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Abstract.—In Bayesian phylogenetics, the coalescent process provides an informative framework for inferring changes in
the effective size of a population from a phylogeny (or tree) of sequences sampled from that population. Popular coalescent
inference approaches such as the Bayesian Skyline Plot, Skyride, and Skygrid all model these population size changes with a
discontinuous, piecewise-constant function but then apply a smoothing prior to ensure that their posterior population size
estimates transition gradually with time. These prior distributions implicitly encode extra population size information that is
not available from the observed coalescent data or tree. Here, we present a novel statistic,�, to quantify and disaggregate the
relative contributions of the coalescent data and prior assumptions to the resulting posterior estimate precision. Our statistic
also measures the additional mutual information introduced by such priors. Using�we show that, because it is surprisingly
easy to overparametrize piecewise-constant population models, common smoothing priors can lead to overconfident and
potentially misleading inference, even under robust experimental designs. We propose � as a useful tool for detecting
when effective population size estimates are overly reliant on prior assumptions and for improving quantification of the
uncertainty in those estimates.[Coalescent processes; effective population size; information theory; phylodynamics; prior
assumptions; skyline plots.]

The coalescent process models how changes in the
effective size of a target population influence the
phylogenetic patterns of sequences sampled from that
population. First derived in (Kingman, 1982) under
the assumption of a constant sized population, the
coalescent process has since been extended to account
for temporal variation in the population size (Griffiths
and Tavare 1994), structured demographics (Beerli and
Felsenstein 1999), and multilocus sampling (Li and
Durbin 2011). Inference under these models aims to
statistically recover the unknown effective population
size (or demographic) history from the reconstructed
phylogeny (or tree) and has provided insights into
infectious disease epidemiology, population genetics,
and molecular ecology (Pybus et al. 2003; Wakeley
2008; Shapiro et al. 2004). Here, we focus on
coalescent processes that describe the genealogies of
serially sampled individuals from populations with
deterministically varying size. These are widely applied
to study the phylodynamics of infectious diseases
(Griffiths and Tavare 1994; Rodrigo and Felsenstein
1999).

Early approaches to inferring effective population
size from coalescent phylogenies used pre-defined
parametric models (e.g., exponential or logistic growth
functions) to represent temporal demographic changes
(Kuhner et al. 1998; Pybus et al. 2003). While these
formulations required only a few variables and provided
interpretable estimates, selecting the most appropriate
parametric description could be challenging and risk
underfitting complex trends (Minin et al. 2008).
This motivated the introduction of the classic skyline
plot (Pybus et al. 2000), which, by proposing an

independent, piecewise-constant demographic change
at every coalescent event (i.e., at the branching times
in the phylogeny), maximized flexibility and removed
parametric restrictions. However, this flexibility came
at the cost of increased estimation noise and potential
overfitting of changes in effective population size (Ho
and Shapiro 2011).

Efforts to redress these issues within a piecewise-
constant framework subsequently spawned a family
of skyline plot-based methods (Ho and Shapiro 2011).
Among these, the most popular and commonly used
are the Bayesian Skyline Plot (BSP) (Drummond et al.
2005), the Skyride (Minin et al. 2008), and the Skygrid
(Gill et al. 2013) approaches. All three attempted to
regulate the sharp fluctuations of the inferred piecewise-
constant demographic function by enforcing a priori
assumptions about the smoothness (i.e., the level of
autocorrelation among piecewise-constant segments) of
real population dynamics. This was seen as a biologically
sensible compromise between noise regulation and
model flexibility (Parag and Donnelly 2020; Strimmer
and Pybus 2001).

The BSP limited overfitting by i) predefining fewer
piecewise demographic changes than coalescent events
and ii) smoothing noise by asserting a priori that the
population size after a change-point was exponentially
distributed around the population size before it. This
method was questioned by (Minin et al., 2008) for making
strong smoothing and change-point assumptions and
stimulated the development of the Skyride, which
embeds the flexible classic skyline plot within a tunable
Gaussian smoothing field. The Skygrid, which extends

121

http://creativecommons.org/licenses/by/4.0/


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[12:51 1/12/2021 Sysbio-OP-SYSB210037.tex] Page: 122 121–138

122 SYSTEMATIC BIOLOGY VOL. 71

the Skyride to multiple loci and allows arbitrary change-
points (the BSP and Skyride change-times coincide with
coalescent events), also uses this prior. The Skyride
and Skygrid methods aimed to better trade off prior
influence with noise reduction, and while somewhat
effective, are still imperfect because they can fail to
recover genuinely abrupt demographic changes such as
bottlenecks (Faulkner et al. 2019).

As a result, studies continue to explore and address
the nontrivial problem of optimizing this tradeoff, either
by searching for less-restrictive and more adaptive
priors (Faulkner et al. 2019) or by deriving new data-
driven skyline change-point grouping strategies (Parag
and Donnelly 2020). The evolution of coalescent model
inference thus reflects a desire to understand and fine-
tune how prior assumptions and observed phylogenetic
data interact to yield reliable posterior population size
estimates. Surprisingly, and in contrast to this desire, no
study has yet tried to directly and rigorously measure
the relative influence of the priors and data on these
estimates.

Here, we develop and present a novel information
theoretic statistic, �, to formally disaggregate and
quantify the contributions of both priors and data on the
uncertainty around the posterior demographic estimates
of popular skyline-based coalescent methods. Using
� we show how widely used smoothing priors can
result in overconfident population size inferences (i.e.,
estimates with unjustifiably small credible intervals) and
provide practical guidelines against such circumstances.
We illustrate the utility of this approach on well-
characterized data sets describing the population size of
HCV in Egypt (Pybus et al. 2003) and ancient Beringian
steppe bison (Shapiro et al. 2004).

To our knowledge,�, which in theory can be adapted
to any prior-data comparison problem, is new not only
to the field of phylogenetics but also across statistics
and data science. While inference that is strongly driven
by prior assumptions can be beneficial, for example
when a prior encodes expert knowledge or salient
dynamics, having a measure of the relative information
introduced by data and prior distributions can improve
the reproducibility and interpretability of analyses. Our
statistic will help to detect when prior assumptions
are inadvertently and overly influencing demographic
estimates and will hopefully serve as a diagnostic tool
that future methods can employ to optimize and validate
their prior-data tradeoffs.

MATERIALS AND METHODS

Coalescent Inference
We provide an overview of the coalescent process

and statistical inference under skyline plot-based
demographic models. The coalescent is a stochastic
process that describes the ancestral genealogy of
sampled individuals or lineages from a target population

(Kingman 1982). Under the coalescent, a tree or
phylogeny of relationships among these individuals is
reconstructed backwards in time with coalescent events
defined as the points where pairs of lineages merge
(i.e., coalesce) into their ancestral lineage. This tree, T ,
is rooted at time T into the past, which is the time to the
most recent common ancestor (TMRCA) of the sample.
The tips of T correspond to sampled individuals.

The rate at which coalescent events occur (i.e.,
the rate of branching in T ) is determined by and
hence informative about the effective size of the
target population. We assume that a total of n≥
2 samples are taken from the target population at
ns ≥1 distinct sampling times, which are independent
of and uninformative about population size changes
(Drummond et al. 2005). We do not specify the sample
generating process as it does not affect our analysis by
this independence assumption (Parag and Pybus 2019).
We let ci be the time of the ith coalescent event in T with
1≤ i≤n−1 and cn−1 =T (n samples can coalesce n−1
times before reaching the TMRCA).

We use lt to count the number of lineages in T at
time t≥0 into the past; lt then decrements by 1 at every
ci and increases at sampling times. Here, t=0 is the
present. The effective population size or demographic
function at t is N(t) so that the coalescent rate underlying
T is

(lt
2
)
N(t)−1 (Kingman 1982). While N(t) can be

described using appropriate parametric formulations
(Parag and Pybus 2017), it is more common to represent
N(t) by some tractable p-dimensional piecewise-constant
approximation (Ho and Shapiro 2011). Thus, we can
write N(t) :=∑p

j=1Nj1(�j−1 ≤ t<�j), with p≥1 as the
number of piecewise-constant segments. Here, Nj is
the constant population size of the jth segment which
is delimited by times [�j−1, �j), with �0 =0 and �p ≥T
and 1(x) is an indicator function. The rate of producing
new coalescent events is then

∑p
j=1N−1

j
(lt

2
)
1(�j−1 ≤ t<�j).

Kingman’s coalescent model is obtained by setting p=1
(constant population of N1).

When reconstructing the population size history of
infectious diseases, it is often of interest to infer N(t) from
T (Ho and Shapiro 2011), which forms our coalescent
data generating process. If N =[

N1,...,Np
]

denotes the
vector of demographic parameters to be estimated then
the coalescent data log-likelihood �(N) := logP(T |N) can
be obtained from (Parag and Pybus, 2019) and (Snyder
and Miller, 1991) as

�(N)=
p∑

j=1

mj logN−1
j −N−1

j Aj +logBj, (1)

with Aj and Bj as constants that depend on the times and
lineage counts of the mj coalescent events that fall within
the jth segment duration [�j−1, �j), and

∑p
j=1mj =n−1.

Equation 1 is equivalent to the standard serially sampled
skyline log-likelihood in (Drummond et al., 2005), except
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that we do not restrict N(t) to change only at coalescent
event times.

