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ABSTRACT

The human adenovirus type 5 (HAdV-5) E1A
13S oncoprotein is a potent regulator of gene
expression and is used extensively as a model for
transcriptional activation. It possesses two inde-
pendent transcriptional activation domains located
in the N-terminus/conserved region (CR) 1 and CR3.
The protein acetyltransferase p300 was previously
identified by its association with the N-terminus/
CR1 portion of E1A and this association is required
for oncogenic transformation by E1A. We report
here that transcriptional activation by 13S E1A is
inhibited by co-expression of sub-stoichiometric
amounts of the smaller 12S E1A isoform, which
lacks CR3. Transcriptional inhibition by E1A 12S
maps to the N-terminus and correlates with the abil-
ity to bind p300/CBP, suggesting that E1A 12S is
sequestering this limiting factor from 13S E1A.
This is supported by the observation that the repres-
sive effect of E1A 12S is reversed by expression of
exogenous p300 or CBP, but not by a CBP mutant
lacking actyltransferase activity. Furthermore, we
show that transcriptional activation by 13S E1A is
greatly reduced by siRNA knockdown of p300
and that CR3 binds p300 independently of the
well-characterized N-terminal/CR1-binding site.
Importantly, CR3 is also required to recruit p300 to
the adenovirus E4 promoter during infection. These
results identify a new functionally significant inter-
action between E1A CR3 and the p300/CBP acetyl-
transferases, expanding our understanding of the
mechanism by which this potent transcriptional
activator functions.

INTRODUCTION

Human adenovirus type 5 (HAdV-5) early region 1A
(E1A) is the first viral gene to be transcribed upon infec-
tion and plays an essential role in activating transcription
(1,2). The 13S and 12S E1A mRNAs encode two major
products of 289 residues (R) and 243R, respectively
(Figure 1A), and these share identical amino and carboxyl
sequences. The only difference between them is the pres-
ence of an additional 46 amino acids in the 289R protein
that arises as the result of differential splicing of the pri-
mary E1A transcript (2). The region unique to the 13S
encoded E1A protein coincides with a region that is
highly conserved amongst the E1A proteins of different
adenovirus serotypes, referred to as conserved region 3
(CR3) (3–5). Of the two major E1A polypeptides, the
larger is considered to be primarily responsible for tran-
scriptional activation of gene expression. Indeed, altera-
tions within CR3 generally abolish E1A transactivation
(6–10). Interestingly, a synthetic CR3 peptide correspond-
ing to residues 140–188 of E1A was sufficient to transac-
tivate adenovirus early promoters when microinjected into
HeLa cells (11). Later work identified an adjacent acidic
region spanning residues 189–200, termed Auxiliary
Region 1 (AR1) as essential for efficient transactivation
of early viral promoters by E1A (12).
The mechanism by which CR3 of E1A activates tran-

scription has been the subject of intense investigation.
Despite this, some aspects of transactivation by E1A
remain unclear. CR3 interacts with a wide variety of dif-
ferent transcription factors (13–17), allowing it to strongly
activate transcription of many different genes that have no
obvious similarities (16). These observations suggested
that the interaction of E1A with certain sequence specific
transcription factors results in the localization of E1A to
target promoters in the infected cell.
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Extensive mutational analyses identified a promoter tar-
geting region embedded within CR3 that is located within
residues 180–188 (15). This region is not required for
transactivation if E1A is artificially targeted to a promoter
as a fusion with a heterologous DNA-binding domain
(DBD) (18). These residues confer interaction with a
number of unrelated sequence specific transcription fac-
tors, such as ATF1-3, c-jun, SP1, USF, Oct-4 and CBF/
NF-Y (13–17) and several TBP associated factors (TAFs),
including TAFII55, TAFII110, TAFII135 and TAFII250
(19–22).
Interestingly, mutations within the promoter targeting

region of CR3 exhibit a pronounced dominant negative
effect on transcriptional activation by wild-type E1A
(23,24). This phenomenon, commonly referred to as
squelching, suggested that these particular mutants were
sequestering limiting factors necessary for transactivation
by wild-type E1A. The first of these factors to be identified
was TBP (25). Further studies led to the identification of
the Sur2/TRAP150b/Med23 component of the Mediator/
TRAP complex as a target of the CR3 domain of E1A
(26,27). More recent work has also suggested distinct roles
for different proteasome complexes in CR3-dependent
transcription (28). Clearly, the unusually strong transcrip-
tional activation function of CR3 results from a complex
orchestration of the activities of numerous transcriptional
components.
When fused to a heterologous DBD, which directly

