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ABSTRACT

Motivation: One of the most successful methods to date for
recognizing protein sequences that are evolutionarily related, has
been profile hidden Markov models. However, these models do not
capture pairwise statistical preferences of residues that are hydrogen
bonded in β-sheets. We thus explore methods for incorporating
pairwise dependencies into these models.
Results: We consider the remote homology detection problem for
β-structural motifs. In particular, we ask if a statistical model trained
on members of only one family in a SCOP β-structural superfamily,
can recognize members of other families in that superfamily. We show
that HMMs trained with our pairwise model of simulated evolution
achieve nearly a median 5% improvement in AUC for β-structural
motif recognition as compared to ordinary HMMs.
Availability: All datasets and HMMs are available at: http://bcb.cs
.tufts.edu/pairwise/
Contact: anoop.kumar@tufts.edu; lenore.cowen@tufts.edu

1 INTRODUCTION
Profile hidden Markov models (HMMs) have been one of the most
successful methods to date for recognizing both close and distant
homologs of given protein sequences. Popular HMM methods such
as HMMER (Eddy et al., 1998a, b) and SAM (Hughey and Krogh,
1996) have been behind the design of databases such as Pfam (Finn
et al., 2006), PROSITE (Hulo et al., 2006) and SUPERFAMIILY
(Wilson et al., 2007). However, a limitation of these HMMs is, since
there is only finite state information about the sequence that can be
held in any particular position, HMMs cannot capture dependencies
that are far, and variable distance apart, in sequence.

On the other hand, in β-structural motifs, as was noticed by
Lifson, Sander and others (Hubbard and Park, 1995; Lifson and
Sander, 1980; Olmea et al., 1999; Steward and Thornton, 2002; Zhu
and Braun, 1995), amino acid residues that are hydrogen bonded
in β-sheets exhibit strong pairwise statistical dependencies. These
residues, however, can be far away and a variable distance apart in
sequence, making them impossible to capture in an HMM. Early
work of Bradley et al. (Bradley et al., 2001; Cowen et al., 2002)
show that these pairwise correlations help to recognize protein
sequences that fold into the right-handed parallel β-helix fold. More
recent work has used a conditional random field or Markov random
field framework, both of which generalize HMMs beyond linear
dependencies, to identify the right-handed parallel β-helix fold (Liu
et al., 2009), the leucine rich repeat fold (Liu et al., 2009) and the
β-propeller folds (Menke et al., 2010).
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While these conditional random field and Markov random field
models are extremely powerful in theory, in practice, substantial
computational barriers remain for template construction, training
and computing the minimum energy threading of an unknown
sequence onto a template. Thus, a general structure software tool
designed for β-structural folds, in the same manner as HMMER
and SAM packages recognize all protein structural folds, remains a
challenging unsolved problem.

In this article, we find an unusual and different way to
incorporate pairwise dependencies into profile HMM. In particular,
we generalize our recent work (Kumar and Cowen, 2009) on
augmenting HMM training data to include these very pairwise
dependencies as a part of a larger training set (see below). While
this method of incorporating pairwise dependencies is undoubtedly
less powerful than MRF methods, it has the advantage of being
simple to implement, computationally fast and allows the modular
application of existing HMM software packages. We show that our
augmented HMMs perform better than ordinary HMMs on the task
of recognizing β-structural SCOP (Lo Conto et al., 2002) protein
superfamilies. In particular, we consider the problem of how well
an HMM trained on only one family β-structural SCOP superfamily
can learn to recognize members of other SCOP families in that
SCOP superfamily, as compared to decoys. We show a median AUC
improvement of nearly 5% for our approach compared to ordinary
HMMs on this task.

2 APPROACH
Our approach is based on the simulated evolution paradigm
introduced in Kumar and Cowen (2009). The possibility that motif
recognition methods could be improved with the addition of artificial
training sequences had been previously suggested in the protein
design community (Koehl and Levitt, 1999), though the methods of
Koehl and Levitt (1999); Larson et al. (2003) and Am Busch et al.
(2009) to generate these sequences are much more computationally
intensive than the simple sequence-based mutation model of Kumar
and Cowen. In particular, Kumar and Cowen created new training
sequences by artificially adding point mutations to the original
sequences in the training set, using the BLOSUM62 matrix (Eddy,
2004). The HMM training was then used on this larger, augmented
training set unchanged.

