocs.io.  
Figure 3B displays all features and their corresponding P 
value results.

We used a LASSO logistic regression model to select 
the nonzero coefficients for establishing the Rad-score. 
Figure 3C,3D illustrates the coefficients and mean standard 
error (MSE) resulting from ten-fold validation. Following 
selection process, a total of fifteen features retained a 
nonzero coefficient value. The details of these features are 
shown in Figure 4.

After selecting features with non-zero coefficients, we 
utilized the LightGBM model to analyze and construct 
a radiomics signature, also referred to as the radiomics 
score (Rad-score). Within the training cohort, the model 
exhibited an AUC of 0.974 [95% confidence interval (CI): 
0.954–0.994], accompanied by a sensitivity of 0.901 and 
specificity of 0.962. In the test cohort, the AUC was 0.867 

Table 1 Baseline clinical information of all patients

Parameter Malignant (n=91) Benign (n=130)

Age (years) 50.6±1.089 49.88±1.079

Sex

Male 24 (26.4) 22 (16.9)

Female 67 (73.6) 108 (83.1)

Tumor diameter 
(mm)

15.94±1.397 28.7±1.163

Echogenicity 

Hypoechoic 61 (67.0) 44 (33.8)

Iso/hyperechoic 9 (9.9) 10 (7.7)

Mixed 21 (23.1) 76 (58.5)

Echotexture

Homogeneous 19 (20.9) 11 (8.5)

Heterogeneous 72 (79.1) 119 (91.5)

Data presentation: the number of patients is presented as n 
(%), while the age and tumor diameter in ultrasound images are 
displayed as mean ± standard deviation.

Table 2 Baseline clinical information of patients in the training 
cohort

Parameter
Malignant 

(n=71)
Benign (n=105) P value

Age (years) 50.44±10.09 49.86±12.03 0.74

Sex 0.28

Male 17 (23.9) 17 (16.2)

Female 54 (76.1) 88 (83.8)

Tumor diameter (mm) 16.61±13.59 29.15±13.35 <0.001

Echogenicity <0.001

Hypoechoic 48 (67.6) 35 (33.3)

Iso/hyperechoic 7 (9.9) 8 (7.6)

Mixed 16 (22.5) 62 (59.0)

Echotexture 0.009

Homogeneous 16 (22.5) 9 (8.6)

Heterogeneous 55 (77.5) 96 (91.4)

Data presentation: the number of patients is presented as n 
(%), while the age and tumor diameter in ultrasound images are 
displayed as mean ± standard deviation.

https://cdn.amegroups.cn/static/public/tcr-23-1375-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-1375-1.xlsx
http://pyradiomics.readthedocs.io
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(95% CI: 0.757–0.977), and the sensitivity and specificity 
were 0.900 and 0.760, respectively (Figure 5, Table 3). 

Establishment and performance of the clinical model and 
radiomics-clinical model

We employed a significance level (P value ≤0.05) to identify 
the characteristics in the training cohort that would be used 
for constructing the clinical model. Only tumor dimension, 
echogenicity and echotexture met this condition, and therefore, 
these features were used to build the clinical model (Table 2).

In the training cohort, the clinical model demonstrated a 

balanced sensitivity of 0.704 and specificity of 0.848, resulting 
in an AUC of 0.845 (95% CI: 0.785–0.905). In the test 
cohort, the AUC was 0.811 (95% CI: 0.667–0.955), with a 
sensitivity of 0.600 and specificity of 1.000 (Figure 5, Table 3).

The radiomics-clinical model had an AUC of 0.975 
(95% CI: 0.954–0.996) in the training cohort. The model 
exhibited a balanced sensitivity of 0.887 and a specificity 
of 0.981. In the test cohort, the AUC was 0.898 (95% CI: 
0.791–1.000), with a sensitivity of 0.900 and a specificity of 
0.840 (Figure 5, Table 3).