tethers E1A to a promoter, a second transactivation
domain distinct from CR3 was identified within the N-
terminus/CR1 portion of E1A (29). This region of E1A
interacts with a number of transcriptional regulators,
including the p300, CBP (CREB-binding protein) and
pCAF acetyltransferases, TBP, TRRAP and p400
(Figure 1B) (30). Paradoxically, this region appears to
function primarily as a transcriptional repression
domain in the context of the E1A 12S protein, by seques-
tering limiting factors, such as p300 and CBP from cellular
transcription factors (2). Indeed, recent work has shown
that expression of E1A 12S induces global changes in

histone H3 K18 acetylation, consistent with the sequestra-
tion/retargeting of p300/CBP by E1A (31).

p300 and CBP are highly related transcriptional
co-activators that are recruited to gene promoters via
their association with numerous otherwise unrelated
DNA-binding transcription factors (32). Once recruited
to target promoters, p300/CBP activate transcription
by acetylating histone tails or target lysines within other
transcription factors using their intrinsic acetyltransferase
activity.

In the present study, we demonstrate direct binding of
p300/CBP to CR3, thus identifying a novel second site of
interaction in E1A 13S for these acetyltransferases. We
also show that p300/CBP and their associated acetyltrans-
ferase activities are important factors for transcriptional
activation by CR3. In summary, our results identify a new
factor required for transcriptional activation by the E1A
oncoprotein.

MATERIALS AND METHODS

Cell lines, tissue culture and viruses

U2OS, A549 and HeLa cells were grown in Dulbecco’s
Modified Eagle Medium (DMEM; Invitrogen) supple-
mented with 10% fetal bovine serum (Invitrogen), strep-
tomycin and penicillin.

HeLa cells were infected with an m.o.i. of 10 with the
indicated viruses. dl309 expresses both E1A 13S and 12S,
pm975 expresses only E1A 13S and dl520 expresses only
E1A 12S. Roughly 5� 106 cells were infected per virus.
Infections were carried out for 1 h in serum-free media,
after which 10ml of complete media was added and the
cells were incubated for an additional 16 h.

E3 and E4 reporter plasmid construction

The region spanning the adenovirus E3 promoter was
PCR amplified from a dl309 genomic DNA preparation
using the following primers:

Forward: 50-GATCCTCGAGGGCGGCTTTCGTCA
CAGGG-30
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Figure 1. Schematic of E1A isoforms and locations of binding sites for indicated proteins. (A) Schematic representation of E1A 12S and E1A 13S
splice isoforms. (B) Binding sites for p300/CBP, pCAF, TBP, p400 and TRRAP on E1A are indicated.

1096 Nucleic Acids Research, 2009, Vol. 37, No. 4



Reverse: 50-GCATGAAGCTTTCTGAAATGTCCCG
TCCGG-30

The E4 promoter was amplified using the following
primers:

Forward: 50-GTAAAGCTTCGACACGGCACCAGC
TCAATCAG-30

Reverse: 50-GATCCTCGAGATTTGAGGAAGTTGT
GGGTTTTTTG-30

The PCR product was then cloned in at the HindIII
and XhoI sites of pGL3-Basic (Promega).

E1A and p300/CBP expression vectors

E1A12S and E1A13S cDNAs were cloned into the
pcDNA3 mammalian expression vector (Invitrogen)
while the N-terminal deletions and the RG2 point
mutant of 12S E1A were cloned into pcDNA3.1
(Invitrogen). EGFP fusions of E1A 12S fragments were
generated by cloning the specific fragment into the
pEGFP-C1 expression vector (Clontech) in-frame with
the N-terminal EGFP. GAL4-fusions of CR3 were gener-
ated by subcloning CR3 (encoding residues 139–204 of
HAdV-5) into the pM vector (Promega) in-frame with
the N-terminal GAL4-DBD. GST fusions of CR3 (resi-
dues 139–204) and residues 1–82 of E1A were made by
subcloning the respective fragments into pGEX-4T1 (GE
Healthcare Life Sciences) in-frame with the N-terminal
GST tag. Expression vectors for p300, CBP, CBP
AT- and pCAF were previously described (33,34).