In this article, we compare ordinary HMMER Profile HMMs,
HMMER Profile HMMs augmented with a point mutation model
(similar to Kumar and Cowen, 2009), and HMMs augmented
with training sequences based on pairwise dependencies of β-sheet
hydrogen bonding (see Fig. 1). Thus we have generalized the
single frequency approach of Kumar and Cowen (2009), to pairwise
probabilities. More specifically, to create our new training sequence
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Fig. 1. Training HMMs by (A) a pointwise mutation model, (B) a pairwise mutation model and (C) combining (A and B).

based on β-strand constrained evolution, the following pipeline is
followed:

1. The input to HMM training is a set of PDB files for sequences
that lie in the same SCOP family.

2. The sequences are aligned by way of multiple structure
alignment program.

3. Positions corresponding to paired residues that hydrogen bond
in adjacent β-strands are found using SmurfParse package.

4. For each sequence that lies in the original training set,
additional sequences are added to the training set using

random mutations according to a probability distribution
based on the paired positions within β-strands, as described
below.

5. The multiple sequence alignment, including sequences in the
original training set as well as the new sequences generated by
simulated evolution, is passed to the ordinary HMM training
module.

This pipeline is illustrated in Figure 1B, along with HMM-C, an
approach that combines both point mutations and pairwise mutations
in the training set.
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We use these augmented HMMs to solve the following task:
trained only on the sequences from single SCOP family can our
HMMs distinguish between the following two classes: (i) sequences
from other SCOP families in the same SCOP superfamily as the
training set and (ii) decoy sequences that lie outside the fold class
of the family of the training set.

3 METHOD

3.1 Datasets
We employed an approach similar to that of Wistrand and Sonnhammer
(2004) to pick SCOP families and superfamilies from among those that
belong to the ‘mainly beta proteins’ class in SCOP and train HMMs. First,
we chose sequences from SCOP that are <95% identical based on the
ASTRAL database version 1.73 (Chandonia et al., 2004). The dataset was
then filtered to include only the SCOP families that belonged to ‘mainly beta
proteins’ class and had at least 10 sequences. Another constraint imposed
in order to have test sets was to make sure that other SCOP families in
the superfamily hierarchy had at least one sequence but not more than
50 sequences. Our test set consisted of all the sequences from the rest of
the families in the superfamily and an equal number of decoy sequences
chosen at random from different SCOP folds. The dataset is available at:
http://bcb.cs.tufts.edu/pairwise/.

3.2 Multiple sequence alignment
This is the process of aligning the homologous residues in protein sequences
into columns and thus generating a multiple sequence alignment (MSA).

3.2.1 Aligning sequences with MUSCLE For the single frequency
augmented training model, we used the popular program MUSCLE Version
4 (Edgar, 2004) to generate the MSA that was provided to the HMM training
methods. It is one of the fastest programs available and produces global
sequence alignments for the set of sequences from a family. We developed a
script to transform the MUSCLE alignment output to .ssi (STOCKHOLM)
format since other MUSCLE output formats are not supported by HMMER
3.0a2.

3.2.2 Aligning sequences with Matt For the pairwise augmented training
model, and the hybrid model, we used multiple alignment with translations
and twists (Matt) (Menke et al., 2008) to align the sequences based on
the structure. By allowing local flexibility and allowing small translations
and rotations, Matt demonstrates an ability to better align the ends of α-
helices and β-strands. We used Matt in default configuration for aligning the
sequences in a family. Alignment based on structure is essential to determine
the location of β-strands in the sequences and thus augment the dataset based
on conserved residue pairs in β-strands.

3.3 Mutation models
3.3.1 Simple mutation model We used the BLOSUM62 matrix as our
simple model of evolutionary mutations (Eddy, 2004). Mutations in a
sequence are added by randomly picking a position in the sequence and
the replacing the amino acid in that position with a new amino acid based
on the BLOSUM62 probability until a desired threshold of s% mutations
is reached. For each training sequence, N new mutated sequences with s%
mutations are created and added to the training set. Therefore a family with
100 sequences will have 100 + N × 100 (100 original + N × 100 mutated)
sequences in the training set. In this study, we create training sets with 5,
10, 15, 20 and 25% mutations per the length of sequence and tested several
values of N ranging from 10–1000. We picked a value of N at the 20%
mutation rate for which the results were stable (see Section 3.5).

