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Abstract

We have investigated macrophage activation using computational analyses of a compendium of transcriptomic data
covering responses to agonists of the TLR pathway, Salmonella infection, and manufactured amorphous silica nanoparticle
exposure. We inferred regulatory relationship networks using this compendium and discovered that genes with high
betweenness centrality, so-called bottlenecks, code for proteins targeted by pathogens. Furthermore, combining a novel set
of bioinformatics tools, topological analysis with analysis of differentially expressed genes under the different stimuli, we
identified a conserved core response module that is differentially expressed in response to all studied conditions. This
module occupies a highly central position in the inferred network and is also enriched in genes preferentially targeted by
pathogens. The module includes cytokines, interferon induced genes such as Ifit1 and 2, effectors of inflammation, Cox1
and Oas1 and Oasl2, and transcription factors including AP1, Egr1 and 2 and Mafb. Predictive modeling using a reverse-
engineering approach reveals dynamic differences between the responses to each stimulus and predicts the regulatory
influences directing this module. We speculate that this module may be an early checkpoint for progression to apoptosis
and/or inflammation during macrophage activation.
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Introduction

Macrophages respond to diverse signals when confronted with

different challenges and stimuli; from infection with pathogenic

bacteria to uptake of inert particles. Collectively these signals form

pathogen or damage associated molecular patterns (PAMPs and

DAMPs) that convey a wealth of information to the macrophage

and drive appropriate innate immune responses [1,2,3]. The

signatures of intracellular pathogens, PAMPs, elicit a primary

response in the host that is largely driven by the Toll-like receptor

(TLR) pathway.

Although activation of macrophages through the TLR and

other pathways and their downstream regulatory programs are

popular topics in immunology [4,5,6,7,8,9], the global regulatory

responses of the innate immune system are largely unknown. For

example, another component of macrophage response is a poorly

understood process by which particles of different sizes are

recognized. As a model system for particle recognition, manufac-

tured nanoparticles of various kinds elicit a range of regulatory

events based on the physico-chemical properties of the nanopar-

ticles and cell type-specific recognition and uptake pathways. We

have previously shown that changes in gene expression profiles in

macrophages could be directly correlated with particle surface

area across a size class distribution of silica nanoparticles [10].

While it is known that nanoparticles stimulate inflammation and

induce macrophage cytotoxicity in vitro [11], it is not understood

how these particles are recognized by the macrophage and how

the signaling pathways and transcriptional responses compare to

those of the TLR pathway and bacterial recognition.

In contrast to particle recognition and uptake, Salmonella enterica

serovar Typhimurium (S. Typhimurium), an intracellular patho-

gen secretes a battery of bacterial proteins which are delivered to

the host cell [12,13]. The secreted effectors are known to hijack

host cellular machinery and thereby modulate gene regulation.

This allows the bacteria to persist and replicate inside the

macrophage, an extremely inhospitable environment. Extensive

research has lead to the identification of more than 40 secreted

virulence factors [12,14], however, the full function of most

remain unknown. In addition, machine learning algorithms

suggest that as many as 300 additional proteins may be secreted

by Salmonella [15]. It becomes apparent that Salmonella infection of

the host cell is a complex and sophisticated process, one that,

unlike the other stimuli, is adaptive and partly driven by the

bacteria itself. In fact many pathogens manipulate host responses
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through direct and indirect interactions between pathogen and

host proteins.

Understanding the host immune response requires delving into its

complexity and specificity. In this study, we compare gene regulation

in response to three different kinds of stimuli: inert particle uptake,

TLR agonist treatment, and Salmonella infection. The aim of this

comparison is to examine and model the commonalities of responses

across these various classes of stimuli. We analyze microarray data

from a global analysis of gene expression profiles over many types of

macrophage challenges including infection with S. Typhimurium and

two different sizes of amorphous silica nanoparticle (10 nm, and

300 nm). This data set gives us a broad perspective for understanding

host response and requires the appropriate bioinformatic analysis to

interrogate key regulators of innate immunity. Coexpression

networks relate groups of genes together in a network that have

similar expression patterns over a range of conditions. Inference of

these networks can identify functional modules [16,17,18] and

provide predictions of regulatory interactions [19,20]. Though the

expression of a gene does not necessarily reflect the activity of its

product, the activity of transcription factors or other factors that

influence the expression of sets of downstream genes is reflected in the

changes in transcription of their targets.

