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Abstract: There is behavioral evidence for the interaction between crude khat extract and the
endocannabinoid system, whereby the endocannabinoid system alters khat extract-mediated
behavioral effects through modulation of the monoaminergic system. The objective of this study was
to investigate the role of the endocannabinoid system on the neurobehavioral effect of khat extract in
mice following concomitant administration of khat extract and the CB2R agonist, JWH133. Locomotor
activity test, immunohistochemistry, and reverse transcriptase polymerase chain reaction technique
were utilized to assess locomotor activity, tyrosine hydroxylase immunoreactivity, and expression of
dopamine transporter mRNA gene. The results show sub-acute administration of khat extract alone
increased locomotor activity in mice and co-administration of the CB2R agonist, JWH133, reduced
khat extract induced hyperlocomotor activity. The data revealed that cell type specific deletion of
CB2Rs on dopaminergic neurons increased the hyperlocomotor behavior of khat extract. Furthermore,
the results revealed that khat extract attenuated MPTP induced motor deficits, which is enhanced by
JWH133. Khat extract also increased expression of tyrosine hydroxylase positive cells and expression
of dopamine transporter mRNA gene in wild type mice. Nevertheless, JWH133 did not alter the
effect of khat extract on tyrosine hydroxylase immunoreactivity and dopamine transporter mRNA
expression when given together with khat extract. Taken together, the results suggest that the CB2Rs
selectively interact with khat extract-mediated locomotor effects and could be utilized as therapeutic
target in central nervous system movement disorders associated with dopamine dysregulation.

Keywords: khat; endocannabinoid system; tyrosine hydroxylase; dopamine transporter; locomotor
activity; MPTP; JWH133

1. Introduction

Khat, Catha edulis (Vahl) Endl., has been consumed for centuries by people living around the horn
of Africa and the Middle East [1,2]. Cathinone is the main active constituent of khat leaves and has the
same mode of action as amphetamine [3], and behavioral effect of cathinone in animals is similar to
amphetamine [3–5]. Khat chewing results in different CNS (central nervous system) effects including
euphoria, excitation, anorexia, increased respiration, hyperthermia, analgesia, increased sensory
stimulation [5,6], increased locomotion, and altered performance in several behavioral experiments in
rodents [7–9].
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The endocannabinoid system (ECS) is an endogenous neuromodulatory system composed
of the two major cannabinoid receptors (CBRs, CB1Rs, and CB2Rs), endogenous ligands or the
endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs [10].
The ECS modulates numerous central nervous system (CNS) functions, including the classic
cannabinoid tetrad of thermoregulation, antinociception, locomotor activity, and catalepsy [11],
as well as feeding behavior [12], food reinforcement [13], and cognition [14]. CB1Rs have been
well characterized using conditional Cnr1 mutant mice [15–18] However, CB2Rs were previously
thought to be in immune cells, were referred to as peripheral CB2Rs, and were less investigated
for neuronal CNS function [10]. Now conditional Cnr2 mutant mice have been generated using the
Cre-LoxP technology to produce Syn-Cnr2 conditional knockout (cKO) mice in which synaptic deletion
of CB2Rs was shown to mediate a cell type specific plasticity in the hippocampus [19]. A similar
approach was used to produce DAT-Cnr2 cKO mice with specific deletion of CB2Rs from dopamine
(DA) neurons [20]. Thus, contrary to previous thoughts [21], there is now overwhelming evidence
for the functional neuronal expression of CB2Rs and their presence detected in the hippocampus,
striatum and brain stem [19,20,22–26]. CB2Rs expressed in mouse brain DA neurons are involved in
drug reward; synaptic plasticity; drug addiction; eating disorders; and psychosis, depression, and
autism spectrum disorders. Recently, Liu et al. [20] showed that CB2Rs in DA neurons are involved
in motor function, and their deletion releases the “brake” on psychomotor activity and results in
continuous spontaneous hyperactivity. Hence, DA neuron cell type-specific CB2R cKO mice are
relevant in studying the molecular basis of CB2R neuronal signaling mechanism and their role in
different behavioral modifications.

Studies showed that the dopaminergic pathway is involved in the behavioral effects observed
by the activation of ECS [27,28] and by administration of khat extract in animals [29,30]. Major
dopaminergic systems in the brain originate from brainstem DA neurons located in the substantia nigra
pars compacta (SNc) and the ventral tegmental area (VTA). Dopamine is synthesized from tyrosine
by the rate-limiting enzyme tyrosine hydroxylase (TH), accumulated into synaptic vesicles by the
vesicular monoamine transporter-2 (VMAT2), and its effect is terminated mainly by re-uptake into
dopaminergic terminals by the dopamine transporter (DAT) [31–33]. It is well established that DA
neurotransmission in both dorsal and ventral striatum is essential for normal locomotor functions,
and progressive degeneration of DA neurons in these areas is a known cause of Parkinson disease
(PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to induce dopaminergic
toxicity to produce neuropathologic abnormalities resembling the idiopathic PD in humans [34].