In Bayesian phylogenetic inference, skyline-based
methods such as the BSP, Skyride and Skygrid combine
this likelihood with a prior distribution P

(
N
)
, which

encodes a priori beliefs about the demographic function.
This yields a population size posterior, from Bayes
law, which depends on both the prior and coalescent
data-likelihood as:

P
(
N |T )∝P

(
T |N)

P
(
N
)
. (2)

Here, we assume that the phylogeny, T , is known
without error. In some instances, only sampled sequence
data, D, are available and a distribution over T
must be reconstructed from D under a model of
molecular evolution with parameters θ. Equation 2
becomes embedded in the more complex expression
P
(
T ,θ,N |D)∝P

(
D|T ,θ)P(T |N)

P
(
N
)
P
(
θ
)
, which then

involves inferring both the tree and population size
(Drummond et al. 2002).

While we do not consider this extension here we
note that results presented here are still applicable and
relevant. This follows because the output of the more
complex Bayesian analysis above (i.e., when sequence
data D are used directly) is a posterior distribution
over tree space. We can sample from this posterior
and treat each sampled tree effectively as a fixed tree.
Consequently, we expect any summary statistic that
we derive here, under the assumption of a fixed-tree
will be usable in studies that incorporate genealogical
uncertainty by computing the distribution of that
statistic over this covering set of sampled posterior trees.

Information and Estimation Theory
We review and extend some concepts from

information and estimation theory, applying them
to skyline-based coalescent inference. We consider a
general parametrization of the effective population size
ψ=[

�1, ...,�p
]
, where �i =�(Ni) for all i∈{1,...,p

}
and

� (.) is a differentiable function. Popular skyline-based
methods usually choose the identity function (e.g., BSP)
or the natural logarithm (e.g., the Skyride and Skygrid)
for �. Equations 1 and 2 are then reformulated with
�(ψ)= logP

(
T |ψ) as the coalescent data log-likelihood

and P
(
ψ
)

as the demographic prior. The Bayesian
posterior, P

(
ψ|T )

combines this likelihood and prior
and hence is influenced by both the coalescent data and
prior beliefs. We can formalize these influences using
information theory.

The expected Fisher information, I(ψ), is a p×
p matrix with

(
i, j
)
th element I(ψ)ij :=−ET

[
∇ij�(ψ)

]
(Lehmann and Casella 1998). The expectation is taken
over the coalescent tree branches and ∇ij :=∂2/∂�i∂�j. As
observed in (Parag and Pybus, 2019),I(ψ) quantifies how
precisely we can estimate the demographic parameters,
ψ, from the coalescent data, T . Precision is defined

as the inverse of variance (Lehmann and Casella
1998). The BSP, Skyride, and Skygrid parametrizations
all yield I(N)=[m1N−2

1 , ...,mpN−2
p ]Ip and I(logN)=

[m1, ...,mp]Ip , with Ip as a p×p identity matrix (Parag
and Pybus 2019). These matrices provide several useful
insights that we will exploit in later sections. First, I(ψ)
is orthogonal (diagonal), meaning that the coalescent
process over the jth segment [�j−1, �j) can be treated
as deriving from an independent Kingman coalescent
with constant population size Nj (Parag and Pybus 2017).
Second, the number of coalescent events in that segment,
mj, controls the Fisher information available about Nj.
Last, working under logNj removes any dependence
of this Fisher information component on the unknown
parameter Nj (Parag and Pybus 2019).

The prior distribution, P
(
ψ
)
, that is placed on the

demographic parameters can alter and impact both
estimate bias and precision. We can gauge prior-induced
bias by comparing the maximum likelihood estimate
(MLE), ψ̂=argmaxψ{logP(T |ψ)} with the maximum a
posteriori estimate (MAP), ψ̃=argmaxψ{logP(T |ψ)+
logP(ψ)} (van Trees 1968). The difference ψ̃−ψ̂measures
this bias. We can account for prior-induced precision
by computing Fisher-type matrices for the prior
and posterior as P(ψ)ij =−∇ij logP(ψ) and J (ψ)ij =
−ET

[
∇ij logP(ψ|T )

]
(Tichavsky et al. 1998; Huang and

Zhang 2018). Combining these gives

J (ψ)=I(ψ)+P(ψ). (3)

Equation 3 describes how the posterior Fisher
information matrix, J (ψ), relates to the standard Fisher
information I(ψ) and the prior second derivative P(ψ).
We make the common regularity assumptions (see
Huang and Zhang 2018 for details) that ensure J (ψ)
is positive definite and that all Fisher matrices exist.
These assumptions are valid for exponential families
such as the piecewise-constant coalescent (Lehmann and
Casella 1998; Parag and Pybus 2019). Equation 3 will
prove fundamental to resolving the relative impact of
the prior and data on the best precision achievable using
the posterior P

(
N |T )

. We also define expectations on
these matrices with respect to the prior as J0, I0 and
P0, with J0 =E0[J (ψ)]=∫ J (ψ)P(ψ)dψ, for example.
These matrices are now constants instead of functions
of ψ. Equation 3 also holds for these constant matrices
(Tichavsky et al. 1998).

These Fisher information matrices set theoretical
upper bounds on the precision attainable by all
possible statistical inference methods. For any unbiased
estimate of ψ, ψ̄, the Cramer–Rao bound (CRB)
states that ET

[
(ψ̄−ψ)(ψ̄−ψ)ᵀ |ψ]=var(ψ̄|ψ)≥I(ψ)−1

with ᵀ indicating transpose. If we relax the unbiased
estimation requirement and include prior (distribution)
information then the Bayesian or posterior Cramer–
Rao lower bound (BCRB) controls the best estimate
precision (van Trees 1968). If ψ̄ is any estimator ofψ then
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the BCRB states that E0
[
ET

[
(ψ̄−ψ)(ψ̄−ψ)ᵀ |ψ]]≥J −1

0 .
This bound is not dependent on ψ due to the extra
expectation over the prior (Tichavsky et al. 1998).

The CRB describes how precisely we can estimate
demographic parameters using just the coalescent data
and is achieved (asymptotically) with equality for
skyline (piecewise-constant) coalescent models (Parag
and Pybus 2019). The BCRB, instead, defines the
precision limit for the combined contributions of the
data and the prior. The CRB is a frequentist bound
that assumes a true fixed ψ, while the BCRB is a
Bayesian bound that treatsψ as a random parameter. The
expectation over the prior connects the two formalisms
(Ben-Haim and Eldar 2009). Given their importance in
delimiting precision, the J (ψ) and I(ψ) Fisher matrices
will be central to our analysis, which focuses on resolving
and quantifying the individual contributions of the data
versus prior assumptions.

RESULTS

The Coalescent Information Ratio, �
We propose and derive the coalescent information

ratio, �, as a statistic for evaluating the relative
contributions of the prior and coalescent data to the
posterior estimates obtained as solutions to Bayesian
skyline inference problems (see Materials and Methods
section). Consider such a problem in which the n-
tip phylogeny T is used to estimate the p-element
demographic parameter vector ψ. Let ψ̂ be the MLE
of ψ given the coalescent data T . Asymptotically, the
uncertainty around this MLE can be described with
a multivariate Gaussian distribution with covariance
matrix I(ψ)−1. The Fisher information, I(ψ) then
defines a confidence ellipsoid that circumscribes the total
uncertainty from this distribution. In (Parag and Pybus,
2019), this ellipsoid was found central to understanding
the statistical properties of skyline-based estimates.

The volume of this ellipsoid is V1 =Cdet[I(ψ)]−
1
2 ,

with C as some p-dependent constant. Decreasing V1
increases the best estimate precision attainable from
the data T (Lehmann and Casella 1998). In a Bayesian
framework, the asymptotic posterior distribution of ψ
also follows a multivariate Gaussian distribution with
covariance matrix of J (ψ)−1. We can therefore construct
an analogous ellipsoid from J (ψ) with volume V2 =
Cdet[J (ψ)]−

1
2 that measures the uncertainty around the

MAP estimate ψ̃ (Tichavsky et al. 1998). This volume
includes the effect of both prior and data on estimate
precision. Accordingly, we propose the ratio

� := V2
V1

=
√

det[I(ψ)]
det[I(ψ)+P(ψ)]

, (4)

as a novel and natural statistic for dissecting the relative
impact of the data and prior distribution on posterior
estimate precision.

From Equation 4, we observe that 0≤�≤1 with
�=1 signifying that the information from our prior
distribution is negligible in comparison to that from the
data and �=0 indicating the converse. Importantly, we
find

�2 ≤ 1
2

⇐⇒ det[I(ψ)]≤ 1
2

det[P(ψ)+I(ψ)]. (5)

At this threshold value P(ψ) contributes at least as
much information as the data. Moreover, limn→∞�=
1 since the prior contribution becomes negligible
with increasing data and � is undefined when ψ is
unidentifiable from T (i.e., when I(ψ) is singular,
(Rothenburg 1971). Consequently, we posit that a smaller
� implies the prior provides a greater contribution to
estimate precision.