We constructed a nomogram based on the radiomics-
clinical model (Figure 6). In this study, each model was 

Figure 3 Radiomics features selection. (A) Handcrafted features were extracted from ROIs, including first order features, shape features and 
texture (GLRLM, GLSZM, GLDM, GLCM) features. The ratio of handcrafted features was presented. (B) The picture shows all radiomics 
features and their corresponding P value results. (C,D) To obtain the optimal penalty coefficient lambda in the LASSO model, a ten-fold 
cross-validation and minimum criteria procedure were employed. GLSZM, gray-level size zone matrix; GLCM, gray-level co-occurrence 
matrix; GLRLM, gray-level run length matrix; GLDM, gray-level dependence matrix; MSE, mean standard error; ROI, region of interest; 
LASSO, least absolute shrinkage and selection operator.
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assessed and evaluated using DCA. Figure 7 displays the 
decision curve analysis for the clinical model, radiomics 
model, and radiomics-clinical nomogram. In comparison to 
scenarios where no prediction model was utilized (i.e., treat-
all or treat-none scheme), both the radiomics-clinical model 
and the radiomics model consistently exhibited significant 
advantages in the majority of cases (Figure 7). 

The AUC of the models was compared using the Delong 
test. In the test cohort, there was a statistically significant 

difference in AUC between the radiomics-clinical model 
and the clinical model (P=0.01). Nevertheless, the 
comparison of AUC between the radiomics model and the 
radiomics-clinical model in the test cohort did not yield any 
statistically significant difference (P=0.49).

Discussion

There has been a notable surge in the incidence of 
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Figure 5 Diagnostic performance of different models. The AUC of the radiomics model, clinical model, and radiomics-clinical model 
(nomogram) in the training cohort (A) and test cohort (B). AUC, area under receiver operating curve; CI, confidence interval. 
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Table 3 Predictive performance of three models in the training and test cohort

Model
Training cohort Test cohort

AUC (95 % CI) Sen Spe AUC (95 % CI) Sen Spe

Clinical model 0.845 (0.785–0.905) 0.704 0.848 0.811 (0.667–0.955) 0.600 1.000

Radiomics model 0.974 (0.954–0.994) 0.901 0.962 0.867 (0.757–0.977) 0.900 0.760

Rad-clinic model 0.975 (0.954–0.996) 0.887 0.981 0.898 (0.791–1.000) 0.900 0.840

Sensitivity and specificity were assessed at the cutoff value that yielded the maximum Youden index value. AUC, area under receiver 
operating curve; CI, confidence interval; Sen, sensitivity; Spe, specificity; Rad-clinic model, radiomics-clinical model.

PTMC in recent years, resulting in a sharp increase in its 
morbidity rates. Although the surgical treatment of PTMC 
remains controversial, lymph node metastasis in PTMC is 
indisputable and the rate of metastasis is high. For instance, 
lymph node metastases contribute to as much as 24–64% 

of cases and are strongly linked to recurrence (26). The 
gravity of the situation demands utmost diagnostic accuracy. 
However, PTMC’s low diagnostic precision makes it 
vulnerable to frequent misdiagnosis or even overlooking 
(27,28). Many thyroid nodules with a TI-RADS score of  

Figure 6 A radiomics-clinical nomogram for predicting PTMC. Clinic_Sig, clinical signature; Rad_Sig, radiomics signature; PTMC, 
papillary thyroid microcarcinoma.
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Figure 7 Decision curves of different models. The DCA of three models in the training cohort (A) and test cohort (B). The vertical axis 
represents the net benefit, and the horizontal axis represents different risk thresholds. DCA, decision curve analysis.
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3 were pathologically confirmed as PTMC. 
The rapid advancement of radiomics has created 

new opportunities for radiologists to evaluate tumor 
characteristics in a high-throughput manner. By detecting 
features that may not be visible to the human eye, radiomics 
offers the potential to provide non-invasive assessment and 
achieve more accurate tumor characterization. By quantifying 
images and analyzing the extracted information in-depth, 
radiomics could potentially address the diagnostic challenge 
of PTMC by identifying previously undetected features. 