3.3.2 β-Strand mutation model In this step we augment the MSA with a
set of sequences that are produced by mutating the original sequences in such
a way that the frequency of pairs of amino acids hydrogen bonded in β-sheets
resembles the frequency observed in known protein fold space. We use the
pairwise conditional probability frequency tables from the recent paper of
Menke et al. (2010). There are two tables, representing the in–out residue
positions, respectively, for β-sheets that have one side buried and one side
exposed to solvent. The tables were learned from solved protein structures
in the PDB.

β−Strands in the aligned set of structures are found by the program
SmurfPreparse which is part of the Smurf Package (Menke, 2009; Menke
et al., 2010). The program not only outputs the positions of the consensus
β-strands in the alignment, it also declares a position buried or exposed based
on which of the two tables is the best fit to the amino acids that appear in
that position in the training data.

For each sequence in the training set, M mutated sequences with p%
mutations are created and added to the training set. Here ‘p’ is set not to be
proportional to the total length of the entire sequence, but instead to the total
length of the β-strand positions in the alignment. New sequences are created
as follows. Residue positions contained in β-strands are selected uniformly
at random. If position ‘i’ is selected, its pair residue ‘j’ is found (note that
j may appear before or after ‘i’ in sequence) and i is mutated according to
the appropriate pairwise table, conditioned on it being hydrogen bonded to
the residue of type in position ‘j’. This process is repeated p times and the
resulting sequence is added to the augmented training set. At the end of this
process, for example, a family with 100 original sequences in the training
set will have 100 + M × 100 (100 original + M × 100 mutated) sequences in
the augmented training set. In this study, we set values of p that would result
in training sets with 10–100% mutations (note: we allow sites to mutate
more than once, for example some of the positions even a sequence with a
100% mutation rate may not end up mutated) and tested multiple values of
M ranging from 10–1000. We picked a value of M at which the results were
stable at the 20% mutation rate (see Section 3.5).

3.4 Building the HMM
In our approach, the primary steps in building the HMM remain the same
except the training set is augmented with mutated sequences based on the
two evolutionary models. The process is shown in Figure 1.

Two packages are widely adopted to work width profile HMMs: SAM
(Hughey and Krogh, 1996) and HMMER (Eddy, 1998a, b). SAM has been
demonstrated to be more sensitive overall, while HMMER’s model scoring
is more accurate (Wistrand and Sonnhammer, 2004). In this study we use
HMMER versions 3.0a2 to evaluate the models of protein families as it is
freely available and can be easily downloaded from the website. We construct
HMMs from the MSAs using the hmmbuild program which is part of the
HMMER package.

In this approach, the model of the HMM is made up of a linear set of
match (M) states, one per consensus column in the MSA. Each M state emits
a single residue, with a probability score that is determined by the frequency
that residues have been observed in the corresponding column of the MSA.
Each match state therefore carries a vector of 20 probabilities, for scoring the
20 amino acids. The HMMs also model the gapped alignments by including
insertion (I) and deletion (D) states in between the match states. The match,
insertion and deletion states are connected by the transition probabilities.
In our experiment, HMMER is used as a black box except the constraints
on choosing match states are made tighter. Using default settings, HMMER
creates a match state whenever a column in the MSA has <50% gaps. We
found empirically in Kumar and Cowen (2009) that the default cutoff was
not optimal for our datasets because homology was too remote, and creating
a column whenever there are <20% gaps yielded the best HMMs on our
datasets. Thus we duplicate this threshold in the current study.

By default, HMMER uses a maximum a posteriori (MAP) architecture
algorithm to find the model architecture with the highest posterior probability
for the alignment data. The algorithm is guaranteed to find a model and
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constructs the model by assuming that the MSA is correct and then marks
columns that correspond to match states. An HMM is created for every MSA,
thus there is a one to one correspondence between an MSA and an HMM,
generating a library of HMMs. Therefore, for any sequence from the MSA,
the HMM can be used to determine if it belongs to the MSA. In addition, the
HMM can be used to check if a new sequence is similar to the sequences in
the MSA and if it is then one can place the new protein in the same family.
We used the default ‘glocal’ setting to construct the models which are global
with respect to model and find multiple hit local with respect to sequence.