We define � as an information ratio due to its close
connection to both the Fisher and mutual information.
The mutual information between ψ and T , I(ψ;T ),
measures how much information (in bits for example)
T contains about ψ (Cover and Thomas 2006). This
is distinct but related to I(ψ), which quantifies the
precision of estimating ψ from T (Brunel and Nadal
1998). Recent work from (Huang and Zhang, 2018)
into the connection between the Fisher and mutual
information has yielded two key approximations to
I(ψ;T ). These can be obtained by substituting either I
or J for X in

I(X )=H(ψ)+E0

[
log

√
det[X (ψ)]−plog

√
2�e

]
, (6)

with H(ψ) :=E0
[−logP(ψ)

]
as the differential entropy of

ψ (Cover and Thomas 2006).
For a flat prior or many observations, I(ψ;T )≈I(I)≈

I(J ), as the prior contributes little or no information
(Brunel and Nadal 1998). For sharper priors, I(ψ;T )≈
I(J ) as the prior contribution is significant—using I(I)
would lead to large errors (Huang and Zhang 2018).
Equation 6 is predicated on (i) regularity assumptions for
the distributions used (i.e., that the second derivatives
exist), (ii) conditional dependence of the observed data
given ψ, and (iii) that the likelihood is peaked around
its most probable value (Lehmann and Casella 1998;
Brunel and Nadal 1998; Huang and Zhang 2018). The
skyline-based inference problems that we consider here
automatically satisfy (i) and (ii) as these models belong
to an exponential family. Condition (iii) is satisfied for
moderate to large trees (and asymptotically) (Lehmann
and Casella 1998; Parag and Pybus 2019).

Using the above approximations, we derive the
interesting expression

	I=I(I+P)−I(I)=E0
[−log�

]
, (7)

which suggests that our ratio directly measures the
excess mutual information introduced by the prior,
providing a substantive link between how sharper
estimate precision is attained with extra mutual
information. Observe that both sides of Equation
(7) diminish when P(ψ)�I(ψ). Because the mutual
information and its approximations (see Equation (6))
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are invariant to invertible parameter transformations
(Huang and Zhang 2018), our coalescent information
ratio does not depend on whether we infer N , its inverse,
or its logarithm.

Moreover, we can use normalizing transformations
to make � valid at even small tree sizes. In (Slate,
1994), several such transformations for exponentially
distributed models like the coalescent are derived.
Among them, the logarithmic transform can achieve
approximately normal log-likelihoods for about seven
observations and above (n≥8). Thus, logN , which is
also optimal for experimental design (Parag and Pybus
2019), ensures the validity of � on small trees. This
is the parametrization adopted by the Skyride and
Skygrid methods (Minin et al. 2008). Other (cubic-root)
parametrizations under which�would be valid at even
smaller n also exist (Slate 1994).

Equations 4–7 are not restricted to coalescent inference
problems and are generally applicable to statistical
models that involve exponential families (Lehmann
and Casella 1998). We now specify � for skyline-
based models, which all possess piecewise-constant
population sizes and orthogonal I(ψ) matrices (Parag
and Pybus 2019). These properties permit the expansion
(Ipsen and Rehman 2008):

det[I(ψ)+P(ψ)]=det[I(ψ)]+det[P(ψ)]+
p−1∑
j=1


j,

with 
j =
∑

di1 ...dij det
[
P(ψ)ī1...īj

]
,

where dk are the diagonal elements of I(ψ) with 1≤
i1<...< ij ≤p, and P(ψ)ī1...īj

is the sub-matrix formed
by deleting the (i1, ..., ij)th rows and columns of P(ψ).

This allows us to formulate a prior signal-to-noise ratio

r=
p∏

j=1

d−1
j

⎛
⎝det[P(ψ)]+

p−1∑
k=1


k

⎞
⎠ �⇒�=

√
1

1+r
, (8)

which quantifies the relative excess Fisher information
(the “signal”) that is introduced by the prior. This
ratio signifies when the prior contribution overwhelms
that of the data i.e., r>1 ⇐⇒�2< 1

2 . Having derived
theoretically meaningful metrics for resolving prior-
data precision contributions, we next investigate their
ramifications.

The Kingman Conjugate Prior
Kingman’s coalescent process (Kingman 1982), which

describes the phylogeny of a constant sized population
N1, is the foundation of all skyline model formulations.
Specifically, a p-dimensional skyline model is analogous
to having p Kingman coalescent models, the jth of which
is valid over [�j−1,�j) and describes the genealogy under
population size Nj. Here, we use Kingman’s coalescent

to validate and clarify the utility of � as a measure of
relative data-prior precision contributions.

We assume an n-tip Kingman coalescent tree, T and
initially work with the inverse parametrization, N−1

1 .
We scale T at t by

(lt
2
)

as in (Parag and Pybus, 2017)

so that
(lci−1

2

)
(ci −ci−1)∼exp(N−1

1 ) for 1≤ i≤n−1 with

c0 =0. If y defines the space of N−1
1 values, and has prior

distribution P(y), then, by (Snyder and Miller, 1991), its
posterior distribution is

P(y|T )= Ayn−1e−yT̄P(y)∫∞
0 Ayn−1e−yT̄P(y)dy

with A=
n∏

i=2

(
i
2

)
,

where A is a constant and T̄ is the scaled TMRCA of T .
The likelihood function embedded within P(y|T )

is proportional to a shape-rate parametrized
gamma distribution, with known shape n. The
conjugate prior for N−1

1 is also gamma (Fink
1997) i.e., N−1

1 ∼Gam
(
m0, T̄0

)
with shape m0

and rate T̄0. The posterior distribution is then
N−1

1 |T ∼Gam
(
m+m0, T̄+T̄0

)
with m=n−1 counting

coalescent events in T (Robert 2007). Transforming to
N1 implies N1 |T ∼Gam−1(m+m0, T̄+T̄0

)
. This is an

inverse gamma distribution with mean T̄+T̄0
m+m0−1 , shape

m+m0 and inverse rate T̄+T̄0. If x describes the space
of possible N1 values and �(s) :=∫∞

0 zs−1e−zdz then

P(x|T )= (T̄+T̄0)(m+m0)

�(m+m0)
x−(m+m0+1)e− T̄+T̄0

x .

We can interpret the parameters of the gamma
posterior distribution as involving a prior contribution
of m0 −1 coalescent events from a virtual tree, T0, with
scaled TMRCA T̄0. This is then combined with the
actual coalescent data, which contributes m coalescent
events from T , with scaled TMRCA of T̄ (Robert 2007).
This offers a clear breakdown of how our posterior
estimate precision is derived from prior and likelihood
contributions and suggests that if T0 has more tips than T
then we are depending more on the prior than the data.
We now calculate� to determine if we can formalize this
intuition.

The Fisher information values of N−1
1 are I(N−1

1 )=
mN2

1 and J (N−1
1 )= (m+m0 −1)N2

1 . The information
ratio and mutual information difference,	I, which hold
for all parametrizations, then follow from Equations 4,
7, and 8 as

�2 = 1
1+r

≈1−r, 	I= 1
2

log(1+r)≈ 1
2

r, (9)

with r= m0−1
m , as the effective signal-to-noise ratio.

The approximations shown are valid when r�1.
Interestingly, when m0 −1=m so that r=1, we get
�2 = 1

2 (see Equation (5)). This exactly quantifies the
relative impact of real and virtual observations described
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FIGURE 1. Effect of conjugate prior on Kingman coalescent
estimation. We examine the relative impact on estimate precision
of a conjugate Kingman prior that contributes m0 −1=5 virtual
observations. We work in logN1 for convenience. We compare this prior
to posteriors, which are obtained under observed trees with m=10
(red) and m=100 (yellow) coalescent events. The true value is in black.
The prior contribution decays as �2 increases towards 1.

previously. At this point, we are being equally informed
by both the conjugate prior and the likelihood. Prior
over-reliance can be defined by the threshold condition
of r>1 �⇒�2< 1

2 .
The expression of 	I confirms our interpretation of

r as an effective signal-to-noise ratio controlling the
extra mutual information introduced by the conjugate
prior. This can be seen by comparison with the
standard Shannon mutual information expressions from
information theory (Cover and Thomas 2006). At small
r, where the data dominates, we find that the prior
linearly detracts from �2 and linearly increases 	I. We
also observe that T̄0, the gamma rate parameter, has no
effect on estimate precision or mutual information.

Our information ratio � therefore provides a
systematic decomposition of the posterior population
size estimate precision and generalizes the virtual
observation idea to any prior distribution. In essence,
the prior is contributing an effective sample size, which
for the conjugate Kingman prior is m0 −1. We summarize
these points in Figure 1, which shows the conjugate prior
and two posteriors together with their corresponding�2

values.

Skyline Smoothing Priors
In this section, we tailor � for the BSP, Skyride,

and Skygrid coalescent inference methods. These
popular skyline-based approaches couple a piecewise-
constant demographic coalescent data likelihood
with a smoothing prior to produce population size
estimates that change more continuously with time. The
smoothing prior achieves this by assuming informative

relationships between Nj and its neighboring parameters
(Nj−1,Nj+1). Such a priori correlation implicitly
introduces additional demographic information that is
not available from the coalescent data T . While these
priors can embody sensible biological assumptions,
we show that they may also engender overconfident
statements or obscure parameter non-identifiability.
We propose � as a simple but meaningful analytic for
diagnosing these problems.

