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Controlled state transfer in a 
Heisenberg spin chain by periodic 
drives
H. J. Shan1, C. M. Dai1, H. Z. Shen1,2 & X. X. Yi1,2

The spin chain is a system that has been widely studied for its quantum phase transition. It also holds 
potential for practical application in quantum information, including quantum communication and 
quantum computation. In this paper, we propose a scheme for conditional state transfer in a Heisenberg 
XXZ spin chain. In our scheme, the absence or presence of a periodic driving potential results in either 
a perfect state transfer between the input and output ports, or a complete blockade at the input port. 
This scheme is formalized by deriving an analytical expression of the effective Hamiltonian for the spin 
chain subject to a periodic driving field in the high-frequency limit. The influence of the derivation of the 
optimal parameter on the performance of the state transfer is also examined, showing the robustness 
of the spin chain for state transfer. In addition, the collective decoherence effect on the fidelity of state 
transfer is discussed. The proposed scheme paves the way for the realization of integrated quantum 
logic elements, and may find application in quantum information processing.

One important task of quantum information processing is to transfer quantum states from one location (A) to 
another (B). In quantum communication scenarios, this is quite clear, since the goal is communicate between A 
and B1–4 with quantum states as the information carrier. In quantum computation, good communication between 
different parts of quantum computer is also essential5,6. There are various physical systems that can be used as quan-
tum channels to transfer quantum states, one of which is the quantum spin system. This system can be defined as a 
collection of interacting quantum bits on the graph, whose dynamics are governed by an appropriate Hamiltonian.

On the other side, spin field effect transistors originally proposed in 1990 by Supriyo Datta and Biswajit Das7,8 
is an improved design on the traditional transistor invented in the 1940 s. The spin transistor comes about as a 
result of research on the ability of electrons to naturally exhibit one of two (and only two) states of spin: known 
as spin up and spin down. Unlike its classical counterpart, which operates on an electric current, spin transistors 
operate on electrons on a more fundamental level. It is essentially the application of electrons set in particular 
states of spin to store information. Since the spin field-effect transistors (or spin transistors) have low power 
consumption and high speed operation that can be applied to logic circuits. In addition, quantum spin transistor 
can be applied to control state transfer between two sites. The spin chain of Heisenberg types9–11 has been realized 
in quantum dots12,13, molecular magnets, Josephson junction arrays. The physics of driving quantum system 
has been studied extensively for decades14–28, in particular the research of such systems is of great significance 
to quantum information processing29–34 in recent years. With these knowledge, we wonder if a controlled state 
transfer can be realized in a spin chain by a periodic drive. Except the perfect state transfer, the completely state 
blockage is also interesting, since it is similar to quantum memory35,36 when the transmission is blocked. Of 
course, periodic driving is only a way to control the transfer of quantum states. Other methods to control the state 
transfer in this direction include acceleration of adiabatic transfer by using dressed states37, control quantum state 
transmission in an array of optomechanical cells38, robust control39,40 and so on.

Quantum communication over short distances through a spin chain, in which adjacent qubits are coupled 
with equal strength has been studied in detail41. The propagation of quantum information in rings has also been 
studied42,43. And near perfect state transition was obtained for uniform couplings provided that a spatially varying 
magnetic field was introduced44. At the same time, the perfect state transfer has been studied, without periodic 
driving45,46. The previous schemes have made so many approximations to realize the perfect transmission, which 
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inspire us to find a more precise method, using a dynamic Heisenberg spin chain, to achieve the perfect state 
transfer with high fidelity and short time as well as fewer approximations.

In our work, we propose a scheme to realize the state transfer from the input port (target spin) to the output 
port. This transfer can be controlled by a periodic drive reminiscent of the transistor in electronics. We find that 
the state transfer can be performed if there are no period driving field in the gate, while the transfer is completely 
blocked if the gate(the spin in the middle) experiences a period driving. We achieve quantum state transmission 
and blockade while minimizing dynamics control, and the accuracy of both state transmission and blockade 
can be increased by the control. The analytical solution of the particle transport condition and the sensitivity of 
spin chain are also derived and analyzed, and which are applied to study the effect of the fluctuation of system 
parameters on state transmission and blockade. Furthermore, we also investigated the effect of decoherence on 
the state transfer.