A common task in the analysis of high-throughput data sets is

the identification of useful and informative targets that represent

hypotheses for further experimental validation. Ideally these

targets should be core mediators of important processes and not

downstream components of the response [21]. Previously, we have

described a novel method to analyze the topology of inferred

coexpression networks for identification of potential mediators of

system transitions from microarray data and proteomics [22,23].

In the current study we use a similar approach to identify

potential mediators of immune response processes. Our approach

is unique in that we are extending existing methods, integrating,

and applying them in an effort to more fully elucidate the

underlying regulatory network. Combining a network topology

approach with comparative analysis of differentially expressed

genes, we identify a macrophage core response module that is

shared under all conditions. In order to elucidate regulatory

influences of the core response module to provide a comprehen-

sive, parsimonious regulatory network we apply a multivariate

regression technique. This study provides a number of interesting

and novel insights into macrophage response to pathogens, and

outlines a valuable and informative set of tools to identify critical

nodes in the host response to pathogens.

Results

Overview of approach
Our overall goal in this study was to characterize the similarities

between macrophage responses to multiple stimuli, including an

intracellular bacteria (S. Typhimurium), and inert particles, and to

identify important regulatory influences in macrophage activation.

To accomplish this we used several different computational

approaches (Figure 1). First we inferred regulatory association

networks using the Context Likelihood of Relatedness (CLR) method

[19]. CLR establishes relationships (edges in a graph) between two

genes when the expression of one gene has significant mutual

information (i.e. highly similar or dissimilar) with the expression of

another gene. The resulting networks summarize the functional

dynamics of the system, for the conditions considered. We used this

coexpression network to predict important regulatory influences

using topological analysis. We then compared the responses of

macrophages to a number of important stimuli; TLR agonists,

bacterial infection, and inert nanoparticle exposure. We used this

analysis to identify a set of genes that was differentially regulated

under all conditions examined. To understand the regulation of this

core response module we used a multivariate regression method to

develop a model of the regulatory influences of the module. This

model was validated by assessing its ability to predict gene expression

under novel conditions. We finally discuss the results of this analysis in

terms of biological insight offered into macrophage activation.

Network topology identifies important pathogen targets
In order to differentiate the mediators of innate immunity from

downstream effectors, we first inferred coexpression networks from

a compendium of high-throughput datasets examining macro-

phage response (as described in Methods). Applying the CLR

method [19], we established significant relationships between

genes, being defined with Z scores greater than four. Then we

determined the topology of these relationships by identifying the

number of neighbors a gene has in the network (degree) and the

role the gene plays as a linker to bridge disparate regions of the

network (betweenness). Genes with the highest betweenness and

degree values are defined as bottlenecks and hubs, respectively.

To determine the significance of the topology in the inferred

networks we compared betweenness values from inferred and

randomly rewired networks. We ranked genes based on between-

ness values and compared the difference between the betweenness

values for the real network and mean betweenness from 100

randomized networks for the same rank. This analysis (Figure S1)

showed that the real networks have very different topologies than

randomized networks, and betweenness values for the real

networks are much larger than in the randomized networks (Z

scores.20). This was observed even when a very small percentage

of the edges are reassigned, showing that even small changes to the

network change the topology.

Based on the previous observations from our group [22,23] and

others [24,25], we believed that highly central genes in these

inferred networks (hubs and bottlenecks) would be more biologically

relevant to the system. We therefore assessed the enrichment of hubs

and bottlenecks in conserved genes and genes that code for proteins

known to be targeted by pathogens [24]. In Figure 2A, we show the

fold enrichment in pathogen targets for hubs, bottlenecks and

bottlenecks derived from randomly rewired networks (random

bottlenecks) versus other genes in the network. These results show

that hubs and bottlenecks in random networks were not enriched in

pathogen targets but that bottlenecks were significantly enriched (p-

value 0.004) in pathogen targets in the real network. Similar to

previous observations from protein-protein interaction networks

[24], these results indicate that genes with high betweenness

centrality in inferred networks are more likely to be targeted by

pathogens, thus probably play important roles in the response to

pathogens. We found no significant enrichment in homologs in

either hubs or bottlenecks (data not shown).