Several lines of experimental evidence on wild type (WT) and cannabinoid receptor manipulated
animals have shown the role of the ECS on the effect of psychoactive substances, including opioids [35],
nicotine [36,37], and cocaine [38]. There is also evidence for the involvement of the ECS in the behavioral
effects of khat extract in animals [8]. Since the mesocorticolimbic dopaminergic pathway plays a vital
role in mediating some of the behavioral effects of both khat extract and cannabinoids, studying the
interaction of the ECS and khat extract will provide an insight into the identification of drug targets
and the development of new pharmacologic approaches for the treatment of CNS disorders associated
with dopamine dysregulation. To this effect, the involvement of the ECS on the neurobehavioral effect
of khat extract was investigated in DAT-Cnr2 cKO mice and WT mice following concomitant sub-acute
administration of khat extract and the CB2R agonist, JWH133. In addition, the behavioral effect of
sub-acute exposure of khat extract was investigated in mice treated with MPTP.

2. Results

2.1. Khat Extract Increases Locomotor Activity in WT Mice

Total distance travelled and stereotypic counts are among the most commonly used parameters
to test mice motor behavior in the activity monitor apparatus. An independent t-test showed that
administration of khat extract at 300 mg/kg to the WT mice significantly (p < 0.001) increased both
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the total distance travelled by 36.2% and stereotypic count by 32.7% in the activity box compared to
controls (Figures 1 and 2).
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Figure 1. Sub-acute effect of khat extract on distance travelled (centimeters) in the activity monitor
apparatus in wild type (WT) and DAT-Cnr2 mice. Values are mean ± SEM (n = 6 in each group).
Statistical analysis was done using student t-test. *** p < 0.001. CTR (control group received the vehicle),
KHAT (treatment group received khat extract in a dose of 300 mg/kg). CTR (control group received the
vehicle), KHAT (treatment group received khat extract in a dose of 300 mg/kg). The vehicle and khat
extract were administered to mice once daily for seven consecutive days.
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Figure 2. Sub-acute effect of khat extract on stereotypic count in the activity monitor apparatus in wild
type (WT) and DAT-Cnr2 mice. Values are mean ± SEM (n = 6 in each group). Statistical analysis was
done using student t-test. *** p < 0.001. CTR (control group received the vehicle), KHAT (treatment
group received khat extract in a dose of 300 mg/kg). CTR (control group received the vehicle), KHAT
(treatment group received khat extract in a dose of 300 mg/kg). The vehicle and khat extract were
administered to mice once daily for seven consecutive days.

2.2. Deletion of CB2Rs in DA Neurons Augments Locomotor Activity of Khat Extract

CB2Rs were previously thought to be predominantly expressed in immune cells and their
involvement in cannabinoid-induced behaviors was largely unexplored. Recent studies showed
that CB2Rs inhibits motor function and the deletion of CB2Rs in DA neurons induces enhanced
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motor function characterized by hyper-locomotion of the DAT-Cnr2 cKO mice. We evaluated the
hyper-locomotor activity of DAT-Cnr2 mice and the role of deletion of CB2Rs in DA neurons on
the locomotor activity of khat extract. The result from t-test depicts that deletion of CB2Rs in DA
neurons per se significantly (p < 0.001) increased distance travelled in the activity box by 32% and
stereotypic count by 28%. Administration of khat extract in a dose of 300 mg/kg significantly (p < 0.001)
increased both the total distance travelled by 20.8% and stereotypic count by 34.9% in the DAT-Cnr2
mice compared to the WT (Figures 1 and 2).

2.3. Effect of JWH133 on Khat Extract′s Locomotor Activity

The effect of co-administration of the selective CB2R agonist JWH133 on the locomotor activity
of khat extract in WT mice was evaluated using the activity monitor apparatus. One-way ANOVA
showed there was significant association between distance travelled (F(3,20) = 14.509, p < 0.001) and
treatment groups. Tukey′s post hoc test showed that JWH133 significantly (p < 0.05) attenuated khat
extract induced increase in distance travelled by 19.1% in the activity box. There is also a statistically
significant difference (F(3,20) = 13.285, p < 0.001) in stereotypic count among the treatment groups.
In a post hoc analysis, JWH133 significantly (p < 0.01) reduced the effect of khat extract by 25.5% on
stereotypic count. On the other hand, JWH133 alone tended to reduce the distance travelled and
stereotypic count compared to the control group, but the reduction was not statistically significant.
In addition co-administration of JWH133 did not show apparent difference in distance travelled and
stereotypic count compared to the control group (Figure 3A,B).
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2.4. Khat Extract Attenuates MPTP-Induced Motor Deficits 

The effect of khat extract on locomotor activity was evaluated in sub-acute MPTP lesioned mice. 