The remainder of this paper is organized as follows. First, we introduce our model that consists of a periodi-
cally driven spin 1

2
−  particle coupled a one-dimensional Heisenberg spin chain. We discuss the case of N = 4 and 

derive an analytical expression for the perfect state transfer. Then, we analyzed the condition of blocking the 
particle state transmission by an added driving. An stochastic Hamiltonian is used to simulate the influence of 
classical noise on the quantum system, which shows the effect of decoherence on the state transfer. Finally, we 
made a brief analysis of N particles and present some discussions and conclusions.

Methods
System and Effective Hamiltonian.  We present a scheme for a quantum spin transistor realized with a 
Heisenberg spin chain. Our quantum spin transistor operates at an arbitrary spin state α|↓〉 + β|↑〉 at the input 
port, if there are no periodic driving field. And the presence of a periodic driving field can block the transfer of 
the spin state. As shown in Fig. 1 the input and output ports for the spin state are represented by the j = 1 and 
j = N sites of the chain and the input and output ports are coupled with coupling strength J1,N−1. Consider a 
one-dimensional XXZ spin chain subject to a periodic driving H1(t). The Hamiltonian of the dynamics system is 
H(t) = H0 + H1(t), with

∑ ∑σ σ σ σ σ σ σ= − + + Δ
= =

−
+ + +H h J1
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Figure 1.  (a) The ‘In’ and ‘Out’ ports are coupled with the central gate region with coupling constants coefficient 
J1 and JN−1, respectively. Resonant transfer of a spin excitation between the input and output ports occurs 
without periodic driving. (b) The spin excitation transfer is blocked if a special periodic driving is applied.
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where σx y z
j
, ,  are the Pauli matrices with j = 0, 1, ..., L, respectively, labeling the system spin and the spins in the chain, N 

is the total number of sites in the spin chain; hj is the local magnetic field, fj(t) is a periodic driving only on the system, Jj 
are the coupling strength between the nearest neighbors and Δ is the asymmetry parameter. To proceed further, it is 
clear that we can focus on the sing-particle subspace (|1〉 = |100⋅⋅⋅0〉, |2〉 = |010⋅⋅⋅0〉,…), where |m〉, m = 1, 2, 3, ..., N 
refers to a state with a single excitation at site m. We shall adopt the convention that |0j〉 (|1j〉) represents the spin-down 
(spin-up). Our goal is to transfer population from the initial state (|1〉 = |10⋅⋅⋅00〉) to the final state (|N〉 = |00⋅⋅⋅01〉) and 
the complete blocking of the state transmission. To make the problem more convenient, we make a frame rotating via 

= − ∂
∼ † †H t U H t U iU U( ) ( ) t1 1 1 1, and ∫ τ τ= −U i H dexp[ ( ) ]t

1 0 1 , where   is the time-ordering operator. The 
Hamiltonian at any time τ, H1(τ), commutes with each other. In other words, we can obtain the identity 
[H1(t1),H1(t2)] = 0 for ∀ t t( , )1 2 . Therefore, H(t) can be rewritten as =

∼ †H t U H U( ) 1 0 1. Then the Hamiltonian becomes

∑ ∑σ σ σ σ σ
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where ∫ τ τ=F t f d( ) ( )j
t

j0
. In the high-frequency limit, we arrive at the effective Hamiltonian by =

∼U T( )  

∫ τ τ− = −
∼i H d iH Texp[ ( ) ( )] exp[ ]T
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where ∫= −+J T J F t F t dt1/ cos(2 ( ) 2 ( ))j
eff T

j j j0 1 1 1 1, ∫= −′
+J T J F t F t dt1/ sin(2 ( ) 2 ( ))j

eff T
j j j0 1 1 1 1. To realize the desired 

spin transfer, we restrict that the spin chain to satisfy spatially symmetric = −J Jj
eff

N j
eff , =′

−
′J Jj

eff
N j
eff  and hj = hN+1−j with 

h1 = hN = 0.
In this work, we mainly illustrate how the spin excitation initially localized at the left boundary site can be con-

trolled to transfer to another side by periodic drives. We first consider the quantum dynamics of individual particles 
that can be transmitted from the left end of the boundary to the right side. The evolution operator reduces to 

≈
∼ −U t e( ) iH teff , and with the initial state |1〉 we obtain the condition for perfect state transfer at tout, | 〉 = | 〉