Transfection and reporter assay

Twenty-four hours prior to transfection, U2OS or HeLa
cells were seeded in six-well dishes (Sarsteadt) at a density
of 100 000 cells per well in DMEM. U2OS cells were trans-
fected with 1 mg of the reporter plasmid (pGal6-Luc) and
1 mg of the transactivator pM-GAL4-CR3 (unless other-
wise noted), which expresses HAdV-5 E1A residues
139–204 fused to the GAL4 DBD, and the indicated
amounts of a plasmid expressing E1A 12S or various dele-
tion mutants. HeLa cells were transfected with 0.5mg of
the reporter plasmid (pGL3-E4 or pGL3-E3) and 1.5mg
of E1A 13S plasmid, and 0.1 mg or indicated amounts of
a plasmid expressing E1A 12S. In addition 0.2mg of a
b-galactosidase plasmid was transfected with all repor-
ter/driver plasmids for transfection normalization pur-
poses. Transfections were carried out using the Superfect
reagent (Qiagen) according to manufacturer’s instruc-
tions. Luciferase activity was assayed 24 h after transfec-
tion for U2OS cells or 48 h after transfection for HeLa
cells using the Promega Luciferase Reporter kit according
to the manufacturer’s instructions. Luciferase activity was
normalized to both transfection efficiency using b-galacto-
sidase activity and protein levels. U2OS cells were used for
the GAL4-CR3 experiments instead of HeLa cells because
of poor activity of the GAL4-CR3 fusion in HeLa cells.
While HeLa cells were used for the E3 and E4 reporter
experiments because of high background activity of these
two reporters in U2OS cells.

siRNA transfection

siRNA for p300 was described previously (35). The
custom siRNA was ordered from Ambion and was

transfected into either U2OS or HeLa cells using the
SilentFect transfection reagent (Bio-Rad) according to
manufacturer’s instructions. Negative control siRNA #1
was purchased from Ambion (cat #4611). Seventy-two
hours after siRNA transfection, the cells were transfected
with the indicated plasmid mixes for luciferase assays.
Luciferase activity was assayed 24 or 48 h after plasmid
transfection.

Immunoprecipitation and GST pulldowns

For immunoprecipitation of wild-type E1A or E1A RG2
mutants, transfected HeLa cells were lysed in high salt
NP-40 lysis buffer (0.5% NP-40, 50mM Tris pH 7.8,
500mM NaCl) supplemented with protease inhibtor cock-
tail. Two milligrams of the cell lysate was used for immu-
noprecipitation with the monoclonal M73 anti-E1A
antibody (36). E1A was detected using the M73 monoclo-
nal antibody, while p300 was detected using the RW128
monoclonal antibody (Upstate).
HeLa cells transfected with 10 mg of either E1A

12Sdl1101, E1A 13Sdl1101 or genomic E1A expressing
plasmids were fixed with 1.5% formaldehyde for 10min
at room temperature directly in the growth media.
Crosslinking was stopped with glycine and incubation at
room temperature for an additional 5min. Cells were then
scraped from the dishes, washed with phosphate buffered
saline and resuspended in NP-40 lysis buffer (1% NP-40,
50mM Tris pH 7.8, 150mM NaCl) supplemented with
protease inhibitor cocktail (Sigma). The cell suspension
was then sonicated for 30 seconds. One milligram of the
cell lysate was used in immunoprecipitation using a mix of
the M58 and M73 monoclonal anti-E1A antibodies.
GST pulldowns were performed using purified full-

length CBP expressed from a baculovirus with purified
GST-CR3 (E1A residues 139–204) and purified GST-
1-82 as previously described (37,38).
For GST pulldown of CR3 with endogenous p300,

A549 cells were lysed in high salt NP-40 lysis buffer.
Four milligrams of A549 lysate were mixed with 50 mg of
either GST or GST-CR3 and Glutathione Sepharose 4B
and incubated at 48C. Bound proteins were recovered by
centrifugation, washed with high salt NP-40 lysis buffer,
eluted in SDS sample buffer and resolved on a gradient
4–12% SDS–PAGE. Associated p300 was detected using
RW128 monoclonal antibody.

