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samples in rainbow trout
Rafet Al-Tobasei1, Ali Ali2, Timothy D. Leeds3, Sixin Liu3, Yniv Palti3, Brett Kenney4 and Mohamed Salem1,2*

Abstract

Background: Coding/functional SNPs change the biological function of a gene and, therefore, could serve as
“large-effect” genetic markers. In this study, we used two bioinformatics pipelines, GATK and SAMtools, for
discovering coding/functional SNPs with allelic-imbalances associated with total body weight, muscle yield, muscle
fat content, shear force, and whiteness. Phenotypic data were collected for approximately 500 fish, representing 98
families (5 fish/family), from a growth-selected line, and the muscle transcriptome was sequenced from 22 families
with divergent phenotypes (4 low- versus 4 high-ranked families per trait).

Results: GATK detected 59,112 putative SNPs; of these SNPs, 4798 showed allelic imbalances (>2.0 as an amplification
and <0.5 as loss of heterozygosity). SAMtools detected 87,066 putative SNPs; and of them, 4962 had allelic imbalances
between the low- and high-ranked families. Only 1829 SNPs with allelic imbalances were common between the two
datasets, indicating significant differences in algorithms. The two datasets contained 7930 non-redundant SNPs of
which 4439 mapped to 1498 protein-coding genes (with 6.4% non-synonymous SNPs) and 684 mapped to 295
lncRNAs. Validation of a subset of 92 SNPs revealed 1) 86.7–93.8% success rate in calling polymorphic SNPs and 2) 95.
4% consistent matching between DNA and cDNA genotypes indicating a high rate of identifying SNPs with allelic
imbalances. In addition, 4.64% SNPs revealed random monoallelic expression. Genome distribution of the SNPs with
allelic imbalances exhibited high density for all five traits in several chromosomes, especially chromosome 9, 20 and 28.
Most of the SNP-harboring genes were assigned to important growth-related metabolic pathways.

Conclusion: These results demonstrate utility of RNA-Seq in assessing phenotype-associated allelic imbalances in
pooled RNA-Seq samples. The SNPs identified in this study were included in a new SNP-Chip design (available from
Affymetrix) for genomic and genetic analyses in rainbow trout.
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Background
Fish growth rate, muscle yield and fillet quality are major
traits affecting profitability of aquatic food animal pro-
duction. As feed cost is a major factor influencing the
profitability, efficiency of growth is important and re-
lated to growth rate and muscle yield and composition.

Skeletal muscle constitutes about 50–60% of the fish
weight [1]. Given that growth efficiency and fillet firmness
and appearance are critical for profitability and production
of premium products [2], optimizing fish growth, muscle
yield and fillet quality traits is a key objective in aquacul-
ture breeding programs. Traditional phenotype-based
selection is typically used to select for fast growth; how-
ever, muscle yield and quality traits are difficult to improve
by conventional selection because measurement of these
traits requires sacrificing the animal [2].
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Genomic selection tools have been created to improve
economically important traits in plants and livestock.
Genetic maps, which characterize the linkage or co-
inheritance patterns of genetic markers, have been devel-
oped for a wide range of species, including fish, with the
aim of discovering allelic variation affecting traits; and
ultimately identify DNA sequences underlying pheno-
types [3, 4]. Markers have been identified by various
molecular techniques, including numerous and genome-
wide single nucleotide polymorphisms (SNPs). In
addition, recent technological developments have
enabled high throughput genotyping of these SNPs ren-
dering them useful for genome-wide association studies
[5–8]. Functional SNPs are generally defined as SNPs
from genome sequences that affect structure, expression
or function of a gene. These sequences include coding
SNPs (e.g. non-synonymous, splicing), promoter and
noncoding SNPs, as well as functional elements identi-
fied from studying of genome conservation [9]. Coding/
Functional/ SNPs (c/fSNPs) are especially important be-
cause they have the potential to change the function of a
protein [4, 10, 11]. In addition, c/fSNP markers, because
they are located within expressed genes, they are un-
likely to become unlinked from their associated genes
due to genetic recombination. Therefore, c/fSNPs can be
useful genetic markers for detecting significant associa-
tions with phenotypes. Understanding molecular mecha-
nisms of muscle growth and quality can help in making
better selection decisions. In terrestrial livestock, several
genes, genetic markers and QTLs associated with pro-
duction traits, including growth, have been characterized
using molecular techniques [12, 13]. In addition,
marker-assisted selection has been used to enhance
genetic improvement in livestock breeding programs by
direct selection on genes affecting economic traits [14]
and to optimize selection for quantitative traits [12, 13].
However, the genetic basis of muscle growth and quality
traits is not well studied in fish [15].
Rainbow trout is the most cultivated cool and cold

freshwater fish in the U.S. [16], and it is considered a
model species for studies in several fields of biology, in-
cluding ecology [17], pathology [18], physiology [19],
toxicology [20] and carcinogenesis [21]. Several studies
used RNA sequencing to identify markers in human [22,
23] and non-model species [11, 24, 25]. However, most
SNP detection algorithms were developed for DNA-Seq
analyses and are not optimized/tested for RNA-Seq, es-
pecially in pooled samples. The objective of this study
was using RNA-Seq analyses of pooled samples to iden-
tify c/fSNP markers and develop a resource for studies
of marker association with production traits in rainbow
trout. First, transcriptome-wide SNP allele frequencies
were correlated to phenotypic variations in fish whole
body weight (WBW) and muscle yield, fat content, shear

force and whiteness. Second, SNPs with allelic imbalance
scores (ratios between the allelic frequencies of the high-
end families and that of the low-end families) were iden-
tified. Then, a subset of the putative SNPs was validated
for allelic polymorphism and tested for trait association.
Finally, genes harboring SNPs with allelic imbalances
were annotated to obtain insight into the potential func-
tional effects of the SNPs.