In order to reduce the skewness in the distribution of sequences used
to construct an HMM, HMMER supports several options to weight the
sequences in training data. The default option GSC assigns lower weights
to sequences that are over-represented (Gerstein et al., 1994). In addition,
HMMER supports external and internal sequence weighting strategies based
on information theoretic principles. Based on our study of different sequence
weighting options for HMMs with and without the point mutation augmented
training for the task of learning SCOP superfamilies (Kumar and Cowen,
2009) we used SAM sequence entropy (Karplus et al., 1998) throughout the
present study.

3.5 HMM scoring
Once an HMM is build from an MSA, a new sequence can be scored by the
HMM. The score (S) is the log of the probability of observing the sequence
from a HMM divided by the probability of observing the same sequence
from the ‘null hypothesis’ model or HMM.

S = log2
P(seq|HMM)

P(seq|null)

P(seq|HMM) is the probability of the target sequence according to a
HMM and P(seq|null) is the probability of the target sequence given a ‘null
hypothesis’ model of the statistics of random sequence. In HMMER, this
null model is a simple one-state HMM that says that random sequences are
independently and identically distributed sequences with a specific residue
composition. In addition, HMMER also generates an E-value which is the
expected number of false positives with a score as high as the hit sequence.
While the log odd scores (S) provides information on the quality of a hit,
the E-value gives a measure relative to other sequences. Therefore a lower
E-value implies that the sequence matches more closely to the HMM.

After constructing an HMM, a cutoff for the score (S), or E-value, is set.
A new sequence that lies within the cutoff is said to belong to the family that
is associated with the HMM. Thus by varying the cutoff, the true positive
and false positive rates of the classifier can be tuned. We run experiments
over a range of cutoffs to generate receiver operating characteristics (ROC)
plots that graph the tradeoffs of the true and false positives, as the cutoffs are
tuned. We also compute the area under the ROC curve (AUC) to summarize
the classifier statistic in a single number (Sonego et al., 2008).

We also use average errors at minimum error point (MEP) statistics to
assess the performance of HMMs. An MEP is the score threshold at which
the classifier makes fewest errors of both kinds, i.e. false positives and false
negatives (Karchin et al, 2002). The percentage of both types of errors
provides a comparison of both sensitivity and specificity.

3.6 HMM stability
Because our method for augmenting the training data is randomized there is a
legitimate concern that any reported result might vary each time the algorithm
is run. While results will in fact vary, in fact the variation decreases as N
and M grow larger. We refer to the variation between different runs of the
algorithm as the stability of the procedure and we empirically experimented
with different values of N and M in order to ensure sufficiently consistent
results. We augmented the training set with 10, 50, 100, 200, 500 and
1000 mutated sequences for each original sequence in the training set, for
both pointwise and pairwise mutation models. We generated the augmented
training set 40 times at 20% mutation rate for each protein family in our

Fig. 2. Variation in SD of MEP for HMM training augmented with 10–
100 sequences based on the point mutation model.

Fig. 3. Variation in SD of MEP for HMM training augmented with 10–
1000 sequences based on pairwise β-sheet mutation model.

training set with a different random seed and constructed the HMMs as
described above. For each HMM, we computed the MEP for each iteration.
Figure 2 shows the variation in the SD of the MEP for the single mutation
model, and Figure 3 shows the variation in the SD of the MEP for the pairwise
mutation model. Based on these results we set N and M to each be 150 in
this artilcle.

4 RESULTS
As described in Section 3.1, our dataset consisted of the 41 SCOP
families from the ‘mainly beta’ section of SCOP hierarchy, each of
which had at least 10 structures, after filtering at the 95% sequence
identity level and for which between 1 and 50 sequences in their
associated SCOP superfamily but outside the SCOP family existed.
In each of the 41 cases, the training set was derived from the
training sequences from the SCOP family, and the test set consisted
of the sequences outside the SCOP family from the same SCOP
superfamily (the positive examples) as well as an equal number
of decoy sequences chosen randomly from outside the associated
SCOP fold (the negative examples).
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Fig. 4. Median percent AUC improvement with mutation rate for HMMs
trained with pointwise mutations. The maximum median improvement is
3.72% at 15% mutation rate.

