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Modeling in-vivo protein-DNA 
binding by combining multiple-
instance learning with a hybrid 
deep neural network
Qinhu Zhang, Zhen Shen & De-Shuang Huang

Modeling in-vivo protein-DNA binding is not only fundamental for further understanding of the 
regulatory mechanisms, but also a challenging task in computational biology. Deep-learning based 
methods have succeed in modeling in-vivo protein-DNA binding, but they often (1) follow the fully 
supervised learning framework and overlook the weakly supervised information of genomic sequences 
that a bound DNA sequence may has multiple TFBS(s), and, (2) use one-hot encoding to encode 
DNA sequences and ignore the dependencies among nucleotides. In this paper, we propose a weakly 
supervised framework, which combines multiple-instance learning with a hybrid deep neural network 
and uses k-mer encoding to transform DNA sequences, for modeling in-vivo protein-DNA binding. 
Firstly, this framework segments sequences into multiple overlapping instances using a sliding 
window, and then encodes all instances into image-like inputs of high-order dependencies using k-mer 
encoding. Secondly, it separately computes a score for all instances in the same bag using a hybrid 
deep neural network that integrates convolutional and recurrent neural networks. Finally, it integrates 
the predicted values of all instances as the final prediction of this bag using the Noisy-and method. 
The experimental results on in-vivo datasets demonstrate the superior performance of the proposed 
framework. In addition, we also explore the performance of the proposed framework when using k-
mer encoding, and demonstrate the performance of the Noisy-and method by comparing it with other 
fusion methods, and find that adding recurrent layers can improve the performance of the proposed 
framework.

Transcription factors can modulate gene expression by binding to specific DNA regions, which are known as 
transcription factor binding site (TFBS). Modeling in-vivo TF-DNA binding, also called motif discovery, is a 
fundamental yet challenging step towards deciphering transcriptional regulatory networks1,2.

In the past decades, the introduction of high-throughput sequencing technologies, especially ChIP-seq.3, dra-
matically increases the amount and spatial resolution of available data, which is helpful for the in-depth study of 
in-vivo protein-DNA binding. However, DNA sequences directly extracted from ChIP-seq cannot precisely rep-
resent TFBS since the outputs of such experiments contain a lot of noisy4. Thus lots of methods have been devel-
oped for precisely predicting protein-DNA binding sites, including conventional algorithms5–9 and deep-learning 
based methods10–12. Not surprisingly, deep-learning based methods are better than conventional algorithms at 
modeling protein-DNA binding. DeepBind10 and DeepSea11 were two famous deep-learning based methods, 
which used convolutional neural network (CNN) to model the binding preference of DNA-proteins with a 
superior performance over conventional methods. DanQ12 designed a hybrid deep neural network to quantify 
the function of DNA sequences, which first used a convolutional layer to detect regulatory motif features from 
DNA sequences, and subsequently employed a bi-directional recurrent layer to capture long-term dependencies 
between motif features. Soon after, a number of deep-learning based methods are proposed for modeling in-vivo 
protein-DNA binding13–17.

Although deep-learning based methods have achieved remarkable performance on modeling in-vivo 
protein-DNA binding, they usually overlook the weakly supervised information of genomic sequences that 
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a bound DNA sequence may have multiple TFBS(s). In consideration of this information, Gao et al.18 devel-
oped a multiple-instance learning (MIL) based algorithm, which combines MIL with TeamD19, for modeling 
protein-DNA binding, and recently Zhang et al.20 also developed a weakly supervised convolutional neural 
network (WSCNN), which combines MIL with CNN, for modeling protein-DNA binding. Moreover, they are 
inclined to use one-hot encoding to encode DNA sequences, which means that it only considers the independ-
ent relationship among nucleotides. However, recent studies have shown that taking into consideration the 
high-order dependencies among nucleotides can improve the performance of modeling protein-DNA bind-
ing21–23. In consideration of this information, Zhou et al.24 evaluated DNA-binding specificities based on mon-
onucleotide (1-mer), dinucleotide (2-mer), and trinucleotide (3-mer) identity, and stated that 2-mer and 3-mer 
may contain implicit DNA shape information and partially capture the effect of the DNA shape variation on 
binding. Zhang et al.25 proposed a high-order convolutional neural network, which first used k-mer encoding to 
transform DNA sequences into image-like inputs of high-order dependencies, and then applied CNN to extract 
motif features from these inputs.