The locomotor activity was reduced in MPTP group compared to that of control group, confirming 

Figure 3. Effect of co-administration of the CB2R agonist JWH133 on khat extract induced increase in
locomotor activity in wild type (WT) mice. (A) Effect of co-administration of the CB2R agonist JWH133
on khat extract induced increment in distance travelled (centimeters) in the activity box. (B) Effect of
co-administration of the CB2R agonist JWH133 on khat extract induced increment in stereotypic count
in the activity box. Values are mean ± SEM (n = 6 in each group). Statistical analysis was done using
one-way ANOVA followed by Tukey′s multiple comparison test. ** p < 0.01, * p < 0.05. CTR (control
group received the vehicle), KHAT (treatment group received khat extract in a dose of 300 mg/kg),
JWH133 (treatment group received JWH133 in a dose of 5 mg/kg) and JWH133/KHAT (treatment group
received khat extract 300 mg/kg in combination with JWH133 5 mg/kg). The vehicle, khat extract, and
JWH133 were administered to mice once daily for seven consecutive days.

2.4. Khat Extract Attenuates MPTP-Induced Motor Deficits

The effect of khat extract on locomotor activity was evaluated in sub-acute MPTP lesioned mice.
The locomotor activity was reduced in MPTP group compared to that of control group, confirming that
the PD model was successfully established. Moreover, the locomotor activity of khat extract treated
group was increased compared with that of MPTP group, which indicated that khat extract attenuated
the motor deficits of PD mouse. One-way ANOVA showed that there is a statistically significant
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difference in distance travelled among the treatment groups (F(4,25) = 54.029, p < 0.001). Post hoc
test showed that PD model mice treated with MPTP had a significant (p <0.001) reduction in distance
travelled by 52.9% compared to the control group, and this was significantly (p <0.01) attenuated
by 59.1% following treatment with khat extract in PD mice (Figure 4A). There is also a statistically
significant difference (F(4,25) = 52.921, p < 0.001) in stereotypic count among the treatment groups.
Mice in the MPTP group had a reduced (p < 0.001) stereotypic count by 46.7% compared to those of the
control group, which was reversed (p < 0.01) by 48.6% after khat extract treatment (Figure 4B).
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Figure 4. Effect of sub-acute administration of khat extract alone and in combination with JWH133
on MPTP induced motor deficits. (A) Effect of sub-acute administration of khat extract alone and
in combination with JWH133 on distance travelled in MPTP mouse model. (B) Effect of sub-acute
administration of khat extract alone and in combination with JWH133 on stereotypic count in MPTP
mouse model. Values are mean ± SEM (n=6 in each group). Statistical analysis was done using one-way
ANOVA followed by Tukey′s multiple comparison test. *** p <0.001, ** p <0.01 compared to CTR
group; ### p <0.001, ## p <0.01 compared to MPTP lesioned group. CTR (control group received the
vehicle), KHAT (treatment group received khat extract, 300 mg/kg); JWH133 (treatment group received
JWH133, 5 mg/kg); JWH133 + KHAT (treatment group received JWH133 5 mg/kg and khat extract
300 mg/kg); MPTP (treatment group received 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP,
25 mg/kg); JWH133 + MPTP (treatment group received JWH133 5 mg/kg and MPTP 25 mg/kg); KHAT
+ MPTP (treatment group received khat extract 300 mg/kg and MPTP 25 mg/kg); JWH133 + KHAT
+ MPTP (treatment group received a combination of JWH133 5 mg/kg, KHAT 300 mg/kg and MPTP
25 mg/kg). The vehicle, JWH133, khat extract and MPTP were administered to mice once daily for
seven consecutive days.

2.5. JWH133 Increases Hyperlocomotor Effect of Khat Extract in MPTP Lesioned Mice

The effect of administration of JWH133 alone and its co-administration on the locomotor activity
of khat extract was also evaluated in sub-acute MPTP lesioned mice. One-way ANOVA showed
that there is a statistically significant difference in distance travelled (F(4,25) = 54.029, p < 0.001) and
stereotypic count (F(4,25) = 52.921, p < 0.001) among the treatment groups. Administration of JWH133
alone significantly (p < 0.01) reversed MPTP induced reduction in total distance travelled by 36% and
stereotypic count by 28%. JWH133 also significantly (p < 0.001) increased khat extract induced increase
in distance travelled by 15.9% (Figure 4A) and stereotypic count by 7.6% (Figure 4B) compared to
MPTP lesioned mice in the activity box in post hoc test.