Result and discussion
Phenotypes
SNPs were identified in fish families with divergent phe-
notypes in WBW, muscle yield, fat content, shear force
(texture) and whiteness of the fillet. These rainbow trout
were from a growth-selected line developed by the
NCCCWA breeding program [26]. Briefly, this line was
created through artificial selection, starting in 2004, from
7 founder strains with documented diversity and domes-
tication history. Over five generations, the population
responded to selection by 9.8–12.7% increase in WBW
per generation, and rate of inbreeding averaged 0.86%
per generation [26]. In this study population, which was
sampled after three generations of selection (hatch year
of 2010), WBW was positively correlated with muscle
yield and muscle fat content (R2 = 0.56 and 0.50 respect-
ively, data not shown). Our previous reports showed that
fast growth may be genetically associated with improved
muscle yield, paler fillets (affected by intramuscular fat
content) and firmer texture [27]. The trait heritability es-
timates for muscle yield, muscle weight, WBW10,
WBW13, carcass weight, fat percentage, shear force and
fillet color were moderate to high (0.31–0.81) [6, 27].
Those moderate to high heritability estimates imply that
substantial additive genetic variation exist in the study
population for growth and carcass traits.
For RNA sequencing, muscle samples were collected

from 7 to 9 different full-sib families showing divergent
phenotypes per trait (i.e. 3–5 high ranked families versus
3–5 low ranked families per trait). Five fish were sam-
pled from each family. Divergent phenotypic attributes
(Fig. 1) were statistically different (P < 0.01): WBW
(1221.6 g ± 84.25 vs. 502.1 ± 28.0 g), muscle yield
(50.9% ± 1.6 vs. 43.3% ± 2.3), muscle crude-fat (9.24%
± 1.2 vs. 4.77% ± 1.3), shear force (grams force/g of
sample; 539.64 ± 12.3 vs. 310.01 ± 49.2), and fillet
whiteness index (44.7 ± 0.8 vs. 41.23 ± 0.4) for high- vs.
low-ranking groups, respectively. Means and standard
deviations of these traits were calculated from the
family averages.

Identification of putative SNPs
RNA pools from muscle tissues of 5 fish per family were
used for RNA-Seq analyses. A total of 259,634,620 reads
(100 bp single-end) were generated from 22 families at
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an average of 11,801,573 reads per family. Reads were
aligned against the rainbow trout genome [28] using the
STAR [29] alignment tool. Percentage of reads mapped
to the genome ranged from 80% to 82% per family.
A total of 204,604 putative SNPs were detected for the

five traits using Haplotypecaller tool of Genome Analysis
Toolkit v3.3.0 (GATK) [30], with an average of 40,920
SNPs per trait. Using the SAMtools/Popoolation soft-
ware package [31, 32], a total of 304,805 putative SNPs
were predicted, with an average of 60,961 SNPs per trait
(Table 1). After removing redundant SNPs among all
traits, we had 59,112 SNPs from GATK and 87,066 from
SAMtools/Popoolation2 with 50,885 shared between the
two bioinformatics pipelines (Table 1).
After identifying putative SNPs, an in-house Perl script

was used to estimate allelic imbalances of the SNPs in
each trait. A total of 6275 SNPs with allelic imbalances
were identified from the GATK dataset at cutoff values of
>2.0 as an amplification and <0.5 as loss of heterozygosity.
In addition, 969 SNPs explicitly existed in only the high or
low phenotypic group. After removing redundant SNPs

between traits at the two cutoff values, there were 4798
unique SNPs (Table 1). Similarly, SAMtools/Popoolation2
identified 5070 SNPs with allelic imbalances at cutoff
values of >2.0 as an amplification and <0.5 as loss of het-
erozygosity. In addition, 1450 SNPs existed in families at
one of the two ends of each trait variation scale but not in
the other (Table 1). There were 4962 non-redundant SNPs
among the five traits that were identified with SAMtools/
Popoolation2 at the two cutoff values. There were only
1829 non-redundant SNPs shared between GATK and
SAMtools/Popoolation2. Differences in variant calling and
filtering steps might have caused the observed differences
in number of SNPs between GATK and SAMtools/Popoo-
lation2. There were 7930 non-redundant SNPs with allelic
imbalances from both methods. The results of the SNPs’
allelic imbalances should be taken with caution because
we could not find a reliable statistical test associated with
the ratio calls derived from the allelic imbalance calcula-
tion to report statistical significance. However, by utilizing
exact allele counts instead of frequencies, we were able to
assign Chi Square P-Values to most of the SNPs with

a b

c d

e

Fig. 1 Phenotypic variations in fish families with contrasting phenotypes for five different traits; whole-body weight (a), muscle yield (b), fat con-
tent (c), shear force (d) and fillet whiteness index (e). All differences were statistically significant (p < 0.01)
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allelic imbalances. Out of the 7930 SNPs with allelic im-
balances, there were 6038 SNPs with available read count
for both alleles in the divergent families. Alternatively,
there were 1892 with counts for only one allele. These
SNPs existed in families at one of the two ends of each
trait variation scale but not in the other. We performed
chi-square test on the 6038 SNPs and found 5330 SNPs
(83%) with P_value <0.05 and 710 SNPs (17%) with
P_value greater >0.05 (Additional file 1).
For subsequent analyses, we combined SNPs from