Chromatin immunoprecipitation (ChIP)

ChIP was carried out essentially as previously described
(39). HeLa cells were infected with the indicated adeno-
viruses at an m.o.i. of 10 and harvested 16 h after infection
for ChIP analysis. For immunoprecipitation of E1A, the
monoclonal M73 antibody was used. For immunoprecipi-
tation of p300 the monoclonal RW128 anti-p300 antibody
was used. Mouse anti-rabbit antibody was used as a neg-
ative IgG control (Sigma). The E4 primers used for ampli-
fication of the precipitated DNA were:
Forward: 50-GTAAAGCTTCGACACGGCACCAGC

TCAATCAG-30

Reverse: 50-GATCTCGAGCATCATCATAATATAC
CTTATTTTGGATTGAAGCC-30
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PCR reactions were carried out using Taq DNA
Polymerase Supermix (Invitrogen) using 0.5% of total
ChIP DNA as template according to manufacturer’s
instructions. The annealing temperature used was 558C
and 35 cycles were run.

RESULTS

E1A 12S inhibits transactivation by E1A 13S and a
GAL4-CR3 fusion

E1A 13S can strongly activate transcription from a luci-
ferase reporter gene under the control of the adenovirus
E3 regulatory region (Figure 2A). Intriguingly, co-trans-
fection of limiting amounts of E1A 12S repressed activa-
tion of luciferase expression by E1A 13S (Figure 2A).
Indeed, activation was reduced by �50% when one-
tenth the amount of 12S expression vector was present.
The effect of E1A 12S on 13S transactivation was not due
to a reduction of 13S expression levels as determined by
Western blot analysis. We also tested an adenoviral E4
promoter construct (Figure 2B). This reporter showed
similar response to the E3 reporter, with robust activation
by E1A 13S and a pronounced decrease in activation when
sub-stoichiometric amounts of E1A 12S were co-expressed
with E1A 13S.
Interference by E1A 12S with E1A 13S-mediated acti-

vation suggests that it affects a key factor necessary for
13S-dependent transcriptional activation. E1A 12S could
sequester a factor from E1A 13S that is necessary for
transcriptional activation. This process is often referred
to as ‘transcriptional squelching’ (40) and can be used as
an experimental tool to identify limiting factors necessary
for transcriptional activation. Alternatively, 12S E1A
could induce the degradation of a factor necessary for
transcriptional activation by the 13S E1A. 13S E1A
contains two independent activation domains, located in
the N-terminal/CR1 and CR3 regions, respectively. As the
N-terminal/CR1 activation region is also present in the
12S E1A isoform, it is unlikely that sub-stoichiometric
amounts of 12S would efficiently compete for limiting fac-
tors with the identical region in 13S E1A. It seemed more
likely that E1A 12S was sequestering a limiting factor
required by the CR3 region, which is unique to the E1A
13S (Figure 1A). To directly determine if E1A 12S could
affect CR3-dependent transactivation, luciferase assays
were performed with increasing concentrations of E1A
12S in conjunction with a GAL4 DBD fusion of CR3
(amino-acid residues 139–204) and a GAL4 responsive-
luciferase reporter. Activation by GAL4-CR3, which is
directly recruited to the reporter by the fused GAL4
DBD, was reduced to �30% of normal activity even at
the lowest levels of E1A 12S co-expression (one-hundredth
the amount of GAL4-CR3 plasmid transfected;
Figure 2C). Increasing the levels of 12S to 100 ng (one-
tenth of GAL4-CR3 transfection) further reduced CR3
activity by up to 90%. Western blot analysis showed
that the expression level of GAL4-CR3 was not affected
by increasing concentrations of E1A 12S, suggesting that
the strong repression resulted from direct interference with
CR3 transactivation (Figure 2C).

Taken together, these results suggest that E1A 12S
is a potent dose-dependent inhibitor of 13S- and
CR3-dependent transactivation. E1A 12S appears to func-
tion by sequestering or inducing the degradation of a key
transcriptional co-regulator required by CR3. Moreover,
this is independent of the mechanism by which the activa-
tor is recruited to the promoter, and is not mediated
by changes in the expression levels of E1A 13S or
GAL4-CR3.

