
Commentary
Testing the carbohydrate-insulin model in mice: The
importance of distinguishing primary hyperinsulinemia
from insulin resistance and metabolic dysfunction
The Carbohydrate-Insulin Model (CIM) of obesity posits that the high
insulin-to-glucagon ratio elicited by a high-glycemic load diet (i.e., with
large amounts of fast-digesting, high-glycemic index sources of car-
bohydrate) shifts substrate partitioning from oxidation in lean tissues to
storage in adipose tissue, predisposing to a positive energy balance
[1]. Several specific predictions distinguish the CIM from the standard
‘calories in, calories out’ view of obesity, wherein hyperinsulinemia
arises secondary to weight gain. According to these predictions,
isocaloric high vs. low-glycemic load diets (i.e., those diets that raise
postprandial glycemia and insulinemia) will increase anabolic stimu-
lation of adipose compared to muscle, thereby promoting fat storage.
In response to this change in metabolic fuel distribution, energy
expenditure will decrease and hunger and voluntary food intake will
increase. Importantly, the CIM holds that a positive energy balance
results, over the long term, from increasing adiposity e not the
converse, as premised in conventional thinking. Thus, the CIM may
inform a biologically based approach to target the metabolic
dysfunction driving weight gain.
In support of a key CIM prediction, energy expenditure and energy
intake during weight-loss maintenance were approximately 200e
300 kcal/d greater between 10 and 20 weeks on low-vs high-carbo-
hydrate diets controlled for protein [2]. However, long-term feeding
studies in humans such as this have inherent limitations, including
high cost, logistical challenges, and potential for nonadherence.
Animal research offers an opportunity to test the CIM largely free of
these limitations, although translation to humans can be problematic.
The meticulous study by Hu et al. [3] in a recent issue of Molecular
Metabolism provides interesting data on macronutrients and obesity in
mice. The article and section titles notwithstanding, it does not
comprise a meaningful test of the CIM.
Comparing diets ranging widely in carbohydrates, fats, and proteins,
Hu et al. reported no metabolic advantage of reduced carbohydrate
intake. Unfortunately, the composition of the diets precludes inferences
related to the CIM because of muddled effects on fasting and post-
prandial insulin concentrations. The CIM specifically recognizes that
“high insulin levels in blood may arise from primary hypersecretion
(postulated to cause weight gain) or as a compensatory response to
insulin resistance” [1]. However, the low-carbohydrate diets contained
predominantly saturated fat (cocoa butter, coconut oil, palm oil) and
sugar (sucrose) or glucose equivalents (maltodextrin, which has a
glycemic index equal to glucose [4]). Such high combined amounts of
saturated fat and sugar as a proportion of total energy would rarely be
consumed by humans and virtually never by rodents in nature.
In rodents, saturated fat induces insulin resistance in liver and muscle,
leading to compensatory (not primary) hyperinsulinemia. High intake of
saturated (but not unsaturated) fat also causes severe hypothalamic
inflammation and insulin resistance [5], especially when consumed
with sugar. This metabolic dysfunction e exacerbated by the
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additional, independent effects of sugar and maltodextrin e would
drive weight gain through numerous well-described central and pe-
ripheral mechanisms.
Even as the low-carbohydrate diets were strongly biased to produce
metabolic dysfunction, the high-carbohydrate diets were biased in the
opposite direction, with the use of cornstarch as the leading energy
source. Depending to some extent on the amylose to amylopectin ratio,
raw cornstarch (the type used by the manufacturer, according to
personal communication) produces a low insulin response [6], a po-
tential reason for the minimal postprandial glycemic and insulinemic
differences among the diets.
Thus, the low-carbohydrate diets elicited neuroinflammation, insulin
resistance, and compensatory hyperinsulinemia, whereas the high-
carbohydrate diets barely elicited primary hyperinsulinemia e a com-
bination that fatally confounds tests of the CIM. Consider the opposite
scenario. One might construct a high-carbohydrate diet primarily with
sugar and saturated fat, causing obesity and metabolic dysfunction in
comparison to a higher fat diet with a balanced distribution of mono- and
polyunsaturated fat and low-glycemic index sources of carbohydrate.
But advocates of a high-carbohydrate diet would probably not consider
this a fair test of macronutrients and obesity.
To circumvent these design limitations, several groups of investigators
have compared diets varying in glycemic index in rodents, controlling
for fat amount and type, sugar and other potentially confounding
factors. An implicit advantage of this design is greater clinical rele-
vance, as rodents and humans respond to high intakes of fat in
demonstrably different ways. In those studies, the high-glycemic index
diets resulted in marked primary hyperinsulinemia before changes in
systemic insulin resistance or body composition were observed.
Increased body fat mass (Figure 1), lower energy expenditure, and
greater food intake developed subsequently [1,7].
The evolutionarily conserved anabolic biochemical effects of insulin
provide a unique opportunity to test the CIM in experimental animals.
Mice genetically incapable of sustained hyperinsulinemia or those
lacking insulin receptors in adipose tissue are protected from diet-
induced obesity [8]. Peripheral injection of insulin in rodents, even
when calorie-restricted to prevent excessive weight gain, increases
adiposity [9]. In humans, genetically determined insulin secretion
strongly predicts body weight, but body weight does not predict insulin
secretion according to a recent bi-directional Mendelian randomization
study [10]. Moreover, drugs that decrease insulin secretion cause weight
loss [8], whereas those that increase insulin secretion (or insulin itself, in
the treatment of type 2 diabetes) cause weight gain in humans.
As has been explicitly stated, the CIM is not a single nutrient, single
hormone modeldmany dietary and environmental influences may
impact body weight regulation through pancreatic hormone secretion,
adipocyte anabolic state, or other mechanisms [1]. The CIM, like any
multicomponent conceptual framework of complex phenomena, is at
best a rough approximation of biology, subject to revision as new
knowledge accrues. However, in its present iterations, the CIM makes
specific and testable predictions, many of which have received support
from appropriately designed rodent research and clinical studies. In
light of the striking failure of conventional obesity prevention and
treatment on a population basis, all sides of this debate would do well
to avoid categorical conclusions about the validity of the CIM in any
species at this time.
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Figure 1: Greater adiposity among rats fed high-vs low-glycemic index diets. Representative weight-matched animals consumed diets that had either a low-glycemic index (Panel
A) or high-glycemic index (Panel B), as described in Pawlak et al. [7]. This study demonstrates four key predictions of the CIM, namely raising glycemic load would: 1) initially produce
primary hyperinsulinemia; and subsequently 2) reduce energy expenditure, 3) increase hunger, and 4) increase adiposity when controlling for body weight. In the high-glycemic index
diet group, mean body fat mass was 71% greater and lean mass was reduced commensurately. With a primary focus on glycemic load, the CIM can be tested by varying carbohydrate
amount or glycemic index. Studies in rodents targeting the latter, such as this, are arguably more relevant and interpretable due to species-specific differences in metabolic response to
macronutrients and potential confounding by fatty acid type. Other studies in mice or rats with consistent findings are summarized in Ludwig and Ebbeling [1].
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