Inspired by the above observation, we extend our previous work WSCNN from three aspects in this paper. 
(1) WSCNN mainly employed CNN to learn motif features from DNA sequences, and did not take into consid-
eration the long-term dependencies between motif features. In the weakly supervised framework, therefore we 
add a bi-directional recurrent layer after the convolutional layer to capture the forward and backward long-term 
dependencies between motif features. (2) WSCNN attempted to use four fusion methods to fuse the predicted 
values of all instances in a bag, and then selected the best one of them as the final prediction. However, it is 
inconvenient for user to decide which one is better, so they have to try the four fusion methods one by one. 
Therefore we offer a better and more robust fusion method Noisy-and26 to replace them. (3) WSCNN, like other 
deep-learning based methods, used one-hot encoding to transform DNA sequences into image-like inputs. 
However, the relationship between nucleotides is not independent in practice. Therefore we use k-mer encoding 
to transform DNA sequences into image-like inputs of high-order dependencies, and explore the performance 
of the proposed framework when using dinucleotide (2-mer) and trinucleotide (3-mer) as inputs in the weakly 
supervised framework. In summary, the proposed framework firstly use the concepts of MIL to segment DNA 
sequences into multiple instances, and adopt k-mer encoding to transform sequences into image-like inputs 
of high-order dependencies, and then design a hybrid neural network to compute a score for all instances, and 
finally employ the Noisy-and method to fuse the predicted values of all instances as the final prediction of a bag. 
We conducted a lot of comparative experiments on in-vivo datasets to show that our proposed framework outper-
forms other competing methods. Besides, we also show the performance gain of the proposed framework when 
using k-mer encoding, and compare the performance of the Noisy-and method with other fusion methods, and 
demonstrate the effectivness of adding recurrent layers.

The rest of the paper is organized as follows. We give a detailed description of the proposed framework, and 
introduce the fusion method Noisy-and in Section II. We give a detailed analysis of the experimental results, and 
discuss the hyper-parameter settings in Section III.

Methods
In this section, we give a detailed description of the proposed framework for modeling in-vivo protein-DNA 
binding. Actually, the task can be thought of as a binary classification problem that separates positive sequences 
(bound) from negative sequences (non-bound). The output of the network is a probability (a scalar in [0, 1]) dis-
tribution over two labels (1/0), since a binary classification problem can be addressed also through a binary out-
put (1/0). This framework includes three stages in general: data processing, model designing, and results merging.

Data processing.  Segmentation.  Considering the weakly supervised information of DNA sequences, thus 
it is reasonable to use the concepts of MIL to deal with DNA sequences. Therefore we divided them into multiple 
overlapping instances following the works18,20, which ensures that (1) the weakly supervised information can be 

Figure 1.  A graphical illustration of data processing when k = 1.
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retained, and that (2) a large amount of instances containing TFBS are generated. This method is defined as a 
sliding window of length c, which divides DNA sequences of length l into multiple overlapping instances by a 
stride s. A bag is composed of all possible instances in the same sequence, and the number of instances in this bag 
is − +⌈ ⌉l c s( )/ 1, where s and c are two hyper-parameters that need to be tuned by cross-validation. If (l − c) is 
not a multiple of s, we pad ‘0’ at the end of DNA sequences.