The N-terminal/CR1 portion of E1A 12S inhibits CR3
transactivation

In order to determine which region of E1A 12S mediates
the silencing effect, a set of GFP fusion constructs that
collectively encompass most of the E1A 12S protein
(Figure 3A) were co-expressed with the GAL4-CR3
fusion protein in the presence of a GAL4-luciferase repor-
ter plasmid (Figure 3B). Neither the CR2 region (residues
93–139), nor the C-terminal region (residues 187–289) of
E1A were capable of silencing CR3 transactivation.
Indeed, the C-terminal region, which tightly binds CtBP,
had the opposite effect, inducing the reporter 4-fold. This
result is consistent with our previous observations that the
interaction of CtBP with CR3 limits CR3-dependent acti-
vation (41). The only region of E1A capable of silencing
CR3-mediated transactivation mapped to the N-terminal
82 residues of E1A. Interestingly, this region is the only
portion of 12S E1A that functions as a transcriptional
activation domain when fused to a heterologous DBD
(29). This suggests that the N-terminus of E1A and CR3
may be binding a common factor(s). Sequestration or deg-
radation of this factor(s) by E1A 12S presumably causes
the observed reduction in transcription by E1A 13S.

E1A 12Smutants that lose p300/CBP binding no longer
inhibit CR3 transactivation

The N-terminus of E1A binds a large number of proteins
involved in transcriptional regulation, including p300/
CBP, pCAF, TBP, p400 and others (Figure 1B) (30,42).
To further map the region within the N-terminus of E1A
that was responsible for the squelching phenotype and to
potentially ascertain which factor is involved in repres-
sion, a series of E1A 12S deletion mutants (Figure 4A)
were tested for their ability to repress GAL4-CR3
mediated transactivation (Figure 4B). Since their initial
construction (43), these mutants have been studied exten-
sively and are well characterized for binding to various
factors involved in transcriptional control, including
p300/CBP (44), pCAF (45) (data not shown), TBP (46)
and p400 (47) (summarized in Table 1, Figure 1B). E1A
12S deletion mutants lacking residues 4–25, 30–49, 48–60
and 61–69 (mutants dl1101, dl1103, dl1104 and dl1141,
respectively) lost their ability to repress CR3-mediated
transactivation. The inability of mutants to repress CR3
activation correlated perfectly with loss of binding to
p300/CBP (44). Although many of these E1A mutants
are impaired for interaction with multiple transcriptional
regulators, loss of function does not match with the bind-
ing profile of any other target protein (Table 1, Figure 1B).
This suggests that sequestration of p300/CBP by the
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N-terminal/CR1 portion of 12S E1A may be the sole
mechanism of squelching CR3-mediated transactivation.
The E1A 12SRG2 point mutant, which also does not bind
p300/CBP in vivo, was tested in the squelching assay and
was also unable to repress CR3-dependent activation
(Figure 4C). Indeed, 12SRG2 behaved similarly to the
E1A 12Sdl1101 mutant, enhancing CR3-mediated activa-
tion, presumably by sequestering CtBP-associated tran-
scriptional repressors. These results suggest that p300/
CBP is most likely the sole factor sequestered by the
N-terminus of E1A 12S and that it is involved in trans-
activation by CR3.

Expression of exogenous p300 or CBP restores
transactivation by CR3 when E1A 12S is present

The extensive mutational analysis presented above indi-
cates that reduction of transcriptional activity by E1A

12S relies on binding to p300; although, other factors
cannot be fully excluded from playing a role. We initially
determined if E1A 12S had an effect on the steady state
level of p300 by Western blot analysis in both U2OS and
HeLa cells (Figure 5A). E1A 12S expressing cells showed
similar levels of endogenous p300 expression as compared
to vector transfected cells or cells expressing E1A 13S.
This indicates that the mechanism by which E1A 12S
blocks transcriptional activation by E1A 13S is not
mediated by degradation of p300.

To determine if sequestration of p300/CBP was respon-
sible for the repressive effects observed, we tested whether
expression of exogenous p300 would restore transactiva-
tion by the GAL4-CR3 fusion protein in the presence of
E1A 12S. Expression of increasing levels of p300, or the
closely related acetyltransferase CBP, restored CR3 trans-
activation in the presence of E1A 12S (Figure 5B). This
was dependent on p300/CBP acetyltransferase activity, as
an acetyltransferase-defective CBP mutant protein was
unable to restore transactivation. Furthermore, the
observed effect was specific to p300/CBP, because the
pCAF acetyltransferase was unable to restore CR3 trans-
activation (Figure 5B). These results conclusively show
that p300/CBP is indeed the key factor sequestered by
E1A 12S, as supplementation by it alone was sufficient
to restore activity. Furthermore, these results suggest
that p300/CBP is a limiting factor in CR3-mediated trans-
activation, as CR3-dependent transcriptional activity was
enhanced by overexpression of p300/CBP (Figure 5B).