2.6. Effect of Khat Extract on Immunohistochemical Staining for TH-Positive Neurons in WT Mice

To examine the intactness of dopaminergic neurons, brain sections were immunostained for
TH immunoreactivity in the VTA and SNc (Figure 5A) of the WT mice. The results of one-way
ANOVA revealed that there is significant difference (F(3,8) = 6.554, p < 0.01) among groups in TH
immunoreactivity in the VTA, but no apparent difference was detected in the SNc region. Tukey′s
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test showed that mice treated with khat extract had significantly (p < 0.05) increased (12%) TH
immunoreactive cells in the VTA region, compared to controls (Figure 5B).
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Figure 5. Effect of sub-acute administration of khat extract alone and in combination with
JWH133 on immunohistochemical staining for TH-positive cells in WT mice. (A–D) Representative
photomicrographs of TH immunoreactive neurons in the substantia nigra pars compacta (SNc) and
ventral tegmental area (VTA) region. Scale bar, 100µm. (E) The number TH positive cells (optical density
area), and the data were expressed as mean ± SEM (n = 6 in each group). Statistical analysis was done
using one-way ANOVA followed by Tukey′s multiple comparison test. * p < 0.05. CTR (control group
received the vehicle); KHAT (treatment group received khat extract 300 mg/kg); JWH133 (treatment
group received JWH133 5 mg/kg); JWH133 + KHAT (treatment group received a combination of JWH133
5 mg/kg with khat extract 300 mg/kg). The vehicle, JWH133, and khat extract were administered to
mice once daily for seven consecutive days.
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2.7. JWH133 Did Not Alter TH Immunoreactivity of Khat Extract

Co-administration of JWH133 with khat extract (300 mg/kg) did not significantly alter TH
immunoreactivity of khat extract either in the VTA or SNc region compared to khat extract alone
treated mice (Figure 5A,B).

2.8. Effect of Khat Extract on DAT Mrna Gene Expression in WT Mice

The effect of khat extract on the expression of DAT mRNA was investigated using qRT-PCR
technique. qRT-PCR was used to estimate DAT mRNA in the VTA region of WT mice. The study
demonstrated that khat extract administration increased the expression of DAT mRNA twofold
compared to vehicle treated controls. To test for statistically significant difference, one-way ANOVA
was done. The result revealed that there is statistical difference in DAT mRNA expression among the
groups (F(3,8) = 60.488, p < 0.001), and post hoc test showed that khat extract significantly (p < 0.001)
increases expression of DAT mRNA compared to the control (Figure 6).
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Figure 6. Effect of sub-acute administration of khat extract alone and in combination with JWH133 on
DAT mRNA gene expression in WT mice. The quantification of dopamine transporter (DAT) mRNA
levels and normalized by GAPDH mRNA in the VTA of WT mice after the administration of khat
extract. Values are mean ± SEM (n=6 in each group). Statistical analysis was done using one-way
ANOVA followed by Tukey′s multiple comparison test. *** p < 0.001. CTR (control group received the
vehicle); KHAT (treatment group received khat extract 300 mg/kg); JWH133 (treatment group received
JWH133 5 mg/kg); JWH133 + KHAT (treatment group received a combination of JWH133 5 mg/kg with
khat extract 300 mg/kg). The vehicle, JWH133, and khat extract were administered to mice once daily
for seven consecutive days.

2.9. Effect of Co-Administration of JWH133 on DAT Mrna Gene Expression

There was no apparent difference detected in the expression of DAT mRNA in the VTA region
of mice treated with a combination of JWH133 and khat extract compared to mice treated with khat
extract alone (Figure 6).

3. Discussion

A large body of evidence exists in the literature, since its first description by Peter Forskal [39],
about the adverse health aspects of khat, with a few mentions of its pharmacology [3,40–43]. However,
there are little or no studies that attempted to address the endogenous systems involved and the
molecular mechanism for the observed effects of khat extract alone or its combination with other
compounds. The aim of the present study was therefore to investigate the role of the ECS on the
neurobehavioral effects of khat extract in wild type and MPTP lesioned mice following concomitant
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administration of khat extract and the CB2R agonist, JWH133. Furthermore, mice with cell type
specific deletion of type 2 cannabinoid receptors were used to probe involvement of the ECS on the
neurobehavioral effects of Khat extract.