K-mer encoding.  After segmenting DNA sequences, all instances should be transformed into image-like inputs 
that can be handled by CNN. One-hot encoding is a commonly-used method in deep-learning based methods, 
but it ignores high-order dependencies among nucleotides. In order to capture the dependencies, therefore we 
use the k-mer encoding method25 to transform all instances into image-like matrices of high-order dependencies. 
This method can be implemented according to (1):
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where ∈ − +i c k[1, 1], and c denotes the length of instances, and xi denotes a possible character from {A, C, 
G, T}, and Xi,j denotes a matrix generated by using k-mer encoding. According to the equation, we can find that 
one-hot encoding is a special case of k-mer encoding when k is set to 1. For example, 1-mer encoding: each nucle-
otide is mapped into a vector of size 4 (A → [1, 0, 0, 0]T, C → [0, 1, 0, 0]T, G → [0, 0, 1, 0]T, and T → [0, 0, 0, 1]T); 
2-mer encoding: taking into consideration the dependencies between two adjacent nucleotides, and each dinu-
cleotide is mapped into a vector of size 16 (AA → [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T, ..., TT → [0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 1]T); 3-mer encoding: taking into account the dependencies among three adjacent nucleo-
tides, and each trinucleotide is mapped into a vector of size 64 (AAA → [1, 0, 0, 0, ..., 0, 0, 0, 0, 0], ...,TTT → [0, 0, 
0, 0, ..., 0, 0, 0, 0, 0, 1]).

A graphical illustration of data processing when k = 1 is shown in Fig. 1, where l = 10, c = 8, s = 1, and the red 
dashed box denotes a sliding window of length c = 8. Through this stage, DNA sequences can be encoded into 
image-like inputs that can be easily handled by CNN.

In the implementation code, each instance is firstly encoded into a tensor of shape 1 × 4k × 1 × (c − k + 1) 
(batchsize × channel × height × width), and then all instances of a bag can be concatenated along the height axis. 
Therefore a bag can be represented by a tensor of shape 1 × 4k × n × (c − k + 1), where n is the number of instances 
per bag ( = − +⌈ ⌉n l c s( )/ 1). Details of implementation can refer to our open source code.

Model designing.  Considering the spatial and sequential characteristics of DNA sequences, we design 
a hybrid deep neural network, which integrates convolutional and recurrent neural networks in this stage. 
Convolutional neural network (CNN) is a special version of article neural network (ANN)27–29, which adopts 
a weight-sharing strategy to capture local patterns in data such as DNA sequences. Recurrent neural network 
(RNN) is another variant of ANN where connections between neurons form a directed graph. Unlike CNN, RNN 
can use its internal state (memory) to exhibit dynamic temporal or spatial behavior. In the designed model, the 
convolution layer is used to capture motif features, while the recurrent layer is used to capture long-term depend-
encies between the motif features. The model is arranged in this order: a convolutional layer → a max-pooling 
layer → a dropout layer → a bi-directional recurrent layer → a dropout layer → a softmax layer.

Convolutional layer.  This layer is used to capture motif features, which can be thought of as a motif scanner to 
compute a score for all potential motifs, and often followed by a rectified linear unit30 (ReLU) layer. The early 
work13 has explored the performance of using different number of convolutional kernels, and found that adding 
more kernels can significantly improve performance. Thus the number of kernels was set to a fixed value 16 in the 
proposed framework.

Figure 2.  A graphical illustration of the proposed framework.
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Max-pooling layer.  Both DeepBind and DeepSea used a global max-pooling layer to pick out the maximum 
response of the whole sequence, while our deep model uses a max-pooling layer of a certain size (1, 8) to keep the 
local best values of the whole sequence.

Dropout layer.  Dropout strategy31 is a widely-used regularization technique for reducing overfitting in deep 
neural networks by preventing complex co-adaptations on data, which randomly sets the outputs of the previous 
layer to zero with a dropout ratio. The dropout ratio is a hyper-parameter that was investigated by cross-validation 
in the experiments.

Recurrent layer.  In order to capture the forward and backward long-term dependencies between the motif fea-
tures, a bi-directional recurrent layer composed of long short-term memory (LSTM) units32 is used. A LSTM unit 
usually consists of a cell, an input gate, a forget gate and an output gate, where the cell remembers values over 
arbitrary time intervals and the three gates regulate information flows into and out of the cell. In this paper, we 
did not use a fully-connected layer to follow this layer, as this will result into worse performance. The number of 
neurons in this layer was set to 32, so the output size of this layer is 64.