∼U t N( ) 1out . 
At the same time, we find a mirror operator = ∑ | 〉〈 − + |=S j N j 1j

N
1 , and S|1〉 = |N〉. This means that a quantum 

state at site j can be transferred to its mirror-conjugate site N − j + 1. Since the Hamiltonian in Eq. (4) is mirror sym-
metrical, i.e., S commutes with Heff. Therefore, the condition for perfect state transfer is in the following form

∑





− |Ψ〉〈Ψ|




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(5)j

N
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where |Ψj〉 are the eigenstates of Heff and S.
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where the εj and λ j
eff  are the eigenvalues of S and Heff. Since the values of εj are ±1,we change the above equation 

to ∑ − − |Ψ〉〈Ψ| | 〉 =λ− +e( ( ( 1) ) ) 1 0i
N i t j

j j
1j

eff
out , and the condition for perfect state transmission is10,11

λ λ π− = ++ t m( ) (2 1), (7)j
eff

j
eff

out j1

where without loss of generality, we rearrange λ j
eff  such that λ λ>j

eff
i
eff  when j > i, which leads to mj being a 

positive integer. We interpret it to be the signature of perfect communication (or perfect state transfer) between 
initial state and final state at time tout. As proven in ref.47, for a symmetric tridiagonal matrix, the symmetric sub-
stitution of eigenvectors because it is determined by the number of symbols changed (an odd number indicates 
that the eigenvector is antisymmetric). Our matrix Heff is a three-diagonal matrix with positive coefficients Jj

eff  
and ′Jj

eff . Considering that λ j
eff  is a set of ordered eigenvalues, i.e., λ λ< +j

eff
j
eff

1, and the necessary and sufficient 
condition for state transition in symmetric chain is Eq. (7), the pairwise ratio of eigenvalues must be rational.

The Scheme of N = 4 Spins with Three Kinds of Drives.  We will illustrate the scheme using a chain of 
N = 4 spins with a single excitation. Now we give a detailed calculation for the perfect state transmission through 
the Heisenberg spin chain. First, we consider the absence of periodic driving field.

For N = 4 spin chain, the system has two different interaction coefficients J1( = J3) and J2, and we assume 
h2 = h3 = h. We set the system initially in the state |↑↓↓↓〉, which we aim to efficiently transfer to final state |↓↓↓↑〉. 
In the basis of {|↑↓↓↓〉, |↓↑↓↓〉, |↓↓↑↓〉, |↓↓↓↑〉}, the Hamiltonian matrix becomes
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The Hamiltonian reduces to
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when the periodic driving is absent. Since S commutes with ′Heff , the Hamiltonian matrix is block diagonal in the basis 
spanned by |↑↓↓↓〉 + |↓↓↓↑〉{ ( )1

2
, |↓↑↓↓〉 + |↓↓↑↓〉( )1

2
, |↑↓↓↓〉−|↓↓↓↑〉( )1

2
, |↓↑↓↓〉−|↓↓↑↓〉 }( )1

2
,

=







− − Δ −

−
Δ −

− − Δ −

−
+ Δ







.′

(10)

H

h J J

J
J

h J J

J
J

2 1
2

0 0

( 2)
2

0 0

0 0 2 1
2

0 0
(2 )

2

eff

2 1

1
2

2 1

1
2

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
0

0.2

0.4

0.6

0.8

1

0 0.9 1.8 2.7 3.6 4.5 5.4 6.3
0

0.2

0.4

0.6

0.8

1

0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6
0

0.2

0.4

0.6

0.8

1

0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6
-0.2

0
0.2
0.4
0.6
0.8

1
1.2 (d)

(b)(a)

(c)

outt outt

outt outt
Figure 2.  The implementation of quantum spin transistor in the spin chain with N = 4 spins. Here and 
hereafter, Δ, J1, h, hd, ω, a, Aj, Bj and Cj are rescaled in units of J2, and tout is then in units of 1/J2. Hence all 
parameters are dimensionless. For (a–c) the parameters are Δ = −1, J2 = 1, h = h0. The other parameters chosen 
are m1 = m2 = m3 = 0 for (a), m1 = 1,m2 = m3 = 0 for (b) and m1 = 2, m2 = m3 = 0 for (c). For (d) the h = h0 + hd 
sinωt and other parameters satisfy hd = 1.2*ω, m1 = 2, m2 = m3 = 0, J2 = 1, Δ = −1, ω = 25.
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We diagonalize the Hamiltonian and find that the eigenvalues of the inner block are
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Then, we bring the above eigenvalues into Eq. (7) and get the following solutions
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Moreover, we can get the time interval for transfer, which is = π+ +tout
m m