The result of this study showed that sub-acute administration of crude khat extract significantly
increased locomotor activity in WT mice, which is in line with previous studies [7,44,45].
The stimulatory effect of khat extract is perceived as an increase in alertness and energy as well
as relief from fatigue. Indeed, these effects have been reproduced in rats after oral administration of
different concentrations of khat extract in which higher doses of the plant increased motor activity [46].
However, administration of the CB2R agonist, JWH133, with khat extract in WT mice abated khat
extract-induced increase in locomotor activity. The agonist did not affect performance of vehicle-treated
rats, although it reduced the performance of khat-treated rats and brought down the level to that of the
vehicle-treated rats, suggesting that the cannabinoid system antagonizes the khat mediated system in
this paradigm. By contrast, cell type specific deletion of CB2R from dopaminergic neurons alone or
administration of khat extract in these animals significantly increased the distance travelled and the
stereotypic count.

Synthetic, plant-derived, and eCBs have powerful effects on motor activity in animals which are
mediated by CB1 receptors in the brain [47,48]. The presence of functional cannabinoid CB2 receptors
in the brain has been controversial, and it is generally believed that the behavioral and psychotropic
effects of cannabinoids are mediated by CB1 receptors and CB2 receptor ligands have no psychoactive
effects. However, the purported lack of brain CB2 receptors has been challenged by recent reports
of CB2 receptors on microglia [49] and neuronal cells [26,50,51] in several brain regions including
the anterior olfactory nucleus, cerebral cortex, cerebellum, hippocampus, striatum, and brainstem.
Furthermore, activation of CB2 receptors by 2-arachidonoylglycerol, JWH015, or JWH133 inhibits
locomotion, morphine-6-glucuronide-induced emesis, and neuropathic pain, while stimulating neural
progenitor proliferation and producing neuroprotective effects [52–54].

The observation that deletion of CB2Rs in DA neurons resulted in enhanced spontaneous motor
activity, which is in agreement with previous studies [20,23], reinforces the notion that CB2R mediates
inhibition of spontaneous movement via modulation of the dopamine system, probably through
reduction of neuronal firing frequency [55]. Further evidence for the inhibitory role of CB2R comes from
the observation that khat extract′s effect on locomotion was attenuated when the receptor is activated
but accentuated in the absence of the receptor. This finding reaffirms our previous observation [8] and
strongly suggests that there is an interaction of khat extract and the ECS at the level of the dopaminergic
system to modulate motor behavior that could probably have relevance to dopamine-related CNS
disorders. The fact that khat extract results in hyperlocomotor behavior in mice lacking CB2Rs in DA
neurons provides evidence that brain CB2Rs may constitute a new therapeutic target for treatment of
such disorders.

In this study effect of the ECS and khat extract on nigrostriatal DA neurons degeneration induced
by MPTP was also investigated by using MPTP lesioned mice. MPTP is a commonly used neurotoxin
to induce a PD-like state in animals. As animals do not develop PD, the MPTP lesion model is one
of several models that are used to investigate the underlying mechanisms of PD and to test novel
compounds for their neuroprotective properties [56,57]. The result of the present study showed that
MPTP reduced locomotor activity in mice and khat extract attenuated MPTP-induced motor deficits in
mice. In addition, the result demonstrated that administration of JWH133 alone or in combination with
khat extract showed an anti-parkinsonian and likely a neuroprotective effect as evidenced by increased
locomotor activity in MPTP lesioned mice after co-administration of khat extract and JWH133. Previous
findings have shown that activation of the CB2Rs rescued nigrostriatal DA neurons from MPTP
neurotoxicity [58–61], but the effect of co-administration of khat extract and JWH133 on locomotor
activity in MPTP lesioned mice had not been investigated. The result suggests that khat extract alone
or in combination with the CB2R agonist might have a neuroprotective effect and could probably have
a significant role in reversing the motor deficits observed in PD patients.
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In the current study immunohistochemical staining for TH positive cells revealed that mice
treated with khat extract showed a significant increase in TH immunoreactivity in the VTA compared
to the controls but JWH133 did not alter TH expression in mice treated with the drug, which is in
agreement with previous study [62]. The result also showed that there was no apparent difference
detected in TH immunoreactivity in the SNc region of khat extract treated mice compared to controls.
Although TH-immunoreactivity was not performed in MPTP-lesioned mice, the fact that increased
immunoreactivity was observed in VTA but not in SNc in normal mice suggests that khat extract may
exert region specific effect during physiological and pathological conditions. Evidence for this assertion
comes from the observation that though dopamine neurons in both regions share many physiological
properties [63–65], they markedly differ in their sensitivity to addictive drugs such as nicotine [66].

Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis [67]. The activity
of the enzyme is regulated by two mechanisms; TH protein synthesis and phosphorylation.
Catecholamines bind the active site of the enzyme and produce feedback inhibition but phosphorylation
substantially decreases affinity of catecholamines thereby relieving feedback inhibition and increasing
enzyme activity [68]. Since cathinone, the active principle of khat, has similar mechanism of action [3]
and related structure [69] to amphetamine, it is worth expecting that khat extract has similar dopamine
releasing effect to amphetamine. In this context the increased synaptic dopamine levels after khat are
subject to enzymatic degradation rather than repacking into vesicles like the case of amphetamine [70],
which ultimately results in increased dopamine turnover. So the increase in TH-immunoreactivity after
khat extract administration might be attributed to an enhanced dopamine turnover and consequently an
enhanced expression of the enzyme required for its biosynthesis. Taken together, enhanced locomotor
activity and increased expression of TH-reactive cells after khat extract administration may suggest that
khat extract could have a significant therapeutic effect in PD. There was enhanced TH immunoreactivity
and reduced DAT gene expression in the frontal cortex and VTA of mice with selected deletion of type
2 cannabinoid receptors in dopamine neurons compared with the WT mice as we reported [23,71].

However there is a need for further studies to establish the molecular mechanisms involved in
anti-PD potential of khat extract. However, the adverse effects of khat extract including disturbance in
mood, hallucinations, delusions, elevation of arterial blood pressure, risk of carcinoma of the mouth
and esophagus, anorexia, constipation [5,6] may hamper its therapeutic use for long lasting or chronic
movement disorders. Although khat is known to have several limitations to be used for therapeutic
purposes, future research should address whether khat or the sprayed pesticides are the culprit for
most of the side effects as well as how to minimize intrinsic adverse effects associated with khat use.

The effect of khat extract administration on the expression of DAT mRNA was investigated
in this study using qRT-PCR technique in the WT mice. The result demonstrated that khat extract
administration resulted in a significantly increased expression of DAT mRNA by two-fold compared
to vehicle treated controls. However, there was no apparent change in the expression of DAT mRNA
when khat extract was administered in combination with JWH133 compared to khat extract alone
treated mice. Dopamine transporter is a Na+/Cl− dependent transporter responsible for the uptake of
extracellular DA into the nerve terminal and hence terminating the effect of DA [72].

Previous studies on the effect of amphetamine on DAT expression showed that administration of
amphetamine increases surface expression of DAT [72–74]. The relationship between DAT expression
and amphetamine may be due to several factors. First, higher DAT levels likely result in increased
amphetamine transport and thus augmented intracellular amphetamine concentrations. In addition to
increased cytoplasmic amphetamine levels, higher DAT levels may also allow for augmented DAT
coupling to VMAT-2 on synaptic vesicles, which together produce greatly augmented intravesicular
amphetamine concentrations and thereby greater vesicular depletion via amphetamine-induced
disruption of vesicular pH gradients. Increased vesicular depletion results in augmented cytoplasmic
dopamine levels, which can then be moved into the extracellular space via DAT-mediated reverse
transport more readily due to augmented DAT levels [70,75]. Hence, the effect of khat extract on
DAT mRNA expression in this study might be viewed similarly to the effect of amphetamine since
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the two compounds are presumed to have similar effect as mentioned above. Dopamine modulates
physiological processes like locomotor activity, cognitive processes, reward, and addiction. Dysfunction
of the dopaminergic system is thought to be attributable to the development of multiple neurological
disorders such as schizophrenia, PD, depression, attention deficit hyperactivity disorder (ADHD) and
drug addiction [76]. This suggests that Khat modulation of dopaminergic system could be exploited in
studies of CNS disorders associated with dopamine dysfunction.

4. Materials and Methods

4.1. Animals

The experiments were performed using DAT-Cnr2 cKO and C57BL/6J WT mice. The generation of
DAT-Cnr2 cKO mice, genotyping and RNAscope in situ hybridization has been described elsewhere [20].
Briefly, we generated Cnr2-floxed mice that were crossed with DAT-Cre mice, in which Cre recombinase
expression is under DAT promoter control to ablate Cnr2 gene in midbrain DA neurons of DAT-Cnr2
cKO mice. The experiments were performed in adult mice (20–30 g body weight) and were bred in
the mouse laboratory at William Paterson University. The animals were maintained under controlled
room temperature (25 ± 2 ◦C) and light-dark (12:12 h) conditions with free access to food and water.
The experimental procedures followed the Guide for the Care and Use of Laboratory Animals and
were approved by William Paterson University animal care and use committee (IACUC).