We first define uniquely objective (i.e., uninformative)
reference skyline priors, which we denote P∗(ψ). Finding
objective priors for multivariate statistical models is
generally nontrivial, but (Berger et al., 2015) state that if
I(ψ) has form

[
f1(�1)g1(ψ−1), ..., fp(�1)gp(ψ−p)

]
Ip then

P∗(ψ)∝∏p
j=1

√
fj(�j). Here, fj and gj are some functions

andψ−j symbolizes the vectorψ excluding�j. Following
this, we obtain the objective priors

P∗(ψ=N)=Z−1
1

p∏
j=1

N−1
j and P∗(ψ= logN)=Z−1

2 ,

with Z1, Z2 as normalization constants. Given its optimal
properties (Parag and Pybus 2019), we only consider
ψ= logN , and drop explicit notational references to it.
Under this parametrization, I and its expectation with
respect to the prior are equal, that is E0[I]=I0. In
addition, the reference prior in this case is P∗ =0p, with
0p as a matrix of zeros. This yields �=1 by Equation
(4). A uniform prior over log-population space is hence
uniquely objective for skyline inference.

Other prior distributions, which are subjective by
this definition, necessarily introduce extra information
and contribute to the posterior estimate precision. This
contribution will result in �<1. The two most widely
used, subjective, skyline plot smoothing priors are:

(i) the Sequential Markov Prior (SMP) used in the BSP
(Drummond et al. 2005), and

(ii) the Gaussian Markov Random Field (GMRF) prior
employed in both the Skyride and Skygrid methods
(Minin et al. 2008; Gill et al. 2013).

As the SMP and GMRF both propose nearest neighbor
autocorrelations among elements of ψ, tridiagonal
posterior Fisher information matrices result. We
represent these as JSMP and JGMRF, respectively.

The SMP is defined as: P(N)= 1
N1

∏m
j=2

1
Nj−1

e
Nj

Nj−1

(Drummond et al. 2005). It assumes that Nj ∼exp(N−1
j−1)

with a prior mean of Nj−1. An objective prior is used for
N1. To adapt this for logN , we define uj =elogNj+1−logNj =
Nj+1
Nj

for j∈{1,...,p−1}. In the Appendix, we show
how this expression yields Equation A1 and hence
the transformed prior P(logN)=∏p−1

j=1 uje
−uj . We then

take relevant derivatives to obtain JSMP, which for the
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minimally representative p=3 case is written as:

JSMP =

⎡
⎢⎢⎣

m1 + N2
N1

−N2
N1

0

−N2
N1

m2 + N2
N1

+ N3
N2

−N3
N2

0 −N3
N2

m3 + N3
N2

⎤
⎥⎥⎦. (10)

The p>3 matrices simply extend the tridiagonal pattern
of Equation (10).

An issue with the SMP is its dependence on
the unknown “true” demographic parameter values.
As a result, we cannot evaluate (or control) a
priori how much information is contributed by this
smoothing prior. Rapidly declining populations could

feature
Nj+1
Nj
>mj, for example, which would result in

prior over-reliance. Conversely, exponentially growing
populations would be more data-dependent. This likely
reflects the asymmetry in using sequential exponential
distributions. The only control we have on smoothing
implicitly emerges from choosing the number of
segments, p. Some recent implementations of the BSP
include an alternative log-normal prior that links Nj
with Nj−1 (Bouckaert et al. 2019), which is conceptually
similar to the GMRF below.

The possibly strong or inflexible prior assumptions
under the BSP motivated the development of the
GMRF for the Skyride and Skygrid methods (Minin
et al. 2008). The GMRF works directly with logN and
models the autocorrelation between the neighbouring
segments with multivariate Gaussian distributions. The
GMRF prior (Minin et al. 2008) is defined as P(logN)=
Z−1�

p−2
2 e− �

2
∑p−1

j=1 
−1
j (logNj+1−logNj)2

. In this model, Z is a
normalization constant, � a smoothing parameter, to
which a gamma prior is often applied, and the j values
adjust for the duration of the piecewise-constant skyline
segments. Usually, either (i) j is chosen based on the
inter-coalescent midpoints in T or (ii) a uniform GMRF
is assumed with j =1 for every j∈{1, ...,m−1}.

Similarly, we calculate JGMRF for the p=3 as:

JGMRF =
⎡
⎢⎣

m1 + �
1

− �
1

0

− �
1

m2 + �
1

+ �
2

− �
2

0 − �
2

m3 + �
2

⎤
⎥⎦. (11)

The appendix provides the general derivation for any
p≥3. As � is arbitrary and the j depend only on T , the
GMRF is insensitive to the unknown parameter values.
This property makes it more desirable than the SMP and
gives us some control (via �) of the level of smoothing
introduced. Nevertheless, the next section demonstrates
that this model still tends to over-smooth demographic
estimates.

We diagonalize JGMRF and JSMP to obtain matrices of
form J =SQSᵀ. Here S is an orthogonal transformation
matrix (i.e., |det[S]|=1) and Q=[�1, ...,�p]Ip with �j
as the jth eigenvalue of J . Since det[J]=det[Q], we
can use Equation 4 to find that �=∏p

j=1
√

mj/�j. This

FIGURE 2. Uncertainty ellipses for SMP and GMRF. We show the
improvement in asymptotic precision rendered by use of a smoothing
prior for a p=2 segment skyline inference problem. The prior informed
ellipse (red) is smaller in volume and has skewed principal axes relative
to the purely data informed one (blue). All ellipses represent 99%
confidence with the xj indicating coordinate directions about their
means, which are the log population sizes, logNj . The covariance that
smoothing introduces controls the skew of these ellipses. Here, �2 =
1/2, m=40 (total coalescent event count) and a=10 (this controls the
prior influence see Equation 12). Larger a values lead to over-reliance
on the smoothing prior.

equality reveals that �j acts as a prior perturbed version
of mj. When objective reference priors are used we
recover mj =�j and �=1. We can use the S matrix
to gain insight into how the GMRF and SMP encode
population size correlations. The principal components
of our posterior demographic estimates (which are
obtained from P(logN |T )) are the vectors forming the
axes of the uncertainty ellipsoid described by J .

These principal component vectors take the form
{e1, ...,ep}={(logN1,0,...,0)ᵀ, ...(0,0,..., logNp)ᵀ} when
we apply the reference prior P∗(logN). Thus, as we
would expect, our uncertainty ellipses are centered on
the parameters we wish to infer. However, if we use
the GMRF prior these axes are instead transformed to
{Se1, ...,Sep}. These new axes are linear combinations
of logN and elucidate how smoothing priors share
information (i.e., introduce autocorrelations) about logN
across its elements. These geometrical changes also
hint at how smoothing priors influence the statistical
properties of our coalescent inference problem.

To solidify these ideas, we provide a visualization of
� and an example of S. We consider the simple p=2
case, where the posterior Fisher information and � for
the GMRF and SMP both take the form:

J =
[

m1 +a −a
−a m2 +a

]
�⇒�2 = 1

1+a m1+m2
m1m2

, (12)
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with a= �
1

for the GMRF and a= N2
N1

for the SMP. The
signal-to-noise ratio is r=a m1+m2

m1m2
(see Equation 9), and

performance clearly depends on how the m coalescent
events in T are apportioned between the two population
size segments.

We can lower bound the contribution of these priors
to � under any (m1,m2) settings by using the robust
coalescent design from (Parag and Pybus, 2019). This
stipulates that we define our skyline segments such
that m1 =m2 = m

2 in order to optimize estimate precision
under T . At this robust point, we also find that
max{mj}�2 (or min{mj}r) is attained. Figure 2 gives the
uncertainty ellipses for this robust p=2 model at a=
m
4 . These are constructed in coordinates x=[x1, ...,xp]
centered about population size means logN as (x−
logN)ᵀX (x−logN)=c with c controlling the confidence
level.

Here X is either I or J . Because I is diagonal
the data-informed confidence ellipse has principal axes
aligned with logN . The covariance among population
size segments in J , which is induced by the smoothing
prior, skews these principal axes. We can see this by
diagonalizing J at m1 =m2 = m

2 and for every r to obtain:

Q=
[m

2 0

0 m
2 +2a

]
and S=

[
cos(�4 ) −sin(�4 )

sin(�4 ) cos(�4 )

]
. (13)

Applying S, we find that the axes of our uncertainty
ellipse (as visible in Figure 2) have changed from

{
(

logN1
0

)
,
(

0
logN2

)
} to {

(
logN1−logN2

0

)
,
(

0
logN1+logN2

)
}.

Sums and differences of log-populations are now the
parameters that can be most naturally estimated under
the SMP and GMRF. The reduction in the area of the
ellipses of Figure 2 is a proxy for �.

The Dangers of Smoothing
Having defined ratios for measuring the contribution

of smoothing priors to the precision of estimates, we
now use them to explore and expose the conditions
under which prior over-reliance is likely to occur in
practice. We assume that skyline segments are chosen
to satisfy the robust design mj = m

p for 1≤ j≤p (Parag
and Pybus 2019), with p as the total number of skyline
segments. We previously proved that robust designs,
at p=2, minimize dependence on the prior (maximize
�). While this is not the case for p>2, in Figure A1 of
the Appendix, we illustrate that the maximal � point is
generally well approximated by this robust setting. The
� values computed here are therefore conservative for
most {mj} settings. Other experimental designs rely more
on the prior.

As in Equation 5, we use the �2 = 1
2 threshold to

diagnose when the coalescent data T (likelihood)
and prior are equally influencing demographic
posterior estimate precision. At �2 = 1

2 the total

Fisher information doubles since det[J ]=2det[I].
We previously uncovered the importance of this
threshold in the Kingman conjugate prior problem,
where it signified an equality between the number of
pseudo and real samples contributed by the prior and
data, respectively. As �2 = 1

1+r (see Equation 8), this
setting is also meaningful because it achieves a unit
signal-to-noise ratio for any skyline-based model.