J
(1 )1 3

2
. We find that, there is a rela-

tionship between these parameters and the shortest transfer time of the spin excitation between the initial and 
final states is (tmin) = π/J2. When these parameters satisfy the above relation, the system can achieve the perfect 
state transfer, see Fig. 2(a–c). However, when we add the high frequency periodic driving, it may show that the 
quantum transmission will be blocked. According to Eq. (8), for sinusoidal driving (fj(t) = Aj sinωt, j = 1,4) the 
renormalized nearest-neighbour coupling strength takes the form

ω
=






− 




=+ ′J J
A A

J J
2( )

, 0,
(14)

j
eff j j

j j
eff

0
1

where J0(x) is the zeroth order Bessel function of the first kind and Aj+1 − Aj is the amplitude difference between 
adjacent lattice points. The frequency of the time-dependent driving field is described by the parameter ω. From 
expression (14), we immediately observe that the change of renormalized parameters of the system would affect 
the dynamics of the system. Thus when 2(Aj+1 − Aj)/ω is equal to a zero of J0 the system’s dynamics is frozen. That 
is to say, such an initial state will remain stationary and the sinusoidal driving would block the transfer of the spin 
state between the input and output ports, see Fig. 2(d). However, the results of adding triangular-well driving and 
square-well driving in the system will be different from the exact ones for 2(Aj+1 − Aj)/ω. Specific details will be 
analyzed in the following discussions.

Figure 2(a–c) show that the two intermediate states are coupled and a perfect state transfer is achieved 
between the input and output ports without energy dissipation. When the value of mj changes, the interaction 
form and transmission time of the intermediate state change but the perfect state transmission is not affected. 
From Fig. 2(d), we can learn that the dynamic evolution of the system will be completely frozen when the periodic 
driving field is added.

Next, with triangle-well drive, the periodic driving field can be written as,
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where j = 1 and 4, Bj and ω are the amplitude and frequency of triangle-well driving, respectively. According Eq. (4) 
we also get the Jeff and ′Jeff
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where π π= +f a FresnelC a FresnelS a acos( /4) ( /2 ) ( /2 )sin( /4), a = 2(Bj+1 − Bj)/ω. =FresnelC x( )  ∫ πcos t dt( /2)x
0

2  
and ∫ π=FresnelS x sin t dt( ) ( /2)x

0
2  are Fresnel integrals. From Fig. 3, we have two observations: (i) Fig. 3(a) demon-

strates the relation between the parameters of a and effective coupling strength (ECS). When 2(Bj+1 − Bj)/ω ≈ 2.9, 7.0, 
i.e.,the effective coupling strength is zero, the nearest-neighbour interaction is destroyed. Therefore, the system’s 
dynamics is frozen see Fig. 3(b). (ii) Of course, when 2(Bj+1 − Bj)/ω tuned far away from those values the effective cou-
pling strength is not zero. They will partially suppress the transmission of the perfect state but does not completely block 
the transmission.

Finally, the square-well field is another waveform that is availabe experimentally. In fact these driving fields 
have already been studied in time-periodic driving system. The square-well driving can be expressed as,
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where j = 1, 4 and Cj is the amplitude of square-well. Similarly, the effective coupling strength of the system is 
changed to =

−

−
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+
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1
. When = =′J J 0j

eff
j
eff , the dynamic transmission sys-

tem will be completely blocked at this time 2(Cj+1 − Cj)/ω = 2. When the system driver changes, the condition of 
completely blocked state transmission is also changed. More obviously and straightforwardly, the time evolution 
of the driven is sensitive to the renormalized quantities.

The perfect transfer(complete blockade) of the target spin for the open(closed) gate as shown in Figs 2 and 3 
is obtained for the system parameters satisfying Eq. (12) and Eq. (14). It is important to quantify the sensitivity of 
the spin transistor to fluctuations of the parameters. In Fig. 4(a) we show the dependence of transfer fidelity on 
the system parameters.