Depletion of p300 strongly impairs transactivation by
CR3 and E1A 13S

To definitively determine if p300 played a role in
CR3-mediated transactivation, p300 was knocked down
in human HeLa cervical cancer cells (for the E4/E1A
13S assay) or human U2OS osteosarcoma cells (for the
GAL4-CR3 assay) using siRNA previously shown to be
specific to p300 mRNA (35). p300 levels were greatly
reduced in cells transfected with siRNA specific for
p300, but not in those that were transfected with a nega-
tive control siRNA (Figure 6). Knockdown of p300 had a
dramatic effect on transactivation by both 13S and the
GAL4-CR3 fusion, without affecting the expression
levels of either activator (Figure 6). This effect was not
due to a general reduction of transactivation or loss in
viability in cells in which p300 was knocked down because
a reporter not regulated by E1A or CR3 was largely unaf-
fected by the knockdown (data not shown), in agreement
with what was previously observed with this siRNA (35).
This result conclusively demonstrates that p300 is required
for transactivation by CR3.

CR3 binds p300/CBP independently of the N-terminus
and CR1

Numerous reports have indicated that p300/CBP stably
binds to E1A via the N-terminus/CR1 region (2). The
data presented here indicates that p300/CBP is also
required for CR3-dependent transactivation, suggesting
that CR3 may represent a previously unidentified second
independent site of interaction with p300/CBP.

1-82 93–139 187–289 E1A 12S EGFP
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 R
el

at
iv

e 
fo

ld
 a

ct
iv

at
io

n Actin

GFP-187-289

GFP

GFP-1-82
GFP-93-139

GFP-1
87

-2
89

GFP
GFP-1

-8
2

GFP-9
3-

13
9

CR3

A

B

CR1 CR2N
Term.

12S
(243R)

CR4

1-82

93-139

187-289

N
Term.

CR1

CR2

CR4

GAL4-DBD

CR3

Luciferase6x UAS

Figure 3. Repression of CR3 transactivation by E1A 12S maps to the
N-terminal/CR1 region. (A) Schematic representation of E1A 12S and
the locations of fragments used as GFP fusions in the squelching assay.
(B) U2OS cells were co-transfected with 0.1 mg of the indicated
GFP-E1A fragment fusions, GAL4-CR3 (1mg) and a GAL4-luciferase
reporter (1mg). Luciferase activity was assayed 24 h after transfection
and the results were plotted versus GAL4-CR3 (shown in grey), which
was set to 1.

1100 Nucleic Acids Research, 2009, Vol. 37, No. 4



1106
90-105

CR3 (1000ng)