The results in Figure 2A show that genes with the top 20% of

betweenness in the network are significantly enriched in targets of

pathogens but we were interested in determining if network

betweenness correlated with the probability that a gene is a known

pathogen target. We therefore varied the threshold we used to

classify a gene as a bottleneck (Figure 2B). By increasing the

threshold, more nodes were classified as bottlenecks (x-axis) and

their betweenness values showed a rapid decline (blue line) in the top

5% of values. This ‘elbow’ (indicated by the vertical dotted line)

indicates that there are two populations of genes in the network; a

small number with exceptionally high betweenness values and a

large number with low betweenness values. This is corroborated by

our analysis of the distributions of betweenness values relative to

random networks (Figure S1). The fold enrichment in pathogen

Macrophage Activation Modeling
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targets displays a poor overall correlation with betweenness only

showing significant enrichment in the top 20–25% of genes.

However, the maximum fold enrichment in pathogen targets (black

line) occurs when the top 5% of genes are classified as bottlenecks.

This indicates that there is a small population (top 1–5%) of

evolutionarily conserved genes with exceptionally high levels of

betweenness in the network, which may be global regulators of

information flow, an idea supported by our analysis of the

distribution of betweenness values (Figure S1). The secondary peak

at 15–25% may represent another population of bottlenecks.

Comparative analysis between conditions identifies the
core response module

The broad spectrum of stimuli in our data set gave us the

opportunity to identify the essential conserved components of

macrophage activation. Differentially regulated genes were

identified using a 1.5 fold expression change threshold for probes

that passed a significance test up to 360 minutes post-treatment.

We observed that the responses of macrophages to nanoparticles

were delayed relative to the other stimuli, and that very few

differentially expressed genes overlapped with the compendium;

therefore, we considered the entire time course, up to 24 hours

post-treatment. To elucidate the components of macrophage

activation, we identified groups of genes that are regulated by

different numbers of conditions (n). The results of this analysis are

shown in Figure 3A, where black indicates that genes (rows) are

differentially regulated in a given response (columns). Table S1

provides the complete list of genes, the conditions under which we

found differential regulation, the network properties of the gene,

and its status as a pathogen target.

Our results show that amorphous silica nanoparticle exposure is

quite different from the other stimuli, and appears to elicit a much

Figure 1. Overview of computational approaches.
doi:10.1371/journal.pone.0014673.g001
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Figure 2. Topological bottlenecks in inferred networks are enriched in pathogen targets. A. Hubs and bottlenecks (top 20% of degree
and betweenness values, respectively) were analyzed for their enrichment in known targets of pathogens (blue bars). Bottlenecks are significantly
enriched (p-value 0.004) in pathogen targets, but not human homologs, and hubs were enriched in neither. Additionally, the mean enrichment of
bottlenecks from 100 randomized networks is shown, with error bars representing +/2 one standard deviation. B. Bottlenecks were identified using
between 1 and 100% of the top ranked betweenness values in the network (x axis) and the enrichment in pathogen targets versus non-bottlenecks is
shown (black line). The betweenness values are shown as a blue line. Significant fold change values (p-value,0.05) are indicated by asterisks at the
top of the figure. The dotted line indicates the location of the peak of greatest enrichment. These results indicate that bottlenecks from inferred
networks are more important to the functioning of the system than other genes.
doi:10.1371/journal.pone.0014673.g002

Figure 3. Response set analysis in macrophages. A. Genes (rows) with shared differential expression in response to multiple stimuli (columns)
are shown with black boxes indicating differential expression. The plot is ordered from genes differentially regulated in all conditions examined (9*,
the core response module), to those differentially regulated in three conditions (bottom). A dendrogram showing the similarity between stimuli is
shown at top; N10, 10 nm nanoparticle; N300, 300 nm nanoparticle; STM, Salmonella infection. B. The percentage of pathogen targets (bars) in each
group of genes (blue bars) or in background (not in the group; purple bars) is shown for each group of genes regulated by N or more stimuli (X axis).
The corresponding analysis is shown for Human homologs (lines) for the group (red line) or background (green line) in each group. Asterisks by each
group on the X axis indicates that these groups are statistically enriched in both homologs and pathogen targets, other values were statistically
significant after multiple hypothesis correction. These results show that groups of genes that are differentially regulated in response to a broad range
of stimuli are more likely to be targets of pathogens and are more conserved than other genes.
doi:10.1371/journal.pone.0014673.g003

Macrophage Activation Modeling
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milder response when compared with the other conditions studied.