For each SCOP family in the training set, we trained an ordinary
HMM model and plotted the ROC curve and calculated the AUC
for this task. Over all 41 families, the median AUC was 69%.
We then augmented the training set with the point mutation model
(Fig. 4), our new pairwise β-sheet model (Fig. 5) and using training
sequences generated from both models simultaneously (Fig. 6).
Figure 4 displays how the median AUC varies with the pointwise
mutation rate. Similar to Kumar and Cowen, 2009, the median
AUC improves by training set augmented with simulated evolution
all the way up to just above a 15% mutation rate, which gives
a median AUC improvement of 3.72%. When we look at the
same statistics for the pairwise mutation model in Figure 5, the
results are less linear with a peak 3.94% improvement at the 10%
mutation rate and maximum median AUC improvement of 4.79%.
Combining both types of augmented data it is the first peak of
pairwise mutations combined with pointwise mutation rate of 15%
that give the maximum median AUC for our experiment, an AUC
improvement of 4.95%. However, the variance in different runs
of this randomized procedure might mean that the best setting is
sometimes here and sometimes closer to the second highest peak in
Figure 6 (around 50% pairwise mutations).

Finally in Figures 7 (pointwise) and 8 (pairwise), we break down
the increase and decrease in AUC as a function of mutation rate
family by family. Most families show some positive increase in
AUC in all augmented training models, but for around a fifth of the
families performance degrades for the pointwise mutation model.
The non-linearity in the medianAUC as a function of mutation rate in
the pairwise mutation model is partially explained by examining the
proportion of families where performance improves versus degrades
in Figure 8. In particular, performance degrades for <25% of the
families at the 10% pairwise mutation rate, but this jumps up to 25%
or more thereafter. Meanwhile the families where AUC improves
with pairwise mutations shows a peak improvement level between
40 and 50% mutation rate.

It would be nice if there was a biological characterization of
what families will have improved versus degraded AUC with
pairwise mutated augmented training data. However, in this study,
the biological variation is almost certainly swamped by the variation
we see due to the different extent varying families within the same

Fig. 5. Median percent AUC improvement with mutation rate for HMMs
trained SAM with pairwise mutations. The maximum median improvement
is 4.79% at 50% mutation rate.

Fig. 6. Median percent AUC improvement with mutation rate for HMMs
trained with and dataset augmented with combined pointwise and pairwise
mutations. The maximum median improvement is 4.95% at pairwise
mutation rate of 10% and pointwise mutation rate of 15%.

Fig. 7. Distribution of families with improved performance for pointwise
mutation model.
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Fig. 8. Distribution of families with improved performance for pairwise
mutation model.

superfamily are represented among solved structures in the PDB and
hence the size and diversity of our test sets, as well as the difficulty
of the different random decoy structures that were chosen when we
constructed our datasets.Although the present study cannot therefore
address exactly how to tune mutation rate parameters on a per family
level, it is clear from our results that out pairwise mutation model
is successful in improving the detection of remote homologs of
β-structural motifs. While we cannot make any strong conclusions,
we did find, as a general rule, that the pairwise mutations helped the
most when there was the smallest diversity in the training sequences
at a family level, that is, when there were the fewest number of
known families for a given superfamily.

5 DISCUSSION
We have shown how pairwise dependencies in β-sheets can be
incorporated into an augmented HMM training set using simulated
evolution, resulting in improved recognition of β-structural motifs.
Our datasets, augmented training sets, and our HMMs are all
available online at http://bcb.cs.tufts.edu/pairwise/.

In the present work, it was assumed that the structural information
was available for sequences in the training set; thus structural
information was used to construct the multiple sequence alignment,
to locate β-strands, and to determine how the β-strands were
hydrogen bonded into β-sheets. However, ordinary HMMs and
our earlier, simpler, point mutation model of simulated evolution
require only sequence information, not structure. Extending our
work to the case where no solved protein strcuture is known is an
interesting open question. Secondary-structure prediction programs
(Rost, 2001) could be used to find β-strands, but determining how
they are paired and hydrogen bonded is a much more difficult
issue. Computationally predicting how β-strands are paired in the
absence of structural information is a well-studied problem since
1995 (Cheng and Baldi, 2006; Hubbard and Park, 1995; Jeong
et al., 2007; Steward and Thornton, 2002; Zhu and Braun, 1999).
Recent work that has tried to computationally model transmembrane
β-barels (Waldispuhl et al., 2008) and β-amyloids (Bryan et al.,
2009) without a structural template may also be relevant.
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