Softmax layer.  In order to get a probability distribution over two labels which separately represent bound or 
non-bound sequences, a softmax layer is used in this model. It is composed of two neurons, each of which is 
densely connected with the previous layer and computes a probability.

Results merging.  MIL is commonly based on an assumption that a bag is labeled as positive if there is at 
least one instance that contains TFBS, and is labeled as negative if there are no any instances that contain TFBS. 
Therefore the Max function is frequently used as the fusion function in MIL. But Max only focuses on the most 
informative instance and overlooks other instances that may contain useful information. Therefore WSCNN used 
three additional fusion methods (Linear Regression, Average, and Top-Bottom Instances33) to utilize all instances 
that may contain useful information. However, both Average and Linear Regression take advantage of all infor-
mation, inevitably containing useless information, and Top-Bottom Instances needs to manually determine the 
number of the highest and lowest scoring instances. Moreover, how to effectively take advantage of abundant pos-
itive instances is also a key point. To solve the above problems, we find a better and more elegant fusion method, 
named Noisy-and26, which is based on a different assumption that a bag is labeled as positive if the number of 
positive instances in the bag exceeds a threshold. This method is defined as follows:
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where Pi,j denotes the score of the j-th instance at the i-th bag, and ni denotes the number of instances in the i-th 
bag, and Pi  denotes the average score over n instances in the i-th bag. Noisy-and is designed to activate a bag level 
probability Pi once the mean of the instance level probabilities Pi  exceeds a certain threshold. a is a fixed 
hyper-parameter that controls the slope of Noisy-and. bi represents an adaptable soft threshold for each class i and 
needs to be learned during training. σ(a(1 − bi)) and σ(−abi) are included to normalized Pi to [0, 1] for bi in [0, 1] 
and a > 0.

Through this stage, the predicted values of all instances in a bag are fused to yield a final prediction (probabil-
ity) over ‘bound’ and ‘non-bound’ labels.

In summary, the proposed framework is arranged in this order: data processing (segmentation + k-mer 
encoding) → a convolutional layer → a max-pooling layer → a dropout layer → a bi-directional recurrent 
layer → a dropout layer → a softmax layer → a fusion layer. A graphical illustration of the proposed framework is 
shown in Fig. 2.

Methods Model 1 
(DeepBind)

Model 2 
(DanQ)

Model 3 
(WSCNN) WSCNNLSTMHyper-parameters

Dropout ratio 0.75, 0.5, 0.1

Momentum in AdaDelta 0.999, 0.99, 0.9

Delta in AdaDelta 1e-4, 1e-6, 1e-8

Learning rate 1 1 1 1

Weight decay 0.0005 0.0005 0.0005 0.0005

Numbers of convolutional neurons 16 16 16 16

Convolutional kernel size 1 × 24 1 × 24 1 × 24 1 × 24

Pooling size global 1 × 8 global 1 × 8

Numbers of bi-LSTM neurons — 32 — 32

Neurons (fully-connected layer) 32 — 32 —

Neurons (softmax layer) 2 2 2 2

Epochs 60 60 60 60

Table 1.  Hyper-parameter Settings.
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Results
For brevity, the proposed framework is named as WSCNNLSTM. In this section, the performance of 
WSCNNLSTM is systematically evaluated by comparing it with other deep-learning based algorithms. We carried 
out a series of experiments on in-vivo ChIP-Seq datasets to show that the overall performance of WSCNNLSTM 
is superior to the competing methods.

Experimental setup.  Data preparation.  We collected 50 public ChIP-seq datasets from the HaibTfbs 
group, which stems from three different cell lines (Gm12878, H1hesc, and K562). For each public dataset, an aver-
age number of ~15000 top ranking sequences were chosen as the positive data where each sequence is composed 

Figure 3.  A comparison of WSCNNLSTM and the competing methods on in-vivo data, where the first column 
corresponds to a comparison of WSCNNLSTM and DeepBind under the ROC AUC, PR AUC and F1-score 
metrics, and the second column corresponds to a comparison of WSCNNLSTM and DanQ, and the third 
column corresponds to a comparison of WSCNNLSTM and WSCNN.