GATK and SAMtools/Popoolation2 into three different
groups: 1) Non-redundant SNPs with allelic imbalances
from both methods (7930 SNPs); 2) Common putative
SNPs from both methods (50,885 SNPs); 3) Putative
non-redundant SNPs from both methods (95,234 SNPs)
(Table 1). All SNPs data are provided in Additional file 1.

SNP validation
A total of 92 putative SNPs including 88 SNPs from the
GATK/SAMtools common pool (50,885 SNPs) were se-
lected for SNP validation. Among the 92 putative SNPs,
68 SNPs showed allelic imbalances (Table 2), including
25 SNPs identified by GATK pipeline, 10 SNPs identified
by SAMtools pipeline, and 33 SNPs identified by both
pipelines (Table 2). Among the 92 tested SNPs, 72
(78.2%) SNPs were polymorphic, 11(11.9%) SNPs were

monomorphic and 9 failed the assay (Table 2). Failure of
the Fluidigm assay can be caused by unsuccessful or
non-specific primer binding to the target genomic DNA.
Therefore, we cannot assume that a failed assay indicates
failure of our bioinformatics pipeline to detect a SNP in
the RNA sequence data, and can remove the failed SNP
assays from the calculation of SNP validation rate. As 72
out of the 83 working Fluidigm SNP assays were poly-
morphic, we can claim 86.7% validation rate in detecting
polymorphic SNPs in the overall putative SNP pool and
90% validation rate in the GATK/SAMtools shared SNPs
pool. This success rate is much higher than what we
previously achieved in rainbow trout using RNA-Seq
(70%) and genomic reduced representation libraries
(48%) [11, 33]. The improved success rate in this study
is perhaps due to use of a reference genome instead of
de novo assembled references used in the previous stud-
ies. In addition, a transcriptome sequence coverage of
∼7.4X per fish was used compared to only ∼0.97X in our
previous RNA-Seq study [11]. The 90% successful SNP
validation rate is comparable to that reported in diploid
fish or using genomic RADs and doubled haploid fish in
rainbow trout [7, 34]. In addition, a recent rainbow trout
genome re-sequencing study with at least 10× genome
coverage per fish had 86% successful validation rate [7].
Relatively lower success rates in SNP detection were

Table 1 Summary of putative SNPs and SNPs showing allelic imbalances identified by SAMtools and GATK for each trait

Trait No. of putative SNPs No. of SNPs with Allelic imbalance

SAMtools/Popoolation2 GATK SAMtools/Popoolation2 GATK

0.5/2.0 0.0/1.0 0.5/2.0 0.0/1.0

Fat% 59,032 38,808 662 406 877 270

Shear 60,309 38,960 910 488 1152 261

Muscle% 61,117 42,383 1321 116 1507 76

Whiteness 64,636 44,460 1011 347 1283 298

WBW 59,711 39,993 1166 93 1456 64

Total # SNPs 304,805 204,604 5070 1450 6275 969

Total # SNPs non-redundant 87,066 59,112 4962 4798

Total Common SNPs 50,885 1829

All putative SNPs(MAF > 0.05) =95,234* Total No. of SNPs with allelic imbalance = 7930**

Allelic imbalances were calculated at >2 for amplification and <0.5 for loss of heterozygosity. SNPs explicitly existing in only the high or low phenotypic group are
indicated in the table by the 0.0/1.0 ratio. * 59 SNPs were multi-allelic, showing different alleles in association with different phenotypes. ** 1 SNP was multi-allelic
showing different alleles predicted by different pipelines

Table 2 Number of putative and validated SNPs from each dataset

SNP Group Total SNPs Polymorphic Monomorphic Failed assay Success rate

All putative SNPs (95,234) 92 72 11 9 86.7%

GATK/SAMTool common SNPs (50,289) 88 72 8 8 90.0%

Total SNPs with allelic imbalance 68 55 7 6 88.7%

GATK unique SNPs with allelic imbalance 25 21 3 1 87.5%

SAMTool unique SNPs with allelic imbalance 10 4 2 4 66.7%

GATK/SAMTool common SNPs with allelic imbalance 33 30 2 1 93.8%
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reported from RNA-Seq studies in rainbow trout due to
genome duplication and assembly errors in the genome/
transcriptome references [11, 35, 36]. Noteworthy and in
a separate study, we found variation in gene expression
in only 75 genes distributed between all 5 traits (data
will be published elsewhere). Therefore, differential gene
expression effects on estimating allelic imbalances were
negligible as only 75 genes distributed between all five
traits were differentially expressed between the high and
low families. Minor effects of variation in gene expres-
sion on allele frequency estimation accuracy were previ-
ously reported [37]. The SNP validation data, albeit
small, indicated that the GATK method was more suc-
cessful in calling polymorphic SNPs with allelic imbal-
ances than the SAMtools pipeline; 87.5% versus 66.7%,
respectively. However, combined GATK and SAMtools
data had a 93.8% success rate. Success rates between
SNPs with and without allelic imbalances were 88.7%
and 86.7%, respectively. Importantly and out of 72 vali-
dated SNPs, 61 (84.7%) and 58 SNPs (80.5%) were poly-
morphic in fish from two different commercially
important rainbow trout populations in the US, Trou-
tlodge Inc. and Clear Springs Foods Inc., respectively.
These results suggest that the SNPs identified in this
study are also useful for other commercial rainbow trout
populations.
To evaluate ability of the pipeline in calculating allelic