E1A
 1

2S
RG2

10
0n

g

E1A 12S/12SRG2

CR3

Actin

10
0n

g 
E1A

 1
2S

E1A 12S EGFP
0

0.5

1

1.5

2

2.5

dl1101 dl1102 dl1103 dl1104 dl1105 dl1106 dl1107dl1141

R
el

at
iv

e 
fo

ld
 a

ct
iv

at
io

n
E1A

Actin

dl1
10

1

dl1
10

2

dl1
10

3

dl1
10

4

dl1
10

5

dl1
10

6

dl1
10

7

dl1
14

1

E1A
 1

2S
E1A 12S mutants

CR3

B

C

0

0.5

1

1.5

2

2.5

3

CR3

+ E1A
12SRG2

+ E1A
12S

R
el

at
iv

e 
fo

ld
 a

ct
iv

at
io

ndl1101
4-25

dl1102
26-35

dl1103
30-49

dl1104
48-60

dl1105
70-81

dl1107
111-123

dl1141
61-69

CR1 CR2N-Term.
Exon 1

A

dl

GAL4-DBD

CR3

Luciferase6x UAS

GAL4-DBD

CR3

Luciferase6x UAS

Figure 4. Repression of CR3 transactivation by E1A 12S maps to the same regions that bind p300/CBP. (A) Schematic representation of E1A 12S
deletion mutants within exon 1 used in the study. (B) U2OS cells were co-transfected with 0.1 mg of the indicated E1A 12S deletion mutants together
with GAL4-CR3 (1mg) and a GAL4-luciferase reporter (1 mg). Luciferase activity was assayed 24 h after transfection and the results were plotted
versus GAL4-CR3 (shown in grey), which was set to 1. (C) U2OS cells were co-transfected with GAL4-CR3 fusion (1 mg), GAL4-luciferase reporter
(1 mg) and 0.1 mg of E1A 12SRG2 or wild-type E1A 12S. Luciferase activity was assayed 24 h after transfection and the results were plotted versus
GAL4-CR3 (shown in grey), which was set to 1.

Nucleic Acids Research, 2009, Vol. 37, No. 4 1101



To determine whether CBP binds directly to CR3,
purified recombinant full-length CBP and purified
GST fused CR3 (amino-acids 139–204) were used in a
GST pulldown experiment (Figure 7A). Recombinant
GST-E1A residues 1–82 was used as a positive control,
as it contains the high affinity p300/CBP-binding region
(48). A direct interaction between CR3 and CBP was
readily detectable under these in vitro conditions, whereas
GST alone did not bind to CBP. The interaction
observed between CR3 and CBP was somewhat weaker
than that with the N-terminus of E1A. This data indi-
cates that recombinant CR3 can directly and
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Table 1. E1A 12Smutants binding profile for p300, p400, TBP and pCAF

E1A
mutant

Squelching
of CR3

Interaction with

p300 p400 TBP pCAF

dl1101 � � � � �

dl1102 ++++ ++++ � + ++
dl1103 � � � ++++ +++
dl1104 � � ++++ +++ ++++
dl1141 � � ++++ ++++ ++
dl1105 ++++ ++++ ++++ ++++ ++

Binding properties of E1A 12S N-terminal deletion mutants to p300,
p400, TBP and pCAF.
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independently bind CBP in vitro. Interestingly, addition
of HeLa total cellular extract to the pulldown assay
reduced the interaction between CR3 and CBP by
�50% (Supplementary Figure S1), suggesting that cellu-
lar factors present in the lysate may be competing with
E1A for CBP.
To determine whether p300 was capable of interacting

with purified GST-CR3 in vitro, total A549 cell extract
was mixed with purified GST or GST-CR3. GST-CR3
was able to pull-down endogenous p300 from A549 cell
extract (Figure 7A).
We tested whether CR3 could independently bind p300

in vivo in the context of full-length E1A by co-immuno-
precipitation (Figure 7B). E1A 12S and 13S co-precipi-
tated comparable amounts of HA tagged p300. As
reported previously, incorporation of the RG2 point
mutation abrogated binding of p300 with E1A 12S
in vivo (49,50). In contrast, E1A 13SRG2 differed from
12SRG2 as it was able to co-precipitate detectable
amounts of p300 (Figure 7B). This result indicates that,
in the absence of the N-terminal-binding site, CR3 can
independently interact with p300 in vivo. Additional
co-immunoprecipitations using the deletion mutant
dl1101, which does not bind p300/CBP as it lacks residues
4–25, also reproducibly detected p300 (Figure 7C).
Clearly, the observed interaction with the two E1A 13S
mutants is not mediated by residual binding at the
N-terminus, because the same mutants in the E1A 12S
protein do not show any binding.
Taken together, these results show a direct physical

interaction between p300/CBP and CR3 of E1A 13S
in vitro and in vivo.

p300 is recruited to the adenovirus E4 promoter
during infection

During viral infection, E1A facilitates transcriptional ini-
tiation at the viral early promoters (42). To determine
whether p300 is recruited to the adenovirus E4 promoter
during viral infection, we performed chromatin immuno-
precipitations with E1A and p300 antibodies (Figure 8) on
infected HeLa cells. In the context of a viral genome, E1A
and p300 were found occupying the viral E4 promoter
only in the presence of the E1A 13S isoform (pm975 and
dl309 viruses), but not when the cells were infected with an
E1A 12S only virus (dl520).