Figure 4.  A comparison of WSCNNLSTM and the competing methods on in-vivo data under the ROC AUC, 
PR AUC and F1-score metrics.
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of 200 bps, and the corresponding negative data was generated by matching the repeat fraction, length and GC 
content of the positive ones following the work9, and the number of the negative data is 1~3 times more than the 
positive data. Moreover, 1/8 of the training data were randomly sampled as the validation data during training.

Competing methods.  To better evaluate the performance of WSCNNLSTM, we constructed three deep-learning 
based models, which are similar to DeepBind10, DanQ12, and WSCNN20, respectively.

Model 1: This model is a single-instance learning (SIL) based method, and has the similar architecture to 
DeepBind. It is arranged in this order: data processing (one-hot encoding) → a convolutional layer → a global 
max-pooling layer → a fully connected layer → a dropout layer → a softmax layer.

Model 2: This model is a single-instance learning (SIL) based method, and has the similar architecture to 
DanQ. It is arranged in this order: data processing (one-hot encoding) → a convolutional layer → a max-pooling 
layer → a dropout layer → a bi-directional recurrent layer → a dropout layer → a softmax layer.

Figure 5.  A comparison of WSCNN when using one-hot, 2-mer, and 3-mer encoding, where the first row 
corresponds to a comparison of WSCNN when using one-hot and 2-mer encoding under the ROC AUC, PR 
AUC and F1-score metrics, and the second row corresponds to a comparison of WSCNN when using one-hot 
and 3-mer encoding.

Figure 6.  A comparison of WSCNNLSTM when using one-hot, 2-mer, and 3-mer encoding, where the first 
row corresponds to a comparison of WSCNNLSTM when using one-hot and 2-mer encoding under the ROC 
AUC, PR AUC and F1-score metrics, and the second row corresponds to a comparison of WSCNNLSTM when 
using one-hot and 3-mer encoding.
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Model 3: This model is a multiple-instance learning (MIL) based method, and has the similar architecture 
to WSCNN. It is arranged in this order: data processing (segmentation + one-hot encoding) → a convolutional 
layer → a global max-pooling layer → a fully connected layer → a dropout layer → a softmax layer → a fusion 
layer.

Evaluation metrics.  To comprehensively assess the performance of WSCNNLSTM, we adopted three standard 
evaluation metrics in this paper, including area under receiver operating characteristic curve (ROC AUC), area 
under precision-recall curve (PR AUC), and F1-score, which are widely used in machine learning and motif 
discovery34–46.

ROC AUC47 and PR AUC two commonly-used metrics in which PR AUC is often used under the situation of 
imbalanced data. Since PR AUC needs not to consider the number of true negative samples, thus it is less prone 
to influenced by the class imbalance than the ROC AUC metric is12,48.

F1-score is a solid metric to measure the classification performance of the classifier, which simultaneously 
takes into consideration the precision and the recall when computing the score of a test49.

Hyper-parameter settings.  We implemented WSCNNLSTM and the competing methods by Keras with the 
tensorflow backend, which are freely available at: https://github.com/turningpoint1988/WSCNNLSTM. The 
parameters in the deep-learning based methods were initialized by Glorot uniform initializer50, and optimized 
by AdaDelta algorithm51 with a mini-batchsize of 300. For some sensitive hyper-parameters (i.e., dropout ratio, 
Momentum in AdaDelta, Delta in AdaDelta), we selected the best configuration using a grid-search strategy. 
Epochs of training were set to 60, where after each epoch of training, the accuracy of the validation set was 
assessed and monitored, and the model with the best accuracy in the validation set was saved. The instance length 
c and segmentation stride s were set to 120 and 10, since WSCNN has stated that the two hyper-parameters has 
little effect on the main conclusion. The hyper-parameter a in Noisy-and was set to 7.5 following the work26. The 
hyper-parameter settings of all the deep-learning based methods in this paper are detailed in Table 1.

Performance comparison on in-vivo data.  A comparison of WSCNNLSTM and the competing meth-
ods on 50 in-vivo ChIP-seq datasets is shown in Fig. 3 and Supplementary Tables 1, 2, 3. Evaluation is done with 
three-fold cross validation, and prediction performance is measured by the PR AUC, ROC AUC and F1-score 
metrics.