We first reconsider the p=2 case of Equation 12,
where a controls the prior contribution to J . Here
�2 = 1

2 suggests a= m
4 , which implies that we are overly-

reliant on smoothing when a is larger than 1
4 of the total

observed coalescent events. This occurs when N2 ≥ m
4 N1

or �≥ m
4 1, for the SMP and GMRF respectively. The

improved precision due to the prior at this m/4 threshold
is shown in Figure 2. The relative ellipse area (and hence
�) will shrink further as we deviate from robust designs.

As the number of skyline segments, p, increase,
smoothing becomes more influential and can promote
misleading conclusions. For the p>2 cases, we will only
examine the GMRF, since the SMP has the undesirable
property of dependence on the unknown Nj values. To
better expose the impact of the smoothing parameter �,
we will assume a uniform GMRF ({j}=1) so that JGMRF
then only depends on {mj} and �. We compute r and
hence �, at various p. For example, we find that

r |p=3 =
(

27/m2
)
�2 +(

12/m
)
� and

r |p=4 =
(

256/m3
)
�3 +

(
160/m2

)
�2 +(

24/m
)
�,

under the robust design. Interestingly, the order of the
polynomial dependence of r (and hence�) on � increases
with p. We find that this trend holds for any {mj} design.
We will use the term robust � for when � is calculated
under a robust design.

Figure 3 plots the robust � against � and p for the
uniform GMRF. A key feature of Figure 3 is the steep
p-dependent decay of� relative to the�2 = 1

2 threshold,
which exposes how easily we can be unduly reliant on
the prior, as p increases. Given a phylogeny T , increasing
the complexity of a skyline-based model enhances
the dependence of our posterior estimate precision
on the smoothing prior. This pattern is intuitive as
fewer coalescent events now inform each demographic
parameter (Parag and Pybus 2019). However, � decays
with surprising speed. For example, at p=20 (the lowest
curve in Figure 3), we get �<0.1 for �=1 and m=100.
Usually, �has a gamma-prior with mean of 1 (Minin et al.
2008). We show the corresponding mutual information
increases due to these GMRF priors in Figure A2 of the
Appendix.

While Figure 3 might seem specific to the uniform
GMRF, it is broadly applicable to the BSP, Skyride, and
Skygrid methods. We now outline the implications of
Figure 3 for each of these skyline-based approaches.
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FIGURE 3. The impact of smoothing priors increases with skyline
complexity. For the GMRF, we find that for a fixed �/m (ratio of
smoothing parameter to total coalescent event count), � significantly
depends on the complexity, p, of our skyline. The colored� curves are
(along the arrow) for p=[2,4,5,10,20] at m=100 with mj =m/p as the
number of coalescent events per skyline segment. The dashed�2 =1/2
line depicts the threshold below which the prior contributes more than
the coalescent data to posterior estimate precision (asymptotically). For
a given tree and �, the larger the number of demographic parameters
we choose to estimate, the stronger the influence of the prior on those
estimates.

(1) Bayesian Skyline Plot. This method uses the SMP,
which depends on the unknown Nj values. However,
the results of Figure 3 remain valid if we set � to

min{1≤j≤p−1}
Nj+1
Nj

, which results in the smallest non-
data contribution to Equation 10. This follows as
JGMRF and JSMP have similar forms. While this
choice underestimates the impact of the SMP, it still
cautions against high-p skylines and confirms suspected
BSP issues related to poor estimation precision when
skylines are too complex, or the coalescent data are not
sufficiently informative (Ho and Shapiro 2011). However,
good use of the BSP grouping parameter (Drummond
et al. 2005), which sets p<m, could alleviate these
problems.

(2) Skyride. When this method uses the uniform GMRF,
all results apply exactly. In its full implementation, the
Skyride employs a time-aware GMRF that sets j based
on T and estimates � from the data (Minin et al. 2008).
However, even with these adjustments, the GMRF can
over-smooth, and fail to recover population size changes
(Ho and Shapiro 2011; Faulkner et al. 2019). Our results
provide a theoretical grounding for this observation. The
Skyride constrains p=m and then smooths this noisy
piecewise model. Consequently, it constructs a skyline
which is too complex by our measures (the lowest curve
in Equation 3 is at p= m

5 ). By rescaling the smoothing
parameter to min{1≤j≤p−1} �j

, the � curves in Figure 3
upper bound the true� values of the time-aware GMRF.

(3) Skygrid. This method uses a scaled GMRF. For a tree
with TMRCA T, the Skygrid assumes new population

size segments every T
p time units (Gill et al. 2013).

As a result, every j = T
p and the time-aware GMRF

becomes uniform with rescaled smoothing parameter
�
p . Therefore, the conclusions of Figure 3 hold exactly
for the Skygrid, provided the horizontal axis is scaled
by p. This setup reduces the rate of decay but the �
curves still caution strongly against using skylines with
p≈m. Unfortunately, as its default formulation sets p to 1
less than the number of sampled taxa (or lineages) (Gill
et al. 2013), the Skygrid is also be vulnerable to prior
over-reliance.

The popular skyline-based coalescent inference
methods therefore all tend to over-smooth, resulting in
population size estimates that can be overconfident or
misleading. This issue can be even more severe than
Figure 3 suggests since in current practice p is often close
to m and non-robust designs are generally employed.
Further, skylines are only statistically identifiable if every
segment has at least 1 coalescent event (Parag and
Pybus 2019; Parag et al. 2020). Consequently, if p>m
is set, smoothing priors can even mask identifiability
problems. We recommend that m

p ≥�>1 must be
guaranteed and in the next section derive a model
rejection guideline for finding�, the suggested minimum
number of coalescent events per skyline segment, and
diagnosing prior over-reliance.

Prior Informed Model Rejection
We previously demonstrated how commonly-used

smoothing priors can dominate the posterior estimate
precision when coalescent inference involves complex,
highly parametrized (large-p) skyline models. Since data
are more influential than the prior when �2>1/2, we
can use this threshold to define a simple p-rejection
policy to guard against prior over-reliance. Assume
that the J matrix resulting from our prior of interest
is symmetric and positive definite. This holds for the
GMRF and SMP. The standard arithmetic–geometric

mean inequality, det[J ]≤
(

1
p tr[J ]

)p
, then applies with

tr denoting the matrix trace. Since tr[J ]=m+tr[P], we
can expand this inequality and substitute in Equation 4

to get �2 ≥
(

1
p
(
m+tr[P]

))−p∏p
j=1mj.

Since this inequality applies to all {mj}, we can
maximize its right hand side to get a tighter lower bound
on �2. This bound, termed ω2, is achieved at the robust
design mj = m

p and is given by

ω2 =
(

m
m+tr[P]

)p
�⇒ p∗ =argmax

p≤m
ω2 ≥b. (14)

We define b≥1/2 as a conservative model rejection
criterion with ω2 ≥b implying that �2 ≥b. If p∗ is the
largest p satisfying these inequalities (see Equation 14,
arg indicates argument), then any skyline with more
than p∗ segments is likely to be overly dependent on the
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FIGURE 4. Bounding skyline complexity using the prior-data
tradeoff. For the GMRF with uniform smoothing, we show how
the maximum number of recommended skyline segments, p∗ (red),
decreases with prior contribution (level of smoothing, i.e., increasing
�
m ). Hence the minimum recommended number of coalescent events
per segment,�= m

p∗ (blue), rises. Here, we use theω2 ≥b=1/2 boundary

(Figure 14), which approximates �2 and provides a more easily
computed measure of prior-data contributions. At larger b the p∗ at
a given �/m decreases. The p∗ measure provides a model rejection tool,
suggesting that models with p>p∗ should not be used, as they would
risk being overly informed by the prior.

prior and should be rejected under the current coalescent
data or tree.

Alternatively, we recommend that skylines using a
smoothing prior (with matrix P) should have at least �=
m
p∗ events per segment to avoid prior reliance. The p≤m
condition in Equation 14 ensures skyline identifiability
(Parag and Pybus 2019) and generally p∗ ≤ m

2 (i.e., �>1).
The dependence of ω2 on tr[P] means that additions
to the diagonals of P necessarily increase the precision
contribution from the prior. This insight supports our
previous analysis, which used � from the uniform
GMRF to bound the performance of the SMP and time-
aware GMRF. In the Appendix (see Equation A2) we
derive analogous rejection bounds based on the excess
mutual information, 	I, from Equation 7. There we
find that p acts like an information-theoretic bandwidth,
controlling the prior-contributed mutual information.

Equation 14, which forms a key contribution of this
work, can be computed and is valid for any smoothing
prior of interest. For the uniform GMRF where tr[P]=
2�(p−1), we get ω2 =

(
m

m+2�(p−1)

)p
. Note that ω2 =1

here whenever p=1 or �=0, as expected (i.e., there
is no smoothing at these values). In Figure A4 of the
Appendix, we confirm that ω2 is a good lower bound of
�2. We enumerateω2 across � and p, for an observed tree
with m=100, to get Figure 4, which recommends using
no more than p∗ =19 segments (�≈5.3). In Figure A5, we
plot p∗ curves for various m and �, defining boundaries
beyond which skyline estimates will be overly dependent
on the GMRF.