imbalances, DNA and cDNA of the 35 fish used for
RNA-Seq analyses of high versus low muscle yield were
also genotyped. For all 72 validated SNPs, all DNA and
cDNA genotypes were consistent except for 4.64% that
indicated mono-allele specific gene expression as ex-
plained below.

Assessment of mono-allelic gene expression
Out of the 72 validated polymorphic SNPs (Table 2),
there were 46 SNPs that showed potential mono-allelic
expression in cDNA in at least one fish. In other words,
the genomic DNA is heterozygous for the SNP while
cDNA is monomorphic. Thirty-three of the 35 fish
showed mono-allelic expression in at least one SNP. Out
of the aforementioned 46 SNPs, 5 SNPs were randomly
selected for validation using Sanger sequencing. All
SNPs were heterozygous at the DNA level. However,
manual investigation of the cDNA sequence chromato-
grams exhibited existence of substantial allelic imbal-
ances ranging from existence of two alleles with >2.0 X
peak height ratios between the 2 alleles at the SNP base
to a complete mono-allelic expression (a single peak).
Overall, approximately 4.64% random mono-allelic/al-
lelic imbalances existed in gene expression of rainbow
trout. These data are consistent with a recent study in
human stem cells showing that most allelic imbalances
did not represent ‘on/off ’ events, but instead revealed

biased expression from each allele [38]. None of the 8
tested families in our study showed mono-allelic expres-
sion in all individuals specific to a given family, indicat-
ing no parental origin effect through genomic
imprinting. Likewise, the human stem cell study sug-
gested that most of the allele-biased gene expression is
not due to genomic imprinting [38]. Compared to our
estimated 4.64% mono-allelic expression, recent studies
showed 12–24% random mono-allelic expression in
mammals and 7–9% in interspecies catfish [4, 39–41].
Our mono-allelic expression assessment is based on only
72 SNPs, and hence a genome-wide assessment of
mono-allelic expression in rainbow trout warrants fur-
ther investigation.

SNP genomic/functional classification
Three sets of SNPs were considered for genomic/func-
tional classifications. For the 7930 SNPs with allelic im-
balances, 2898 (37.69%) were intergenic. Of them, 635
(8.01%) and 721 (9.09%) SNPs were located within 5Kb
upstream or downstream of protein-coding genes,
respectively. The rest of the intergenic SNPs, 1633
(20.59%) were located more than 5Kb distant to protein-
coding genes.
On the other hand, 4941 (62.31%) SNPs were genic,

including 214 (2.70%) that were located within the 5′
untranslated region (5’UTR) and 1677 (21.15%) that
were located in the 3′ untranslated region (3’UTR) of
protein coding genes. In addition, 2548 (32.13%) SNPs
were located within coding DNA sequences (CDS) and
502 (6.33%) SNPs were located within introns. Of the
CDS SNPs, 504 (6.36%) were non-synonymous; 4 of
these caused early stop codon, and 500 caused amino
acid substitution (Table 3). There were 684 (8.63%) SNPs
located within 295 lncRNAs (Table 3).
Regarding the GATK/SAMtools shared SNPs (50,885

SNPs), there were 20,356 (40.00%) intergenic SNPs. Of
these shared SNPs, 4594 (9.03%) were located within
5Kb upstream, and 5208 (10.23%) downstream of
protein-coding genes. In addition, 10,554 (20.74%) were
intergenic, more than 5Kb distant to protein-coding
genes. In contrast, 30,529 (60.00%) SNPs were genic.
And, 1389 (2.73%) of these SNPs were in the 5’UTR;
10,259 (20.16%) were in the 3’UTR, 15,178 (29.83%)
were within CDS; and 3703 (7.28%) were within introns.
Out of those within CDS SNPs, 3919 (7.70%) were
non-synonymous SNPs. Fifty of these CDS SNPs were
nonsense (causing premature stop codon), and 3869
(7.60%) were missense SNPs (Table 3).
Concerning all the putative SNPs, there were 46,901

(49.25%) intergenic SNPs. Of these, 9005 (9.46%) were
located within 5Kb upstream; and 10,245 (10.76%) were
downstream of protein-coding genes. In addition, 27,651
(29.03%) were more than 5Kb distant from protein-
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coding genes. Alternatively, 48,333 (50.75%) SNPs were
genic, and of these genic SNPs, 2247 (2.36%) were in the
5’UTR; 16,420 (17.24%) were in the 3’UTR; 22,616
(23.75%) were within CDS; and 7050 (7.40%) were within
introns. Of the CDS SNPs, 5853 (6.15%) were non-
synonymous with 79 SNPs causing early stop codons
and 5774 (6.06%) causing amino acid changes (Table 3).
In these three SNP datasets, there were large percent-

ages of intergenic (including upstream/downstream)
SNPs (37–49%). Approximately 10% intergenic in
addition to 30% non-coding SNPs were reported in
humans from RNA-Seq data [42]. Our high percentages
of intergenic SNPs may be partially explained by the in-
complete annotation of protein coding genes and exons
in the current version of the rainbow trout reference
genome sequence [28].