Figure 3a,d,g show a superior performance of WSCNNLSTM over DeepBind under the ROC AUC, PR 
AUC, and F1-score metrics. As WSCNNLSTM combines MIL for learning the weakly supervised informa-
tion of sequences with RNN for capturing the forward and backward long-term dependencies between the 
motif features, so it outperforms DeepBind by a large margin. Figure 3b,e,h show a superior performance of 
WSCNNLSTM over DanQ under the ROC AUC, PR AUC, and F1-score metrics, demonstrating the advantages 
of allowing for the weakly supervised information of sequences. Figure 3c,e,i show a superior performance of 
WSCNNLSTM over WSCNN under the ROC AUC, PR AUC, and F1-score metrics, demonstrating the ben-
efits of allowing for the forward and backward long-term dependencies between the motif features. Figure 4 
records the average values on ROC AUC, PR AUC, and F1-score, which also shows the consistent conclusion that 
WSCNNLSTM outperforms the three competing methods. In summary, the above results show that the overall 
performance of WSCNNLSTM is better than DeepBind, DanQ, and WSCNN.

The k-mer encoding method can significantly improve the performance of modeling in-vivo 
protein-DNA binding.  Unlike one-hot encoding, the k-mer encoding method can take into consider-
ation the high-order dependencies among nucleotides, which may improve the performance of modeling 
in-vivo protein-DNA binding. As stated by Zhou et al.24, 2-mer (dinucleotide) and 3-mer (trinucleotide) may 

Figure 7.  A comparison of WSCNN (a) and WSCNNLSTM (b) when using one-hot, 2-mer, and 3-mer 
encoding under the ROC AUC, PR AUC and F1-score metrics.
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contain implicit DNA shape information and partially capture the effect of the DNA shape variation on binding. 
Moreover, Zhang et al.25 has stated that the number of learnable parameters will grow exponentially with the 
increase of k. Therefore, in order to make a trade-off between performance and computational complexity, we 
transformed DNA sequences into matrices that consist of 2-mer or 3-mer by setting k to 2 or 3 in k-mer encoding.

To test the performance of k-mer encoding in the weakly supervised framework, we carried out some com-
parative experiments on 23 ChIP-seq datasets from the Gm12878 cell line, and the detailed results are shown in 
Supplementary Tables 4, 5.

Figure 5 shows a comparison of one-hot encoding and k-mer encoding in WSCNN under the ROC AUC, PR 
AUC, and F1-score metrics. We can find that the performance of 2-mer and 3-mer encoding is much better than 
that of one-hot encoding, demonstrating the effectiveness of k-mer encoding for modeling in-vivo protein-DNA 
binding. Figure 6 shows a comparison of one-hot encoding and k-mer encoding in WSCNNLSTM under the 
ROC AUC, PR AUC, and F1-score metrics. We can also find the same trend that the performance of 2-mer 

Figure 8.  A comparison of WSCNN when using Max, Average, and Noisy-and functions, where the first row 
corresponds to a comparison of WSCNN when using Max and Noisy-and under the ROC AUC, PR AUC and 
F1-score metrics, and the second row corresponds to a comparison of WSCNN when using Average and Noisy-
and.

Figure 9.  A comparison of WSCNNLSTM when using Max, Average, and Noisy-and functions, where the first 
row corresponds to a comparison of WSCNNLSTM when using Max and Noisy-and under the ROC AUC, PR 
AUC and F1-score metrics, and the second row corresponds to a comparison of WSCNNLSTM when using 
Average and Noisy-and.

https://doi.org/10.1038/s41598-019-44966-x


9Scientific Reports |          (2019) 9:8484  | https://doi.org/10.1038/s41598-019-44966-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

and 3-mer encoding is much better. Figure 7 records the average values on ROC AUC, PR AUC, and F1-score, 
which concludes that k-mer encoding is superior to one-hot encoding. Moreover, we find that the performance 
of WSCNN and WSCNNLSTM is improved with the increase of k. We think that the reason of the good perfor-
mance may lie in: it explicitly considers the high-order dependencies among nucleotides (which contains implicit 
DNA shape information).