= |〈↑↓↓ ↓| | ↑↓↓↓〉| .− ′F t e( ) (18)out
iH t 2eff out

We observe that coherent transfer is robust against the variations in h, but is rather sensitive to small variations 
in J1 since it detrimentally affect the resonant conditions. In Fig. 4(b–d) we show the dependence of the blockade 
fidelity

= |〈↑↓↓ ↓| | ↑↓↓↓〉|−BF t e( ) , (19)out
iH t 2eff out
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outta
Figure 3.  (a) The effective coupling strength (ECS) vs a, given by Eq. (16). (b) The system dynamics driven by 
triangular wave field with a = 2.9. And other parameters chosen are m1 = 2, m2 = m3 = 0, J2 = 1, ω = 25, Δ = −1.
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on the uncertainty of the three driving frequencies and amplitudes. Obviously, the uncertainty of the three driv-
ing frequencies has a less effect on the blocking of the gate than amplitudes. The frequency fluctuations of the 
square-well driving have less influence on the blocking state transmission than the other two drivings.

The collective dephasing effect in the system.  In this part, we mainly discuss the effect of decoherence 
on the state transfer. We introduce a stochastic Hamiltonian to simulate the decoherence48. It reads

∑ ∑ ∑

∑ ∑

σ σ σ σ σ σ σ σ

δ η σ δ η σ σ σ σ σ σ

= +

= − + + Δ +

= ⋅ − ⋅ + + Δ .
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+ + +

H t H t H t
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The Hamiltonian Hs(t) is composed of the target Hamiltonian H(t) and the stochastic part HS0. Among them, 
the stochastic part includes operators σx y z

j
, , . A positive real constant δ and an stochastic Gauss process η(t) inde-

pendent of δ. Averaging the random density matrix ρ = |Ψ 〉〈Ψ |t t t( ) ( ) ( )s s s  corresponding to Hs(t) over the fluctua-
tions δ and η(t), we arrive at the following master equation49
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Figure 4.  Robustness of the state transfer with N = 4. (a) The transfer fidelity F(tout) of the spin chain. The 
transfer fidelity F(tout) for different values of h (orange line) or J1 (black-dashed line). One of the parameters  
(h or J1) has a derivation from the ideal value = −h 1

2
, =J1

3
2

, while other parameters J2 = 1, Δ = −1 are keep 
unchanged. Breaking fidelity of spin chain with sinusoidal driving (b), (c) triangular-well driving, and (d) 
square-well driving. The blockade fidelity BF(tout) for different values of amplitude(red line) and frequency 
(blue-dashed line), where the ideal parameters are Aj = 30.06, Bj = 36.56, Cj = 25, ω = 25.
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Clearly, this master equation describes the collective decoherence effect of the system. To this extent, we can 
use the random Hamiltonian in Eq. (20) to simulate the many-body decoherence in the system. As shown in 
Fig. 5, the effect of noise on the average transmission fidelity F t( )out  is dramatically, and the effect is much larger 
than that effect on the average blocking fidelity BF t( )out . F t( )out  and BF t( )out  are defined by ρ〈 ↑↓↓↓| |↓↓↓↑〉t( )out  
and ρ〈 ↓↓↓↑| |↑↓↓ ↓〉t( )out , respectively.

Spin Transistor with Longer Chains.  Our analysis above is given for N = 4 systems as an example to study 
the behaviors of the quantum transfer in single excitation subspace. Similar behavior can be obtained for longer 
chains. The Hamiltonian Eq. (3) in this single excitation subspace can be written in a tridiagonal form. And the 
N-particle coupling matrix elements are given by:

∑ ∑〈 | | 〉 = − +
Δ 
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1

where | 〉m , = ...m N1, 2, 3, ,  refers to a state with a single excitation at site m, Fm(t) represents the periodic driv-
ing of the m site. And hm stands for the magnetic field of the m site and hj represents the magnetic field of the other 
lattice points outside the m site. Jj represents the coupling coefficient except for Jm−1 (the coupling coefficient 
between the m − 1 lattice point and the m lattice point) or Jm (the coupling coefficient between the m lattice point 
and the m + 1 lattice point). By reflecting symmetry, we mean for Fm(t) = 0, Jj = JN−j and hj = hN+1−j with 
hj = hN = 0. Thus, the Hamiltonian has double symmetries, the main diagonal and the second diagonal are sym-
metric. The condition in Eq. (7) is not only sufficient but also necessary for prefect state transfer in 
mirror-symmetric chains. And the task of solving Eq. (7) is an inverse eigenvalue problem50,51, which is usually 
treated numerically. In50, they show how to realize the perfect quantum state transfer and construct a valid 
two-qubit gates between bosonic and fermionic networks. And in51, they achieve perfect transmission and the 
problem of speed limit for QST is put forward at the same time. However, we can still achieve perfect state trans-
mission by using different Hamiltonian. And when the system contains periodic driving, it can achieve a complete 
blockade of transmission. In our work, we find the simplest solution to Eq. (7)

=


 − Δ + + + Δ


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−h C J J E F
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where C is a constant, = ∑ =E hj
N

j1 , = ∑ =
−F Jj

N
j1

1  and =
− Δ

−

Δ( )E F
N

N

2

2
2 . Similarly, when Fm(t) ≠ 0 we can effectively 

block the transmission of the particles.
In Fig. 6(a), we show the perfect state transfer of N = 20. Furthermore, the process of using sinusoidal driv-

ing to block quantum state transfer is shown in Fig. 6(b). We observe that the triangle-well driving and the 
square-well driving are similar to the sinusoidal driving.

Next, we will discuss the fidelity of the longer chain. In Fig. 7 we show the effect of some parameters on the 
fidelities of N = 20. We observe that the perfect state transmission is sensitive to variations in J1. This is obvious 
because the resonance conditions in the longer spin transistors are affected. Conversely, because the state transfer 
blockade depends on the larger energy mismatch, it is not affected by the uncertainty of the J1. At the same time, 
from Fig. 7(b) to (d) we can also see that the impact of amplitude uncertainty is still greater than that of frequency 
uncertainty. More importantly, as the number of particles increases, the uncertainty of the system parameters 
decreases the effect of the state blocking.
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Figure 5.  Average fidelity (F t( )out , BF t( )out ) as a function of noise. The parameters used in this plot are: 
ωΔ = − = = = = = = .J J h h A1, 1, 3 /2, 1/2, 25, 30 062 2 1 2 1 .
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Discussion
In conclusion, a scheme for state transfer and blockage has been proposed in one dimension Heisenberg spin 
chain. In our scheme, the absence or presence of a periodic driving potential can allow or block the transfer of an 
arbitrary spin state between the input and output ports. In the absence of periodic driving, we obtain the analytic 
solutions for the system, leading to the condition of the perfect state transfer. In the case of periodic driving, we 
deduce the effective Hamiltonian and analyze separately three different drives to achieve complete blockage. We 
also analyze the sensitivity of spin transistor (F(tout) and BF(tout)) to the fluctuation in parameters and examine 
the effect of decoherence on the state transfer. Our system realizes a control of quantum state transfer that can be 
more convenient and concise. In other words, we can control the transmission of the quantum state at any time 
with high fidelity, which can be treated as a spin transistor. This might be of great interests to integrated quantum 
logic elements and quantum information processing.
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Figure 6.  Transmission and blockage in the spin chain with N = 20. (a) The populations in twenty-site system 
and the corresponding parameters satisfies: tout = Nπ/2, = −J m N m( )m , where j = 1, 2, 19, 20. Among them, 
the red dot-dashed and orange dashed lines represent the populations of the initial and final state; Similarly, in 
(b) the red dashed line and the green solid line represents the probability of particles in the initial state and final 
state. The parameters chosen are tout = Nπ/2, ω = 25 and A1 = 30.06.
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transfer fidelity F(tout) of α=J 191 . (b–d) Blockade fidelity of spin chain with sinusoidal driving, triangular-
well driving and square-well driving, respectively. The blockade fidelity BF(tout) for different values of 
amplitude(green line), frequency (red-dashed line) and J1, where Aj = 30.06α, Bj = 36.56α,Cj = 25α, ω = 25α, 

α=J 191  and the ideal parameters are Aj = 30.06, Bj = 36.56, Cj = 25, ω = 25, =J 191 . Here Aj, Bj, Cj, ω, J1 are 
amplitude, frequency and interaction coefficient between adjacent particles, respectively.
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