4.2. Drugs and Chemicals

The CB2R agonist, JWH133 was purchased from Sigma-Aldrich Chem. Co. (St. Louis, MO, USA)
and MPTP was purchased from Cayman Chem. Co. (Ann Arbor, MI, USA).

4.3. Collection and Extraction of Khat

Fresh khat leaves were purchased from a local market in Aweday, 515 km east of Addis Ababa,
Ethiopia, which is one of the common natural habitats. The collection of the plant was done at the
same time and from same location. The fresh bundles were packed in plastic bags and transported in
an ice box to the Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Addis
Ababa University. The fresh leaves were then immediately kept in a deep freezer (−20 ◦C).

Khat extraction was performed as described elsewhere [77]. Briefly, the leaves were finely chopped,
weighed by electronic digital balance and placed in an Erlenmeyer flask containing a mxture of diethyl
ether and chloroform in a 3:1 ratio. Enough volume of the solvent was added so as to cover the
crushed plant material in the flask. The flask was wrapped with aluminum foil and the contents were
continuously stirred using a rotary shaker (New Brunswick Scientific Co, CT, USA) at 120 rpm for 24 h
at room temperature. It was then filtered using Whatman No.1 filter paper (90 mm diameter, Whatman
Ltd., Maidstone, England) and concentrated in a hood for 24 h. The concentrated extract was then
poured on a flat container and subjected to freeze drying using a lyophilizer (OPERAN Lyophilizer,
Gyeonggi-do, KOREA). The percentage yield (calculated using the weight of fresh khat leaves and
weight of the extract) was found to be 1% and the extract was kept in a tightly sealed container in a
deep freezer at −20 ◦C until use.

4.4. Grouping and Dosing of Animals

The C57BL/6J WT mice were grouped (n = 6 per group) into CTR (control), JWH133, KHAT and
JWH133 + KHAT groups, whereas the DAT-Cnr2 cKO mice were grouped (n = 6 per group) into CTR
and KHAT group. The controls received a vehicle composed of a mixture of Tween, DMSO, and saline
solution (1:2:7); mice in the JWH133 group received JWH133 (5 mg/kg); the KHAT group received khat
extract (300 mg/kg) alone; the JWH133 + KHAT group received a combination of JWH133 (5 mg/kg)
and khat extract (300 mg/kg) where-ever applicable. The various doses were selected based on previous
reports [20,45]. The use of a single dose of khat extract was based on previous studies [45] in which
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khat extract produced a better pharmacologic effect at a dose of 300 mg/kg than other doses. Khat
sample containers including syringes were covered with aluminum foil to avoid light decomposition.
Khat extract and JWH133 were made up fresh in the vehicle to a predetermined concentration and
administered intraperitoneally (i.p.) in a volume of 10 mL/kg body weight for seven consecutive
days. The vehicle was given to the control animals in the same volume for same days as khat extract
or JWH133.

4.5. MPTP-Induced Dopaminergic Lesion in Mice

The C57BL/6J WT mice were further grouped (n = 6 per group) into MPTP, KHAT + MPTP, and
JWH133 + KHAT + MPTP groups. Animals in the MPTP group were injected with MPTP 25 mg/kg
once in a day for seven consecutive days to induce sub-acute parkinsonian symptoms in mice [78].
Mice in KHAT + MPTP group were injected with khat extract 300 mg/kg in combination with MPTP
25 mg/kg. The JWH133 + KHAT + MPTP group were injected with JWH133 5 mg/kg, khat extract
300 mg/kg and MPTP 25 mg/kg. JWH133 and khat extract were administered 45 min prior to MPTP
administration. All injections were through the i.p. route once daily for seven consecutive days.

4.6. Spontaneous Locomotor Activity Test

Spontaneous locomotor activity was evaluated by using an infrared photobeam controlled
open-field test chamber (MED Associates Inc., St. Albans, VT, USA). Mice were individually placed
in the center of the box (43.2 × 43.2 × 30.5 cm) and allowed to freely explore the chamber for 10 min.
The test boxes were connected to a computer and total distances travelled (ambulatory distance
travelled in centimeters) and stereotypic count (stereotypic distance travelled in beams in the activity
monitor) were obtained after 45 min of khat extract or vehicle administration. In order to avoid any
clues, the activity cages were cleaned thoroughly with alcohol after each test. All measurements were
performed under normal lighting in a ventilated and quiet room.