The Noisy-and function is a better fusion method in the weakly supervised framework.  
WSCNN employed four fusion methods (Max, Linear Regression, Average and Top-Bottom Instances) to fuse the 
predicted values of all instances in a bag, and then selected the best one as the final prediction. However, Max only 
focuses on the most informative instance and overlooks other instances that may contain useful information, and 
both Average and Linear Regression take advantage of all information, inevitably containing useless information, 
and Top-Bottom Instances needs to manually determine the number of the highest and lowest scoring instances. 
Moreover, how to effectively take advantage of abundant positive instances is also a key point. Thus we adopt a 
better and more elegant fusion method, named Noisy-and, in this paper.

To test the performance of Noisy-and in the weakly supervised framework, we carried out some compar-
ative experiments on 23 ChIP-seq datasets from the Gm12878 cell line, and the detailed results are shown in 
Supplementary Tables 6, 7.

Figure 8 shows a comparison of Noisy-and and Max, Average in WSCNN under the ROC AUC, PR AUC, and 
F1-score metrics. We can find that the performance of Noisy-and is much better than that of Max and Average. 
Figure 9 shows a comparison of Noisy-and and Max, Average in WSCNNLSTM under the ROC AUC, PR AUC, 
and F1-score metrics. We find that the performance of Noisy-and is also much better than that of Max and 
Average. Figure 10 records the average values on ROC AUC, PR AUC, and F1-score, which concludes the same 
conclusion. We think that the reason of good performance may result from: the weakly supervised framework 
(WSCNN, WSCNNLSTM) segments DNA sequences into multiple overlapping instances, producing enough 
positive instances, which is in accordance with the assumption of Noisy-and that a bag is labeled as positive if the 
number of positive instances in the bag exceeds a threshold.

Adding recurrent layers can improve the performance of the proposed framework.  
Convolutional layers are often used as motif scanners to capture motifs in the task of modeling in-vivo protein- 
DNA binding, but they ignores the long-term dependencies between motifs. Therefore we add a bi-directional 
recurrent layer after the convolutional layer in the weakly supervised framework, just like DanQ does, to capture 
the forward and backward long-term dependencies between motifs.

Figure 11 shows a comparison of the methods with RNN (WSCNNLSTM, DanQ) and the ones without RNN 
(WSCNN, DeepBind) under the ROC AUC, PR AUC and F1-score metrics. The above results show that the mod-
els with RNN outperform the ones without RNN by a health margin, demonstrating the effectiveness of allowing 
for the forward and backward long-term relationship between motif features.

Conclusions
In this paper, we propose a weakly supervised framework, which combines multiple-instance-learning with a 
hybrid deep neural network, for modeling in-vivo protein-DNA binding. The proposed framework contains three 
stages: data processing, model designing, and results merging, where the first stage contains the segmentation 
process and k-mer encoding, and the second stage contains a hybrid deep neural network, and the last stage con-
tains the Noisy-and fusion method. The experimental results on in-vivo ChIP-seq datasets show that our proposed 
framework performs better than the competing methods. In addition, we also explore the performance of the 
proposed framework when using k-mer encoding and show that the k-mer encoding can significantly improve 
the performance of modeling in-vivo protein-DNA binding, and demonstrate that the Noisy-and function is a 
better fusion method in the weakly supervised framework.

Figure 10.  A comparison of WSCNN (a) and WSCNNLSTM (b) when using Max, Average, and Noisy-and 
functions under the ROC AUC, PR AUC and F1-score metrics.
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From the above results, we find that the performance of WSCNN and WSCNNLSTM is improved with the 
increase of k. However, the big k will bring out exponentially growing learnable parameters, and the performance 
of models may be degenerated when k reaches a certain value. Therefore, we will explore the performance of 
k-mer encoding with a big k value, and propose a corresponding solution to it in the future works.

Data Availability
The datasets analyzed during the current study are available from the corresponding author on reasonable re-
quest.
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