In the Appendix, we further analyze Equation 14
for the uniform GMRF to discover that �2 is bounded
by curves with exponents linear in � and quadratic in
p (see Equation A3). This explains how the influence
of smoothing increases with skyline complexity and
yields a simple transformation �→ �

2p(p−1) , which can
negate prior over-reliance. For comparison, the Skyride
implements �→ �

p . The marked improvement, relative
to Figure 3, is striking in Figure A3. Other revealing
prior-specific insights can be obtained from Equation 14,
reaffirming its importance as a model rejection statistic.

Our model rejection tool of Equation 14 can serve as a
useful diagnostic for skyline over-parametrization, and
as a precaution against prior over-reliance. However, we
do not propose p∗ as the sole measure of optimal skyline
complexity; because while p∗ warns against the prior
being too relatively influential, it does not guarantee
any absolute estimate precision. For example, a small
(m,�) pair might produce the same p∗ as a larger pair.
Choosing an optimal p in a data-justified manner is an
open problem that is still under active study (Parag and
Donnelly 2020). We next illustrate how �2, via its more
easily computed approximation, ω2, can be practically
applied to detect and reject over-smoothed skyline plot
models, using data sets that are commonly employed
to evaluate the performance of coalescent demographic
inference.

Illustrative Examples: Egyptian HCV and Beringian Bison

We validate the practical utility of ω2 (and hence
�2), as a diagnostic of prior over-dependence, by
investigating changes in effective population size
inferred from the well-studied Egyptian HCV-4 (Pybus
et al. 2003) and Beringian steppe bison (Shapiro et al.
2004) data sets. The first consists of 63 partial sequences
of HCV genotype 4 and was previously analyzed in
(Pybus et al., 2003) using a coalescent model with a
parametric demographic function that featured periods
of constant population size separated by a phase of
exponential growth. The second data set comprises
152 modern and partial mtDNA and was investigated
in (Shapiro et al., 2004), where skyline plot models
confirmed a demographic history of exponential growth
then decline (boom-bust) with an additional bottleneck
dynamic (Drummond et al. 2005). These two data sets
have since been re-examined under various alternate
models in (Minin et al., 2008), (Gill et al., 2013), (Parag
et al., 2020) and several other studies.

We simulated 100 trees with m+1=n=63 and 152
tips, using the software package MASTER (Vaughan
and Drummond 2013), according to inferred HCV
and bison population size trends, respectively. The
HCV population size trend that we simulated from
is provided in (Pybus et al., 2003). We inferred the
population size trend of the bison data set using the
BSP (with sequential Markovian prior) in accordance
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with published analyses (Drummond et al. 2005). We
used 20 population groups and the optimal design from
(Parag and Pybus 2019) to ensure that we captured
complex bison population dynamics reliably. As our
focus is on exploring the behavior of skylines and ω2

given a particular underlying population size trend and
not the uncertainty associated with that trend, we used
the posterior mean (HCV) or median (bison) of these
inferred trends for simulating trees and do not consider
genealogical uncertainty.

The simulated set of coalescent trees from each data
set provide an approximate measure of the coalescent
variance that could arise from the inferred underlying
population size trends. We then estimated logN from
every simulated tree using various skyline models
with time-aware GMRF smoothing priors, as in (Minin
et al., 2008). We varied the relative contributions of
the coalescent data and GMRF to our posterior log-
population size estimates by changing either the skyline
dimension, p, or the GMRF smoothing parameter �. As
m is fixed for a given data set and robust designs are
applied, increasing the number of coalescent events in
each segment, mj, reduces p.

We analyzed every tree over all combinations of mj ∈
{1,2,4,8} across a wide range of �. For comparison, we
also generated purely data-informed estimates of logN ,
for the same mj, by replacing the subjective GMRF with a
uniform, objective prior. We computedω2 from Equation
14 for these settings in Figure 5 and observe that, as
expected, it decreases with both � and p (i.e.,ω2 increases
with mj). Practical analyses of these data sets using
Skyride or Skygrid approaches, would choose or infer a
� value and set p≈m. However, Figure 5 shows �= m

p∗ >1
and hence mj>1 events per skyline parameter are often
necessary to achieveω2 ≥1/2. This raises questions about
the validity of the common practice of applying these
methods using their default settings.

Figure 5 confirms that the recommended maximum
skyline dimension p∗ falls and hence the minimum
allowable number of coalescent events per segment
mj grows as the smoothing parameter � increases. We
demonstrate the qualitative difference in skyline-based
estimates between p values on either side of the p∗
criterion for a single simulated HCV and bison tree in
Figure 6. In panels A and C, we present the Skyride
estimate, which uses mj =1 and implements p>p∗, at
the chosen � values (0.05 and 1). Contrastingly, in B and
D, we illustrate an equivalent skyline with a different mj,
which achieves p<p∗ at this same �, according to our ω2

metric (see the mj =4 and mj =2 curves at �=0.05 and 1 in
panels A and B of Figure 5, respectively). We overlay the
corresponding skyline (with the same mj) obtained with
an objective uniform prior, to visualize the uncertainty
engendered from the coalescent data alone.

At mj =1 (panels A and C of Figure 6), the
uniform prior produces a skyline that infers more
rapid demographic fluctuations through time than that

estimated with the GMRF prior. Further, the 95% HPD
intervals from the uniform prior (red) are substantially
wider than those from the GMRF prior (blue) in both
examples, highlighting the marked contribution of the
time-aware GMRF prior to posterior estimate precision.
While this smoothed trajectory looks reliable we argue
that, because p>p∗ (and hence ω2< 1

2 ), it is difficult
to justify using the data alone and that the prior is
responsible for too much of the estimate precision. In
contrast, at mj =4 and mj =2 (panels B and D of Figure 6),
which apply p<p∗, both prior distributions yield more
similar skylines, implying that GMRF smoothing has not
substantially inflated posterior estimate precision.

Under these settings, we have fewer demographic
fluctuations than for mj =1 because 4 and 2 times
more coalescent events are informing each parameter
or skyline segment, respectively. We achieve smaller
uncertainty than mj =1 with a uniform prior (which is
overfitted) but without excessively relying on the GMRF
smoothing, which at mj =1 is likely underfitting. The ω2

metric and hence p∗ criterion help us better balance data,
noise, and our prior assumptions. In contextualizing
these results it is important to note that skyline plots
provide harmonic mean and not point estimates of
population size (Pybus et al. 2000). Consequently, we
are inferring sequences of means from our coalescent
data, which a priori may not need to conform to a smooth
pattern.

The HCV example shows that for times beyond t>100
years there are so few events that it is more sensible to
estimate a single mean (panel B), which we are confident
in across this period, as opposed to several less certain
and overfitted means (panel A). In contrast, for the
bison example, the bottleneck over 104< t<2×104 years
is over-smoothed (panel C), despite many coalescent
events occurring in that region. The simple correction
of extending our harmonic mean over 2 events (panel D)
restores the necessary fall in population size. Deciding
on how to balance uncertainty with model complexity is
non-trivial and, as shown in these examples, caution is
needed to avoid misleading conclusions. We posit thatω
(and hence �) can help formalize this decision-making
and improve our quantification of the uncertainty across
skyline plots.

Having confirmed � as a credible measure of relative
uncertainty, we briefly explore how it relates to more
easily ascertained measures of uncertainty. For each
simulated coalescent tree in the HCV example above, we
computed� (via Equation 4) and two ancillary statistics
based on the 95% highest posterior density (HPD)
intervals of the logN estimates. These are the median
HPD ratio q0.5 and the relative HPD product (across the
skyline segments) H�,m, which are formulated as:

q0.5 =medj

{
H

j
�,m := Hj

�,m

Hj
m

}
and H�,m =∏m

j=1H
j
�,m,
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FIGURE 5. Model rejection statistics for the HCV and bison data sets The metric ω2 is calculated for each tree (see Equation 14) under a time-
aware GMRF for various combinations of its smoothing parameter � and mj , the number of coalescent events per skyline segment. The box-plots
summarize the resulting ω2 over 100 simulated trees that represent the demographic histories of the (A) Egyptian HCV and (B) Beringian bison
data sets. The solid lines link the median values across boxes for a given mj and hence skyline dimension p (mj = m

p ). We discourage the use of

skyline models with ω2< 1
2 .

with med indicating the median value of a set. Here Hj
�,m

is the 95% HPD interval of logNj under a GMRF with

smoothing parameter � and Hj
m is the equivalent HPD

when the objective uniform prior is applied instead.
The 95% HPD interval is closely connected to the

inverse of the Fisher information matrices that define
� and, further, describes the most visually conspicuous
representation of the uncertainty present in skyline plot
estimates. Comparing � to these ancillary statistics,
which evaluate the median and total 95% uncertainty of
a skyline plot, allows us to contextualize� against more
relatable (though different) and obvious visualizations
of posterior performance. We present these comparisons
in Figure A6 of the Appendix. There we find that all
statistics monotonically decay with � that is as the time-
aware GMRF becomes more informative. The sharpness
of this decay is highly sensitive to mj. Larger mj means
that more coalescent data are informing each estimated
parameter (smaller p).