Distribution and density of SNPs in the genome
Chromosome density distribution of the SNPs with al-
lelic imbalances exhibited high density for all five traits
in several chromosomes with the three highest peaks in
chromosomes 9, 20 and 28 (Fig. 2a). All five traits re-
vealed very similar pattern of distribution with a single
exception; shear force exhibited a relative higher density
than the other traits on chromosome 9. The similarity in
density distribution between traits may be explained at
least in part by the positive correlation that we observed
between the phenotypes in this population. WBW and
thermal growth coefficient were used as selection criter-
ion in this population [11, 26], and we found that WBW
as an independent variable has significant effects on
muscle yield and fat percentage (multivariable regression
analysis [P < 0.01], data not shown). However, despite

the similarity in SNP density distributions, most of the
identified SNPs were unique to each trait. From the
7930 SNPs with allelic imbalances, only 27 were shared
by all five traits, 161 were shared by four traits, 680 were
shared by three traits and 1783 were shared by two
traits. In agreement with our results, a recent GWAS
study identified two windows with effect on fillet yield
located on chromosome 9 and explaining 1.0–1.5% of
genetic variance in the same fish population [6].
As can be expected, the number of SNPs with allelic

imbalances per chromosome was strongly correlated
with chromosome length (Fig. 2b). In general, numbered
unknown chromosomes, which are longer in the current
reference genome [28], had more SNPs compared to the
known chromosomes (Fig. 2b). Chromosome “Un-
known” (1.1 Gb of scaffolds not assigned to chromo-
somes) had 4086 (49.05%) SNPs (not shown in Fig. 2b).
Previous genetic mapping reports showed that the
growth-related SNPs/QTL are distributed over ~20
chromosomes [11, 43, 44]. Together with our data, these
reports confirm the polygenetic nature of growth/muscle
related traits in rainbow trout.

SNP functional annotation
Functional annotation of genes harboring SNPs with al-
lelic imbalances were performed using the Blast2GO
suite [45]. The SNP-flanking sequences were searched
against the NCBI nr-protein database using BLASTx;
then, associated genes and Gene Ontology (GO) terms
were acquired. In the biological processes category,
SNP-harboring genes were associated with various cellu-
lar processes mainly involved in growth-related mecha-
nisms, including regulation of metabolic and oxidation-

Table 3 Summary of SNPs classification for different SNP sets

Functional Class SNPs with allelic
imbalance 7.9 K

% GATK/SAMtools
Common SNPs 50.8 K

% All putative
SNPs 95.2 K

%

Intergenic 2989 37.69% 20,356 40.00% 46,901 49.25%

Intergenic(>5 K) 1633 20.59% 10,554 20.74% 27,651 29.03%

Upstream (<5 K) 635 8.01% 4594 9.03% 9005 9.46%

Downstream (<5 K) 721 9.09% 5208 10.23% 10,245 10.76%

Genic 4941 62.31% 30,529 60.00% 48,333 50.75%

5’UTR 214 2.70% 1389 2.73% 2247 2.36%

3’UTR 1677 21.15% 10,259 20.16% 16,420 17.24%

CDS 2548 32.13% 15,178 29.83% 22,616 23.75%

Intronic 502 6.33% 3703 7.28% 7050 7.40%

Non-synonymous 504 6.36% 3919 7.70% 5853 6.15%

Stop gain 4 0.05% 50 0.10% 79 0.08%

Missense 500 6.31% 3869 7.60% 5774 6.06%

LncRNA 684 8.63% 4386 8.62% 10,465 10.99%

Total number/percentage 7930 100.00% 50,885 100.00% 95,234 100.00%
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reduction processes and protein translation (Fig. 3). In the
molecular function category, SNP-containing genes were
associated with binding metal ions, ATP, nucleic acid, and
actin. In addition, a significant number of the genes were
associated with transferase, motor, oxidoreductase, and
structural molecule activities (Fig. 3). In the cellular com-
ponent category, many of the genes exhibited association
with the cytoplasmic compartment, membranes, myosin
complex, and extracellular region compartment (Fig. 3).
Genes with similar GO associated terms were previously
reported to be involved in rainbow trout muscle growth
and quality [11, 19, 43, 46–48].
Additionally, KEGG pathway mapping was used to as-

sign enzyme function to the SNP-containing transcripts
[49]. Searching transcripts against the KEGG database
yielded 1043 transcripts (13.15%) with significant KEGG
hits to 632 KEGG Orthologies (KOs) belonging to differ-
ent pathways (Table 4). Most of the transcripts were
assigned to growth-related metabolic pathways. There
were 275 transcripts (182 KOs) related to metabolism.