4.7. Immunohistochemical Staining for TH-Positive Neurons

Mice were intracardially perfused with 0.9% saline followed by 4% paraformaldehyde (PFA).
The brains were collected and postfixed overnight at 4 ◦C, cryoprotected with 30% sucrose in phosphate
buffured saline (PBS), and then frozen and stored at −80 ◦C until analysed. Coronal sections (30 µm)
containing the SNc and VTA were obtained. The slices were incubated overnight at 4 ◦C with polyclonal
rabbit anti-TH antibody (Abcam, Cambridge, MA, USA). After washing, sections were incubated with
goat polyclonal anti-rabbit secondary antibody, Alexa Flour® 488 (Abcam, Cambridge, MA, USA).
The sections were mounted on slides and examined using confocal microscopy. Quantification
of TH immunostaining was carried out on high-resolution digital microphotographs taken with a
20× objective and under the same conditions of light and brightness/contrast. Slides were used
to measure the mean density of labeling in the selected area, using the analysis software ImageJ
(Wayne Rasband, NIH, Bethesda, MD, USA), which allows calibration that minimizes the influence of
different backgrounds.

4.8. Quantitative Reverse-Transcription (Qrt) PCR for Mrna Quantification

We used qRT-PCR to estimate the expression of DAT mRNA in mouse midbrain. After designing
two pairs of intron-spanning PCR primers with a temperature of 56–60 ◦C, one of them was selected
for qRT-PCR based on a single peak in melting curve, an amplification coefficient (AC) of “2” in a
series of dilutions assay and/or a lower Ct value.
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4.9. Sampling of VTA Tissue from Mice Midbrain

Adult mice were sacrificed by rapid decapitation for brain collection. Midbrains were promptly
dissected in metal mouse matrix (ZIVIC, PA, USA) from the brains, and the VTA was sliced out of the
dissected coronal sections and transferred to pre-chilled tubes for RNA extraction.

4.10. cDNA Synthesis

Using Verso cDNA synthesis kit (ThermoFisher Scientific) 100 ng RNA was reverse-transcribed
into cDNA with oligo dT primers according to the manufacturer′s guidelines. cDNA was diluted by
5 folds with DNase-free water prior to quantification by qRT-PCR or before being stored at −20 ◦C.

4.11. qRT-PCR Analysis of Relative mRNA Levels

We used the Bio-Rad CFX Connect real-time system (Bio-rad, CA, USA) to amplify cDNA samples
in triplicates or quadruplicates by incubation. The cDNA samples were amplified at 95 ◦C for 5 min,
then for 49 cycles of 95 ◦C for 15 sec, 55 ◦C for 20 sec, and 72 ◦C for 30 sec using SsoAdvanced Universal
SYBR green supermix (Bio-rad, CA, USA) in a final volume of 12.5 µL, with 1 µL of cDNA and a final
concentration of 0.5 µM for forward and reverse primers. Amplification coefficient (AC) was calculated
from the Ct slope of the standard curve using the following formula: AC = 10−1/slope. Serial dilutions
(1:2) of the first template were set to generate eight points, and the Ct vs log cDNA concentration plot
was constructed to calculate the Ct slope. mRNA level was determined using the AC value, which
were normalized with a reference gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

4.12. Statistical Analysis

All data were expressed as mean ± standard error of the mean (SEM). Sigma Plot 12.0 statistical
program was used. The statistical analysis was performed by student t-test and one-way analysis of
variance (ANOVA). Post hoc comparisons of means were carried out with Tukey′s test for multiple
comparisons when appropriate. Values were considered statistically significant at p < 0.05. We used
t-test to analyze the effect of khat extract on locomotor activity in wild and DAT-Cnr2 mice. One-way
ANOVA together with post hoc Tukey′s test was used to see the effect of JWH133 on khat extract′s
locomotor activity, effect of khat extract on MPTP induced motor defficts, effect of khat extract on
immunohistochemical staining for TH positive cell, and effect of khat extract on the expression of
DAT mRNA.

5. Conclusions

In conclusion, the seemingly opposite effect of khat extract and the CB2 agonist suggests
that the CB2R activation has a negative effect on the positive modulatory effect of khat extract on
dopaminergic-mediated movement. Khat extract attenuated MPTP-induced motor deficit and increased
TH-immunoreactivity and DAT mRNA expression. These effects, however, were not enhanced by
concurrent administration with the CB2 agonist, suggesting that the CB2R selectively interact with
khat extract-mediated neurobehavioral effects. The results of the study may contribute to the way
forward in the search of new therapeutic targets and therapeutic options in the treatment of CNS
disorders associated with dopamine dysregulation. However future studies should be done to further
our understanding of the detailed molecular mechanisms actions of khat extract.
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