The reduced decay with mj supports our assertion
that p acts as an exponent controlling prior over-reliance
(see Fig. 3). The gentler decay of q0.5 (relative to � and
H�,m), which largely does not account for p, confirms
that we could be misled in our understanding of the
impact of smoothing if we neglected skyline dimension.
In contrast � and H�,m, which both measure, in some
sense, the relative volumes of uncertainty across the
entire skyline-plot due to the data alone and the data and
prior, fall more significantly and consistently. At mj =1
(p=m), which is the most common setting in the Skyride
and Skygrid methods, both statistics are markedly below
1
2 and posterior estimates will often be too dependent
on the prior. This high-p behavior is also indicative of

model overparametrization (Parag and Donnelly, 2020).
Our metric � therefore relates sensibly to visible and
common proxies of uncertainty.

DISCUSSION

Popular approaches to coalescent inference, such
as the BSP, Skyride, and Skygrid methods, all rely
on combining a piecewise-constant population size
likelihood function with prior assumptions that enforce
continuity. This combination, which is meant to
maximize descriptive flexibility without sacrificing the
smoothness that is expected to be exhibited by real
population size curves over time, has led to many
insights in phylodynamics (Ho and Shapiro 2011).
However, it has also spawned concerns related to over-
smoothing and lack of methodological transparency
(Minin et al. 2008; Faulkner et al. 2019). In this work, we
attempted to address these concerns by deriving metrics
for diagnosing and clarifying the existing assumptions
present in current best practice.

Detecting and correcting for underfitting or over-
smoothing is crucial if reliable and meaningful
assessments of the effective population size changes of
a species or pathogen of interest are to be made from
sequence data. Abrupt changes in effective population
size are not only biologically plausible but may also
signal key events that have shaped the demographic
histories of populations (Pyron and Burbink 2013). In
ecology, identifying rapid extinctions and bottlenecks
in diversity might signify the impact of environmental
change or anthropogenic influences (e.g., hunting or
changes in land use) (Stiller et al. 2010; Thomas et al.
2019). Similarly, in epidemiology, sharp fluctuations in
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FIGURE 6. HCV and bison demographic estimates under GMRF and uniform priors. We analyze demographic estimates under time-aware
GMRF priors (blue) and objective uniform priors (red) for a single tree simulated under the demographic scenarios inferred from the Egyptian
HCV (A) and (B) and Beringian bison (C) and (D) data sets. In (A) and (C), we present Skyride estimates, which use mj =1 and �=0.05 (A) and
1 (C). These skylines have dimension p that is larger than our maximum recommended dimension p∗, which is computed from Figure 5. In (B)
and (D), we re-estimate population size at mj =4 (B) and 2 (D). These groupings of coalescent events achieve p<p∗ as justified by our ω2 metric
(see Equation 14). Solid lines are posterior medians while semi- transparent blocks are the 95% HPD intervals.

the prevalence of an infection might support hypotheses
about emergence in novel populations, seasonality, the
effect of interventions, vaccines, or drug treatments.
Further, rapid exponential growth of any population
may, when observed over a longer timescale, appear as
a near-stepwise transition in population size.

Underfitting or over-smoothing these changes would
limit understanding of the dynamics of the study
population and could affect conclusions about the
potential causative factors that influenced those
dynamics. However, recognizing when commonly used
methods for inferring these demographic trends are
over-smoothing is difficult. By capitalizing on (mutual)
information theory and (Fisher) information geometry,
we formulated the novel coalescent information ratio,
�, which provides a rigorous means of solving this
over-smoothing problem. This ratio describes both the
proportion of the asymptotic uncertainty around our

posterior estimates that is due solely to the data
and the additional mutual information that the prior
assumptions introduce.

We derived analytic expressions for � for the BSP,
Skyride, and Skygrid estimators of effective population
size, which combine piecewise skyline likelihoods with
either SMP or GMRF smoothing priors. We also showed
that � has an exact and intuitive interpretation as the
ratio of real coalescent events to the sum of real and
virtual (prior-contributed) ones in a Kingman coalescent
model. Using �2 =1/2 as a threshold delimiting when
the prior contributes as much information as the
coalescent data, we found that it is easy to become
overly dependent on prior assumptions as the skyline
dimension, p, increases (for a fixed tree size). This central
result emerges from the drastic reduction in the number
of coalescent events informing on any population size
parameter as p rises. Per parameter, the BSP and Skyride
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use only a few or one event respectively (Minin et al. 2008;
Drummond et al. 2005), while the Skygrid may have no
events informing some parameters (Gill et al. 2013).

These issues can be obscured by current Bayesian
implementations, which can still produce apparently
reasonable population size estimates, at least visually,
as illustrated in our simulated HCV and bison case
studies. Our simulations indicate that analyses that
combine maximally parametrized skylines (one event
per segment or parameter) with GMRF smoothing can
lead to errors in population size inference. For trees
simulated according to the HCV demographic scenario,
estimates were likely overfitted in the far past, inflating
HPDs, but over-smoothed towards the present. The
resulting skyline uncertainty contrasted that from the
original (Pybus et al. 2003) and later (Parag and Pybus
2017) analyses. In the bison example, we found evidence
for underfitting. The inferred skyline there emphasized
a smoother boom-bust trend with concentrated HPDs.
However, this underestimated the depth of a bottleneck
during which coalescent events were concentrated.

These mismatches between data and smoothing can
be difficult to diagnose and problematic, not just for
prior over-dependence. Low coalescent event counts,
for example, can lead to poor statistical identifiability
(Rothenburg 1971), which might manifest in spurious
MCMC mixing. Consequently, we proposed a practical
p∗ rejection criterion for ensuring that coalescent data is
the main source of inferential information. This criterion,
which was based on an approximation to�2, provided a
way of regularizing skyline complexity. When applied
to our examples it recommended a 4-event skyline
grouping that resulted in demographic reconstructions
that were more consistent with the above mentioned
HCV studies. It also suggested a simple 2-event grouping
that recovered the bison bottleneck dynamic without
generating too much estimate noise.

This p∗ criterion bounds the maximum recommended
skyline dimension for a given data set (tree) size and
provides a usable means of defining the minimum
number of coalescent events, �, which we should allocate
to each skyline segment to guard against too much prior
influence. Since � only requires our computing the sum
of the diagonals of the prior Fisher matrix, it can serve
as a simple rule-of-thumb for sensibly balancing the
prior-data tradeoff in skyline plots (e.g., in the BSP, the
grouping parameter might be set to a value above � to
ensure well-regularized estimates). As we found �2 to
be lower-bounded by more visible measures of skyline
uncertainty, such as the product of relative HPD widths,
useful approximations to p∗ and �may also be computed
from these measures.

Our � metric also provides insight into how we can
alleviate the dramatic impact of skyline complexity on
prior over-reliance. When specialized to the GMRF, for
example, it reveals that we can negate over-smoothing
by scaling the smoothing parameter � with a quadratic
of p. Moreover, it shows that only by increasing the
information available from the sampled phylogeny

can we reasonably allow for more complex piecewise-
constant functions under a given prior. Recent methods,
such as the epoch sampling skyline plot (Parag et al. 2020),
which can double the Fisher information extracted from
a given phylogeny by exploiting the informativeness
of sampling times, would support higher dimensional
skylines. Such approaches have the potential to increase
the contribution of the data without elevating the
influence of the smoothing prior.

While in this article we have applied � to non-
parametric, skyline inference problems in population
genetics, ecology and infectious disease epidemiology,
its general formulation in Equation 4 is more widely
applicable. It can be also applied to coalescent inference
problems where specific parametric models (e.g.,
exponential/logistic growth) are used, in order to
disentangle the contributions of observed data and
the prior distributions over these parameters, though
numerical solutions will likely be necessary. More
generally, our approach is valid for any statistical
problem, provided the Hessian matrices necessary for
deriving the prior and data Fisher information terms
are valid and computable. This is not limited to prior-
data tradeoffs. Similar ratio metrics should be derivable
by comparing Fisher information terms from different
sources (e.g., to test whether one source of data is more
informative than another).

Thus, we have devised and validated a rigorous means
of better understanding, diagnosing and preventing
prior over-dependence. We hope that our statistic, which
clarifies and quantifies the often inscrutable impact of
the prior and data, will help researchers make more
active and considered design decisions when adapting
popular skyline-based techniques. Our work also aligns
with recent studies, which have started to re-examine
both model selection and prior definition (Parag and
Donnelly 2020; Faulkner et al. 2019) in an attempt to
derive more reliable effective population size estimates
from coalescent trees. While we believe that data-driven
conclusions are generally the most justifiable we note
that, in the context of skyline plots, this can be open
to interpretation and the choice of prior is far from
trivial.
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APPENDIX

Smoothing Prior Fisher Information Matrices
Here, we derive the prior-informed Fisher information

matrices for the SMP and GMRF smoothing priors. We
start by finding the log-population size transformed
version of the SMP smoothing prior. We then calculate
its Hessian to get P , and so obtain the general form
of Equation 10. The SMP is given in (Drummond

et al., 2005) as f (N)= 1
N1

∏m
j=2

1
Nj−1

e
Nj

Nj−1 . We define

η=�(N) := logN so that its inverse �−1(η)=eη. These
expressions are in vector form so η=[�1, ...,�p]=
[logN1, ..., logNp]. We want the transformed prior g(η).
Applying the multivariate change of variables formula
gives g(η)= f (eη)|det

[
	�−1]|, with	�−1 =[e�1 , ...,e�p ]Ip

as the Jacobian of �−1. This implies that |det
[
	�−1]|=

e
∑p

j=1�j . Substituting gives the SMP log-prior:

log g(η)=�p −�1 +
p∑

j=2

−e�j−�j−1 . (A1)

We can then obtain P =−∇G, with G= log g(η). The
diagonals of P are: ∂2G/∂�2

j =−e�j−�j−1 −e�j+1−�j for

2≤ j≤p−1, ∂2G/∂�2
1 =−e�2−�1 and ∂2G/∂�2

p =−e�p−�p−1 .
The non-zero off-diagonal terms are: ∂2G/∂�j�j+1 =
e�j+1−�j and ∂2G/∂�j�j−1 =e�j−�j−1 . The result is a
symmetric tridiagonal matrix that has zero row and
column sums. The P matrix is then added to the
Fisher information matrix I =[m1, ...,mp]Ip (with mj as
the number of coalescent events informing on the jth
parameter), to get JSMP.