To the best of our knowledge, this is the first study 
to investigate the potential of CUS-based radiomics for 
predicting PTMC in patients with TI-RADS 3 nodules. 
According to univariate and multivariate analysis, this study 
observed associations between clinical variables, including 
tumor dimension, echotexture, and echogenicity, with 
PTMC. Subsequently, we proceeded to develop three 
predictive models utilizing clinical variables, radiomics 
features, and a fusion of both. In the validation datasets, 
we achieved an AUC of 0.867 with radiomics features 
alone in the differentiation of PTMC from TI-RADS 3 
nodules. Nonetheless, the amalgamation of radiomics features 
with clinical variables led to enhanced performance of the 
radiomics-clinical model, resulting in an achieved AUC of 
0.898. In contrast, the clinical model had a lower AUC value 
of 0.811, which was significantly different from the radiomics-
clinical model. The predominant factors contributing to 
this phenomenon are primarily attributed to the subjective 
assessment and operator-dependent nature of interpreting 
CUS features, as well as the variation in ultrasound image 
quality across different machines. It is insufficient for clinical 
variables to distinguish PTMC from TI-RADS 3 nodules. 

The study conducted by Zhang et al. revealed that 
ultrasound alone achieved an AUC of 0.728 in diagnosing 
PTMC, while Gao et al. examined the diagnostic capabilities 
of ultrasound-guided FNAB for PTMC, which exhibited 
remarkable performance with an AUC of 0.947 (29,30). 
Nevertheless, it entailed an invasive procedure. Our current 
study demonstrated that the radiomics-clinical model 
achieved an AUC of 0.898. These results suggest that the 
radiomics-clinical model could be a preferable alternative to 
ultrasonography alone or invasive FNAB examinations.

The aforementioned findings indicate that the radiomics-
clinical model has the potential to serve as a valuable and 
quantitative tool for PTMC prediction. In a previous study, the 
diagnostic performance has been categorized into three levels 
based on the AUC value. These levels include low performance 
(AUC =0.5–0.7), moderate performance (AUC =0.7–0.9), 

and high performance (AUC >0.9) (31). Although both the 
radiomics-clinical model and radiomics model produced 
excellent predictive results, the combined model did not perform 
better than the radiomics model. It means that radiomics may be 
the best predictive factor for PTMC predicting. Furthermore, 
we constructed a nomogram derived from the radiomics-clinical 
model to facilitate clinical decision-making.

This research possesses several limitations that should 
be acknowledged. Firstly, being a retrospective study, there 
is a possibility of selection bias. Secondly, the study was 
conducted in a single center, thus warranting the need 
for multicenter studies with larger patient populations to 
validate the findings. Thirdly, in this retrospective study, 
we focused solely on the development of a CUS-based 
radiomics model. This was because the data pertaining 
to advanced CUS techniques like contrast enhanced 
ultrasound (CEUS) or ultrasound elastography were 
incomplete. We are confident that conducting additional 
studies that incorporate both radiomics and multi-
modal ultrasound techniques may demonstrate enhanced 
diagnostic performance.

Conclusions

Building an effective machine learning model based on 
radiomics and clinical information for distinguishing 
between benign thyroid nodules and PTMC in cases with 
a TI-RADS score of 3 is crucial for clinical practice. Based 
on our findings, it can be concluded that the utilization of a 
radiomics approach applied to ultrasound images provides 
an effective means of predicting the presence of PTMC in 
patients presenting with thyroid nodules having a TI-RADS 
score of 3. Incorporating radiomics features into clinical 
variables can improve the accuracy of PTMC prediction 
compared to using clinical variables alone. To validate 
the significance of our findings, it is imperative to pursue 
further investigations on a larger and more diverse patient 
sample, encompassing multiple centers.
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