We observe a division between typically viral-like (R848 and PIC)/

shared (CpG) stimuli and bacterial-like (LPS, PAM2 and PAM3)

stimuli, with Salmonella (STM) showing similar patterns of gene

regulation as the other bacterial stimuli. The genes are ordered

according to their n, number of shared response as shown in the

legend on the right hand side. We identified a subset of 38 genes

are differentially regulated by all nine conditions (n~9) examined

within the data set and call this group (Figure 3A, top rows) the

macrophage ‘core response module’. To assess the significance of

this result we performed 10,000 random selections and found that

in no case did this yeild an overlap of even one gene, indicating

that the p-value for finding 38 matching genes is well below 0.001.

A selection of the more interesting members (bottlenecks and/or

pathogen targets) are listed in Table 1 and the full list of genes with

associated information is provided as Table S1.

In addition, we looked at members of the core response module

to determine their importance in the topology of the network. We

found that the core response module is 2.5 fold enriched in

bottlenecks (p-value 1.74E-05), and that the module is highly

central in the network (p-value 2E-16 by t test). Interestingly AP1

(Fos and Jun) and Egr1 and 2 were among the list of bottlenecks

within the core response module, regulators which are known to

be important for early macrophage response [26,27]. This result is

consistent with the idea that the members of the core response

module might be more significant to the functioning of the system,

as indicated by their regulation in response to many different

stimuli.

To further determine the importance of genes with conserved

responses to multiple stimuli we assessed the fold enrichment of

pathogen targets (bar graph Figure 3B) and human homologs

(lines Figure 3B) for n, number of overlapping conditions. While

there was minimal enrichment in pathogen targets and homologs

when compared to background levels for conditions, n~1 . . . 7;

there was significant enrichment in both pathogen targets and

homologs for n~8 and the core response module (n~9). These

results show that the core response module has 80–90%

conservation with human homologs (1.25 fold enrichment above

a background of 70%, Bonferroni adjusted p-value 1.0E-03) and is

comprised of 23–28% pathogen targets (4.5 fold enrichment above

a background of 6%, Bonferroni adjusted p-value 7.5E-07).

Groups of genes shared in fewer numbers of conditions do not

show a high degree of enrichment or an increasing trend. These

results strongly support the notion that the core response module is

playing an important and conserved role in macrophage

activation, one that is preferentially targeted by a range of

pathogens and is enacted by evolutionarily conserved genes.

To examine the importance of the core response module in

known pathways of macrophage activation we used a curated set

of macrophage protein-protein interactions [26]. We found that 29

gene products from the highly conserved gene set (differential

expression in 8 or 9 stimuli) were involved in known interactions,

versus 390 gene products from the remainder of the genes (6.9%).

The expected ratio is given by the ratio of the total numbers of

genes in each group (92 versus 7414; 1.2%), and this gives a p-

value of less than 0.0001. So the highly conserved response is more

likely to participate in interactions important for macrophage

activation.

To assess the contribution of the nanoparticle response to the

core response module the functional enrichment in gene ontology

categories in the highly conserved set of genes (those genes

differentially regulated in 8 or 9 conditions) was examined relative

to the genes that were conserved in all conditions except in

response to nanoparticle exposure. This analysis showed that

genes with a universally conserved response were enriched in cell

cycle processes (p-value 5E-4) and anti-apoptosis (p-value 2E-3).

Table 1. Members of the macrophage core response module.