Under this category, sequences matching energy metab-
olism (88 transcripts, 57 KOs) appeared on the top of
the list, with 52 transcripts (37 KOs) assigned to oxida-
tive phosphorylation. Sequences matching carbohydrate
metabolism occupied the second place (77 transcripts,
43 KOs) and were further classified into glycolysis/glu-
coneogenesis (39 transcripts, 18 KOs), citrate cycle (19
transcripts, 14 KOs) and pyruvate metabolism (16 tran-
scripts, 10 enzymes). The next metabolic subcategories
in the metabolic list were amino acid metabolism (56
transcripts, 41 KOs), lipid metabolism (27 transcripts, 22
KOs), and cofactors and vitamins metabolism (14 tran-
scripts, 11 KOs). These preliminary SNP functional an-
notations are in agreement with previous reports that
showed strong association between 1) mutations and al-
tered expression of glycolytic and oxidative phosphoryl-
ation enzymes and 2) rainbow trout growth and muscle
degeneration [11, 19, 43, 46, 47].
In addition, 176 KEGG annotated sequences were

assigned to the genetic information processing category

a

b

Fig. 2 Genome distribution of the SNPs with allelic imbalances for all five traits. SNP density (SNPs per 100,000 NT) (a) and total number of SNPs
(b) are shown for each chromosome. Chromosome “Unknown” (1.1 Gb scaffolds not assigned to chromosomes) had 4086 (49.05%) SNPs is not
shown in the lower panel
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(112 KOs) that included translation (105 sequences, 69
KOs), folding, sorting and degradation (62 sequences, 38
KOs), and transcription (9 sequences, 5 KOs) (Table 4).
A significant number of the SNP-harboring genes
matched ribosomal (68 sequences, 48 KOs) and RNA-
transport proteins (22 sequences, 12 KOs). Previously,
we showed that the atrophying muscle and muscle from
fast versus slow growing rainbow trout had differentially
expressed genes involved in RNA processing, protein
synthesis, posttranslational modification, and intracellu-
lar protein trafficking [19, 43, 46].
Moreover, 166 sequences (99 KOs) were classified by

KEGG mapping into the environmental information pro-
cessing category; these sequences were further assigned to
signal transduction (147 sequences, 87 KOs) and signaling
and interaction molecules (19 sequences, 12 KOs) (Table 4).
The PI3K-Akt signaling, Calcium signaling, MAPK signaling,
and cGMP-PKG signaling pathways had the largest numbers
of hits: 21, 18, 18, and 16 KOs, respectively. Previous studies
indicated involvement of MAPK and Calcium signaling in
fish/muscle growth [46, 50].
Furthermore, the cellular processes category contained

152 KEGG-annotated sequences matching 85 KOs,
which were further classified into cellular community

(54 transcripts, 27 KOs), transport and catabolism (42
transcripts, 24 KOs), and cell growth and death (36 tran-
scripts, 22 KOs) (Table 4). In the organismal systems
category, the most significant subcategories were endo-
crine (105 transcripts, 53 KOs), circulatory (49 tran-
scripts, 30 KOs), immune (44 transcripts, 28 KOs), and
digestive systems (32 transcripts, 16 KOs). Recently, a
GWAS study using the same fish population identified a
small number of genes involved in muscle development
explaining ~ 1.0% of the total genetic variance of the
muscle yield and growth rate [6].
Distributions of KEGG matches were generally similar

among all five traits. Albeit, we noticed an increased
number of hits related to fillet whiteness compared to
other traits, for carbohydrate metabolism (47 transcripts,
28 KOs) and amino acid metabolism (32 transcripts, 26
KOs) (Table 4). Similarly, there was a noticeable increase
in numbers of hits in whiteness for PI3K-Akt signaling,
focal adhesion, gap junction and regulation of actin cyto-
skeleton (Table 4). Regulation of focal adhesion and
actin cytoskeleton were associated with development of
pale, soft, and exudative (PSE) meat in turkey [51]. In
addition, the muscle yield trait exhibited an increased
number of transcripts for energy metabolism, with 28

a b

c

Fig. 3 Gene Ontology (GO) assignment of the genes harboring SNPs with allelic imbalances in families with contrasting growth and muscle
phenotypes. Genes were assigned GO terms according to their biological processes (a), molecular functions (b) and cellular components (c)
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transcripts/18 KOs belonging to oxidative phosphoryl-
ation. Shear force exhibited an increased number of
transcripts belonging to lipid metabolism (16 transcripts,
14 KOs) (Table 4).
Our KEGG pathway mapping results have linked many

of the genes harboring SNPs with allelic imbalances to
potential regulation of growth and metabolic pathways,
which may support pathway-based GWAS analyses in
rainbow trout, similar to what has been recently applied
to detect genetic pathways explaining live weight and
muscle growth variation in cattle genotypes [52].