We now compute JGMRF, which is given in the
main text as Equation (11). For the GMRF g(η)=
Z−1�

p−2
2 e− �

2
∑p−1

j=1 
−1
j (�j+1−�j)2

(Minin et al. 2008) and so

G=−logZ+ m−2
2 log�− �

2
∑p−1

j=1
(�j+1−�j)2

j
. Taking second

derivatives we get diagonal terms of the Hessian, ∇G, as:

∂2G/∂�2
j =−�

(
1/j +1/j−1

)
for 2≤ j≤p−1, ∂2G/∂�2

1 =
− �
1

and ∂2G/∂�2
p =− �

p−1
. The nonzero off diagonal

terms are: ∂2G/∂�j�j+1 = �
j

and ∂2G/∂�j�j−1 = �
j−1

. The
GMRF also gives a symmetric tridiagonal P with row
and column sums of zero. Adding −∇G to the diagonal
I matrix yields JGMRF.

Further Smoothing Results
In the main text, we asserted that the � computed

at the robust point of mj =m/p (Parag and Pybus
2019) generally upper bounds the achievable � values
at other mj settings. Here we provide evidence
for this assertion. While strictly argmax{mj}� �=m/p
(except for p=2), we numerically find that max{mj}�≈
�|{mj= m

p }. We show this for the GMRF under uniform
smoothing in Figure A1. This makes sense as while (for
fixed smoothing parameters) argmax{mj}det[I]= m

p and
argmax{mj}det[J ]= m

p , there is no reason to believe that
this also maximizes their ratio. The sawtooth� curves in
Figure A1 reflect changes in the other {mj} values, given
a fixed m1.

Hence, we used the robust design point in our
calculation of the �2 curves for the GMRF in Figure 3.
The corresponding additional mutual information (	I)
curves for this case are provided in Figure A2. These
show how larger values of the smoothing parameter,
�, directly lead to increases in the relative mutual
information contribution from the prior. Observe that
	I is highly sensitive to the skyline complexity, p, thus
clarifying how estimates from overparametrized skyline
plots can be dominated by prior information.

Interestingly, we can largely negate the impact of
skyline complexity by making � a function of p. In
the main text we explained how the Skyride implicitly
implements the scaling �→ �

p . While this reduces some of
the effect of p shown in Figure 3, it still leads to decaying
curves that can, for a given �, be deceptively dependent
on smoothing. Here we propose the key transformation
�→ �

2p(p−1) , as a means of reducing our smoothing in line
with our skyline complexity. This transformation was
inspired by the dependence of a lower bound on �2,
which we derive in Equation A3 later in the Appendix.
Its striking impact on the spread of curves from Figure
3 is given in Figure A3.

Further Model Selection Bounds
In the the main text, we derived lower bounds on

�2, which led to the model rejection parameter, p∗ (see
Equation 14). Here, we extend and support those results.
In Figure A4, we first show that the bound of Equation
14 is a good measure of the true �2 value, for a skyline
with uniform GMRF smoothing. We used this bound
to define a maximum p, p∗, above which the skyline
would be over-parametrized and susceptible to prior
induced overconfidence. We explore p∗ over � and m for
this GMRF in Figure A5 and observe that p∗ becomes
more restrictive with fewer observed data (coalescent
events) or increased smoothing. This supports � as a
useful measure of prior-data contribution.

Lower bounds on �2 imply upper bounds on the
excess mutual information, 	I (see Equation 7). We
manipulate Equation 14 (under a robust design) to obtain
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FIGURE A1. Robust and�optimal designs. For the GMRF smoothing
prior with j =1 for all j and �=1, we show that the optimal � design
point is not always the same as the robust design point, at which m1

m = 1
p .

The colored� curves are (along the dashed arrow) for p=[2,3,5,6,10]
at m=60, and computed across all partitions for any given m1 (hence
the zig-zagged form). The gray vertical lines mark the robust point for
each � curve, and the black circles give the optimal � points. While
these lines and circles do not always match, both generally feature
approximately the same � values. We found this to be the case across
several m and � values.

FIGURE A2. Prior mutual information increases with
skyline complexity. For the uniform GMRF, we show that under
fixed smoothing (and hence �

m ), the additional mutual information
introduced by the prior, 	I=E0[−log�], significantly increases with
the complexity, p, of our skyline. The colored � curves are (along the
grey arrow) for p=[2,4,5,10,20] at m=100 with mj = m

p (robust design

point). The dashed	I�2 = 1
2 is also given for comparison. Clearly, the

more skyline segments we have for a given tree, the more likely we are
being overly informed by our prior.

the first inequality in Equation A2, with q= tr[P]/m as
follows

	I≤ 1
2

plog
(
1+q

)≤ 1
2

pq. (A2)

FIGURE A3. Negating the impact of skyline dimension. We
show how an appropriate quadratic scaling of the GMRF precision
parameter, �, can remove the complexity (p) induced smoothing
contribution portrayed in Figure 3 of the main text. This scaling
significantly compresses the colored � curves shown, which are for
p=[2,4,5,10,20] at m=100 with mj = m

p (robust design point). The

resulting �2 values are now all comfortably above the 1
2 threshold

and justified by our information theoretic metrics.

FIGURE A4. Lower bounds on �2. For the GMRF smoothing prior
with j =1 for all j and m=200, we compare the lower bound on �2

(red, dashed, see Equation 14) with the actual value of�2 (cyan) at the
robust design point of mj = m

p . We examine all integer p values that are
factors of m, and find that qualitatively similar comparisons hold for
different � and m settings. In general the lower bound (ω2) is a good
approximation to �2.

This expression reveals that p is akin to a signal
bandwidth, by comparison with standard Shannon–
Hartley theory (Cover and Thomas 2006) and is therefore
a key controlling factor in defining how much additional
information the prior will introduce. This supports our
proposed p∗ rejection criterion.

Under the logN parametrization, I and J are
symmetric, positive definite matrices. For such matrices
we can apply a theorem from (Huang and Zhang, 2018),
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FIGURE A5. Maximum p model selection boundary. For the GMRF
smoothing prior with j =1 for all j and at the robust point mj = m

p ,
we compute the maximum allowed number of skyline segments, p∗,
such that �2 ≥ 1

2 . These curves increase with m and decrease with �,
indicating how the prior-data contribution can be used to define model
rejection regions. Skylines with p>p∗ would be overly informed by the
prior and hence should not be used.

which states that	I≤�/2, with �= tr[I− 1
2 PI− 1

2 ]. At the
robust point, we get �= tr[I−1P], which leads to the
second inequality in Equation A2. Thus, our bound is
tighter than that in (Huang and Zhang, 2018), and useful
for broader, future mathematical analyses of 	I. This
inequality also clarifies why m

p is often important for
characterizing performance here.

We can also use the bound of (Huang and Zhang, 2018)
to derive alternate (but slacker) lower bounds on�2. This
gives the first inequality in Equation A3. Applying this
to the uniform GMRF gives the second inequality:

�2 ≥e−pq �⇒�2 ≥e− 2
m p(p−1)�. (A3)

Interestingly, Equation A3 shows that the dependence
of �2 on the smoothing parameter � is at most only
linear, while the dependence on complexity p can be
quadratic. This provides further theoretical backing for
the use of p∗ to reject models and emphasizes how
smoothing can play a deceptively prominent role in the
resulting estimate precision produced under complex
(high-dimensional) skyline plots.

Ancillary Uncertainty Statistics
In the Egyptian-HCV simulated example, we defined

two 95% HPD based ancillary statistics for characterizing
the visual uncertainty present in a skyline plot
demographic estimate. In Figure A6, we plot these
statistics and�2 for various � and mj values under a time-
aware GMRF. We discuss the implications of Figure A6
in the main text but observe here that trends between the
more common (and more easily visualized) HPD based
measures and our novel statistic are largely consistent.

FIGURE A6. Trends in HPD-based statistics and �2 under
various time-aware GMRF settings. The �2 (panel A), median HPD
ratio of logNj (panel B) and HPD product (panel C) statistics are
computed across logNj over various combinations of mj and �.
Box-plots summarize our results over 100 observed coalescent trees
simulated from previously inferred demographic trends found for the
Egyptian HCV data set. Analyses with mj =1 are in dark green, mj =4
in yellow and mj =8 in orange. The solid lines link the median values
across boxes for a given mj value. The dashed line is positioned at the
threshold �2 = 1

2 .
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