DISCUSSION

In this report, we used the transcriptional squelching abil-
ity of E1A 12S protein to identify p300/CBP as a co-factor
involved in transcriptional regulation by the E1A 13S
protein. This conclusion was confirmed using siRNA-
mediated knockdown of p300, which demonstrated a
dramatic and specific effect on both CR3- and E1A 13S-
mediated transactivation (Figure 6). Taken together,
these results indicate for the first time that p300/CBP
are critical factors for CR3-dependent transcriptional
activation.
Prior to this report, p300/CBP interaction had only

been mapped to the N-terminal/CR1 region of E1A.
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Indeed, p300 was identified through its interaction with
this region of E1A (51). However, we now show that
direct binding of CBP to GST-CR3 can be readily
detected with purified proteins (Figure 7). Furthermore,
independent binding of p300 to CR3 can be revealed if
mutants of E1A 13S that lose high-affinity binding to
the N-terminus are used in co-precipitation experiments
(Figure 7).

Although both the E1A N-terminus and CR3 function
as independent transactivation domains, their individual
roles were not clear. This has been further complicated by
the original definition of the N-terminal activation domain
as a transcriptional repression domain (2). However, our
data may provide some insight into the need for two sep-
arate activation regions. Specifically, the N-terminal acti-
vation domain in the E1A 12S protein may play a role in
regulating transactivation by E1A 13S. Effectively, the
relative abundance of E1A 12S and 13S may play a role
in fine-tuning the overall transcription program carried
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out by E1A. Our data suggests that E1A 12S does this by
sequestering p300/CBP from CR3. Although there are
other common targets between the N-terminus of E1A
and CR3, such as TBP and the proteasome (28,50,52),
our data indicate that p300/CBP is the limiting factor as
supplementation with excess p300 or CBP relieves the
repressive effects of E1A 12S on CR3-dependent transac-
tivation (Figure 5). Thus, the relative abundance of E1A
12S with respect to E1A 13S could regulate the effects of
E1A 13S on transcription.

ChIP analysis reveals that only E1A 13S is efficiently
recruited to the E4 promoter region on the viral genomic
DNA during infection (Figure 8). Furthermore, occu-
pancy of p300 at this promoter requires E1A 13S, consis-
tent with a role for p300 in E1A-mediated transcriptional
activation. The current model of transactivation by E1A
13S is based on recruitment of E1A to the viral promoter
via specific interaction of the promoter targeting region of
CR3 with sequence-specific factors such as ATF-2. Thus,
it is not surprising to see that E1A 12S is not recruited and
that it does not recruit p300 to the E4 promoter (Figure 8),
as it lacks the promoter targeting domain. We have pre-
viously observed that E1A 13S is capable of being
recruited to a GAL4-ZNF217 repression complex and
activating it (41). Interestingly in that study, although
12S could interact with CtBP and therefore be recruited
to ZNF217-occupied promoter region, it was not capable
of activating transcription. Together these data suggest
that transcriptional activation by E1A is primarily a func-
tion of the 13S splice variant. Although the E1A 12S iso-
form contains an intrinsic activation domain localized at
the N-terminus, this is not sufficient to lead to strong
activation, at least in the context of the reporter assays
we utilized. Indeed, the data presented here suggest that it
acts as a repressor, potentially regulating the function of
E1A 13S. This agrees with numerous other studies that the
E1A 12S protein can function as a general repressor of
sequence-specific transcriptional activators (2) and is con-
sistent with a recent report that E1A 12S causes a 3-fold
reduction in total cellular histone H3 lysine 18 acetylation,
which is a marker of active transcription (31). Our obser-
vation that p300/CBP acetyltransferases associate differ-
ently with E1A 13S than with the 12S isoform suggests
that it may have different effects on global histone acetyla-
tion patterns. Unlike E1A 12S, E1A 13S may induce
hyperacetylation of histones at specific target promoters.
In the context of genomic E1A, where all isoforms of the
protein are expressed, the differing functions of 12S and
13S on histone acetylation may fine-tune the reprogram-
ming of the epigenetic code in the infected cell in order to
efficiently initiate the cell cycle. This potentially presents
an interesting area for future investigation.

In conclusion, this study sheds further light on the
mechanism of transcriptional activation by the CR3
region of the E1A oncoprotein. For the first time, we iden-
tify a second independent and direct interaction of p300/
CBP with E1A 13S and demonstrate a role for p300/CBP
in transactivation by CR3. Our work also suggests that
E1A 12S may play a role in limiting E1A 13S-dependent
activation.
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