Methods
Fish population, sampling and sequencing
Phenotypic data and muscle samples were collected
from ~500 fish representing 98 families (5 fish/family)
from the growth-selected line at NCCCWA (year class
2010) as previously described [6, 11, 26]. Families were
produced and reared until ~13 months post-hatch as de-
scribed in reference [26]. Briefly, full-sib families were
produced from single-sire × single-dam matings. Eggs
were reared in spring water, and water temperatures
were manipulated between approximately 7 and 13 °C to
synchronize hatch times. Each family was stocked separ-
ately in 200-L tanks at a density of approximately 600 al-
evins/tank. Fish were randomly culled every month to
maintain stocking densities <50 kg/m3. At about 5-
months old, fish were anesthetized using 100 mg/L of
tricaine methanesulfonate (Tricaine-S, Western Chem-
ical, Ferndale, WA) and uniquely tagged by inserting a
passive integrated transponder (Avid Identification
Systems Inc., Norco, CA) into the dorsal musculature,
and tagged fish were combined and reared in 1000-L
communal tanks. Fish were fed a commercial fishmeal-
based diet (42% protein, 16% fat; Ziegler Bros Inc.,
Gardners, PA) using automatic feeders (Arvotec, Huuto-
koski, Finland). Initially, young fish were fed at a daily
feeding rate ∼ 2.5% of body weight (BW), which later
was gradually reduced to approximately 0.75% of BW.
Fish were sampled as previously described for year

class 2010 in Gonzalez-Pena et al., publication [6].
Briefly, WBW was measure in fish belonging to 98 fam-
ilies and families were sorted according to their WBW.
The 2nd or 3rd fish from each family was selected for
muscle sampling to keep the distribution of WBW con-
sistently adjusted around the median of each family. Se-
lected fish were randomly assigned to one of five harvest
groups (~100 fish each) allowing one fish per family per
harvest group. The five groups were sampled in five con-
secutive weeks (one group/week). Fish were samples at
about ~13-months old (410–437 days post-hatch, mean
body weight = 985 g; SD = 239 g). At harvest, fish were
anesthetized in approximately 100 mg/L of tricaine

methane sulfonate (Tricaine-S, Western Chemical, Fern-
dale, WA).
At harvest, a muscle sample was excised from the left

dorsal musculature and frozen in liquid nitrogen for
subsequent RNA sequencing. Fish were slaughtered, and
eviscerated then head-on gutted carcasses were packed
in ice, transported to the West Virginia University Meats
Processing Laboratory (Morgantown, WV), and stored
overnight. The next day, carcasses were hand-processed
into trimmed, skinless fillets by a trained faculty member
and weighed. Muscle yield and quality analyses were
conducted as previously described [53]. Briefly, muscle
yield was calculated as a percent of muscle weight rela-
tive to WBW. A 40 × 80 mm muscle section was sepa-
rated, parallel to the long axis of the body, from the
dorsal musculature for texture analysis [54]. The
remaining muscle from the fillets was pulverized with li-
quid nitrogen in a Waring Blender (Waring, New Hart-
ford, CT) and kept at −25 °C for chemical composition
analyses. Proximate composition of muscle was deter-
mined using AOAC [55] approved methods. Crude fat
was analyzed using the Soxhlet solvent extractor with
petroleum ether. Texture of fillet sections was deter-
mined using a five-blade, Allo-Kramer shear cell at-
tached to a Texture Analyzer (Model TA-HDi®; Texture
Technologies Corp., Scarsdale, NY), equipped with a 50-
kg load cell and at a crosshead speed of 127 mm/min.
Force-deformation graphs were recorded and analyzed
using the Texture Expert Exceed software (version 2.60;
Stable Micro Systems Ltd., Surrey, U.K.). Peak shear
force (g/g sample) was recorded.
Fresh fillet surface color was measured with a Chroma

meter (Minolta, Model CR-300; Minolta Camera Co.,
Osaka, Japan) calibrated using a standard white plate No.
21333180 (CIE Y 93.1; × 0.3161; y 0.3326). L* (lightness),
a* (redness), and b* (yellowness) values were recorded at
three locations above the lateral line along the long axis of
the right fillet, and these values were used to calculate a
fillet whiteness index according to the following equation:
Whiteness = 100 – [(100 – L)2 + a2 + b2]1/2 [81].
For RNA-Seq analyses, out of 98 families measured for

phenotypic data, eight families (5 fish each) showing op-
posite phenotypes for each of the 5 traits were analyzed
(4 high ranked families versus 4 low ranked families on
average for each trait). Since some fish families were
common between the traits, the total number of selected
families for RNA-Seq was 22 families. Total RNA was
isolated from each fish muscle sample using TRIzol™
(Invitrogen, Carlsbad, CA). Equal masses of total RNA
from 5 samples of each family were pooled and used for
RNA-Seq sequencing. cDNA libraries were prepared and
sequenced on an Illumina HiSeq (single-end, 100 bp
read length) using multiplexing standard protocols as
previously described [56]. Briefly, mRNA was selected
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from one microgram of high quality total RNA. First-
strand synthesis was synthesized with a random hexamer
and SuperScript II (Life Technologies). Double stranded
DNA was blunt-ended, 3′-end A-tailed and ligated to
indexed adaptors. The adaptor-ligated double-stranded
cDNA was amplified by PCR for 10 cycles with the Kapa
HiFi polymerase (Kapa Biosystems, Woburn, MA) to re-
duce the likeliness of multiple identical reads due to pref-
erential amplification. The final libraries were quantitated
Qubit (Life Technologies, Grand Island, NY) and the aver-
age size was determined on an Agilent bioanalyzer
DNA7500 DNA chip (Agilent Technologies, Wilmington,
DE), diluted to 10 nM and the indexed libraries were
pooled in equimolar concentration before sequencing.

SNP detections using SAMtools/Popoolation2
For each trait (WBW, muscle yield, muscle fat content,
shear force, and whiteness), sequence reads from each
family were aligned to the rainbow trout genome using
STAR [29]. After read alignment, the SAMtools view/
sort and mpileup functions were used within the Popoo-
lation2 package (version 1.201) to determine the geno-
type for each variant and calculate allele frequencies [57,
58]. Initial SNPs were considered at minimum reads >10
and minor allele count >4 and MAF > 0.05. Putative
SNPs associated with each trait were determined by cal-
culating SNP allelic imbalance scores as previously de-
scribed [11, 59]. A SNP allelic imbalance score was
determined by assessing the ratio of [frequency of allele
A/frequency of allele B in high-end families]/[frequency
of allele A/frequency of allele B in the corresponding
low-end families]. The allelic imbalances score ranges
from zero to infinity. SNPs with allelic imbalance were
called if the ratio is more than or equal 2.0 (as an ampli-
fication) or less than or equal 0.5 (as loss of heterozygos-
ity. The phase of the alleles could not be determined for
families surveyed since the parental genotypes were not
known for most of the fish. Allele counts in the diver-
gent families were extracted from the VCF files. Chi-
square test of two-by-two Tables [60] was performed
with p-value <0.05 to determine if SNPs that are show-
ing allelic imbalances are statistically significant.

SNP detection using GATK tools
For the GATK pipeline [61], reads from each sample
were aligned to the rainbow trout genome using STAR
[29] as recommended by the GATK practice. Picard
tools were used to sort the SAM files and to mark dupli-
cates, a step used by GATK to reduce a false positive
due to error in duplicate that could be falsely detected
as a SNP. The following steps were performed according
to GATK pipeline for RNA-Seq (Split and trim to re-
assign mapping quality, Indel realignment, local realign-
ment around Indel in order to clean up any mapping

artifacts and Base Quality Score Recalibration). After
data preparation, variants were called using Haploty-
peCaller followed by hard-filtering using the following
parameters: Qual By Depth (QD) 2.0, FisherStrand
(FS) 60.0: RMS Mapping Quality (MQ) 40.0,
MAF > 0.05. Since GATK was not optimized to
calculate allelic imbalances in RNA-Seq data, putative
SNPs identified in each family were analyzed using an
in-house Perl script to determine the allelic imbal-
ances applying the criteria that we used in the
SAMtools/Popoolation2 method.

SNP validation
Flanking sequences (up to 250 bp on each side) of putative
SNPs were extracted from the reference genome [28].
Some SNPs were removed from SNP assay design because
either a sequence gap was located less than 60 bp from
the SNP site or a non-target SNP was located less than
30 bp away from the target SNP. A total of 92 SNP assays
were developed and evaluated with 282 DNA or cDNA
samples. These included 85 DNA samples derived from
19 full-sib families used for RNA-Seq and their parents
(38 DNA samples), DNA samples of 2 full-sib mapping
families (2 parents and 19 offspring per family), 64 DNA
samples from two commercial populations (Troutlodge
Inc. and Clear Springs Foods Inc.) and 35 cDNA samples
derived from the RNA samples used for RNA-Seq high
versus low muscle yield. The SNP genotyping was per-
formed following the instructions of the Fluidigm geno-
typing user guide. Briefly, DNA and cDNA samples were
pre-amplified, diluted and used for genotyping with 96.96
Dynamic Array IFCs (Integrated Fluidic Circuits). The ar-
rays were read using EP1 system, and genotypes were
called automatically using Fluidigm SNP genotyping ana-
lysis software 4.1 with a confidence threshold of 85. The
genotype clusters were examined for each assay and any
wrong calls or no calls were corrected manually. The pro-
gram Pedcheck [62] was used to identify genotypes incon-
sistent with Mendelian inheritance between parents and
offspring. Chi-square goodness of fit tests were performed
to identify SNPs with significant segregation distortion
(P < 0.01) in the two mapping families. Those SNPs were
reported as assay-failed SNPs.
For the Sanger sequencing validation of the SNPs

showing potential mon-allelic gene expression, flanking
sequences (up to 250 bp on each side) of each SNP were
PCR amplified from DNAs and cDNA from the same 35
fish samples that were used for RNA-Seq high versus
low muscle analyses. PCR amplicons were Sanger se-
quenced and manually inspected for consistency be-
tween DNA and cDNA genotypes or mono-allele
specific gene expression as explained in the results
section.
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Functional annotation of SNPs
SNP annotation by functional class (genic/intergenic
etc.) for different SNP sets and their genome distribu-
tions were conducted using in-house Perl scripts. The
gff file of the rainbow trout genome reference [28] was
used to determine if a SNP is located within an mRNA
start and end positions (genic), within a CDS, 5’UTR or
3’UTR. SNPs not within start and end positions of
mRNA were considered intergenic. Upstream/ down-
stream intergenic SNPs were determined if located
within 5 kb of an mRNA. SNPs within lncRNAs were
determined using gtf file of our previously reported
lncRNA reference [63]. Functional annotation of the
SNP-harboring genes was performed using the Blast2GO
suite [30] and KEGG pathway mapping.

Additional file

Additional file 1: Putative SNPs and SNPs with allelic imbalances in
association with total body weight, muscle yield, muscle fat content,
shear force, and whiteness. SNP chromosome position, alleles, functional
classification, associated gene ID and FASTA sequences are provided.
(CSV 15332 kb)
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