Symbol Description Bottleneck Target Function

Ccl3 chemokine (C-C motif) ligand 3 5% Yes IM

Ccl4 chemokine (C-C motif) ligand 4 Yes IM

Cxcl2 chemokine (C-X-C motif) ligand 2 5% IM

Egr1/2 early growth response 1 and 2 Yes TF

Fdft1 farnesyl diphosphate farnesyl transferase 1 5%

Fos FBJ osteosarcoma oncogene Yes TF

Gadd45b growth arrest and DNA-damage-inducible 45 beta ST

Ifi44 interferon-induced protein 44 20% Yes IM

Ifih1 interferon induced with helicase C domain 1 20% Yes IM

Ifit1/2 interferon-induced protein with tetratricopeptide rep. 1/2 10% IM

Jun Jun oncogene 5% Yes TF

Mafb v-maf musculoaponeurotic fibrosarcoma oncogene family 5% TF

Mx1/2 myxovirus (influenza virus) resistance 1 and 2 Yes IM

Oas2 2’-5’ oligoadenylate synthetase 2 Yes IM

Oasl1 2’-5’ oligoadenylate synthetase-like 1 IM

Osgin2 oxidative stress induced growth inhibitor family member 2 20% ST

Plau plasminogen activator, urokinase Yes

Ptgs1 prostaglandin-endoperoxide synthase 1 (Cox-1) IM

Bottleneck, the approximate level of betweenness for genes in the top 20%; Target, if product of the gene is identified as a known pathogen target; Function, general
functional group (IM, immune function; ST, stress response; TF, transcription factor). Genes not listed: B230342M21Rik, BC013672, LOC545174, Ddit3, Edg1, Gadd45b,
Gbp3, Irgm, Klf6, Ms4a6b, Mthfd2, Parp12, Plau, Rnd2, Sc4mol, Scd1, Sesn2, Slfn4, Tyki. All genes considered are listed in Table S1.
doi:10.1371/journal.pone.0014673.t001
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Since nanoparticle exposure and infection with Salmonella share the

characteristic of being exposure to particles we calculated the

enrichment of genes differentially expressed in response to both

nanoparticles and Salmonella infection (particulate response) to

those differentially expressed in response to all TLR agonist

treatments (non-particulate response). We found that the partic-

ulate response was significantly enriched in isoprenoid biosynthetic

processes (p-value 4.4E-5), cholesterol biosynthesis (p-value 2.1E-

4), and cell differentiation (p-value 2.7E-4). Cholesterol and other

lipids are known to play roles in macrophage response to Salmonella

infection. The Salmonella containing vacuole, a membrane bound

compartment in which Salmonella resides intracellularly, recruits

up to 30% of cellular cholesterol during infection [28] and the

Salmonella secreted effector SseJ is targeted at cholesterol

esterification, which is important for bacterial survival [29]. Our

findings suggest that some aspects of lipid metabolism response in

macrophages may be modulated as part of a specific particle

response, as opposed to through TLR pathways.

Dynamic regulation of the core response module
In order to properly assess the core response module it was

essential to determine the dynamics of gene regulation. We

examined the core response module, focusing in Figure 4 on a

subset a set of upregulated genes. To gain further insight into the

dynamics of the core response module in Salmonella infection,

which has a limited number of observations in mouse macro-

phages, we compared expression in another independent dataset:

human macrophages infected with Salmonella [30]. Figure 4A

shows the dynamics of the upregulated genes within the core

response module: for each of the conditions LPS (blue) and

nanoparticle (purple) treatment, and Salmonella infection (green).

We observed differences in the timing and magnitude of response;

LPS elicits a more pronounced response than either the Salmonella

or nanoparticle exposure. Comparing Salmonella and LPS we

observe a more delayed and less amplified gene response in

Salmonella. We speculate that the lag time in Salmonella could be an

attribute of Salmonella secreted effectors modulating members of

the core response module. The dynamics of nanoparticle exposure

appears to elicit a much milder response than either Salmonella or

LPS.

We next looked at Ifit1, and Fos, which have been identified as

bottlenecks and are known (Fos) [26] or predicted to be (Ifit1)

central regulators of innate immunity. Ifit1 showed a similar

sustained response when simulated with both LPS and Salmonella

exposure. Nanoparticle stimulus appeared to inhibit Ifit1 expres-

sion levels. In contrast, Salmonella appears to induce a rapid

response in Fos expression that is quickly downregulated, whereas

LPS induced a moderate response. Fos responding to nanoparticle

exposure shows a similar initial trend as in Salmonella infection but

has a less dramatic drop off. The implication of these findings

suggests that Salmonella may be directly or indirectly altering Fos

gene expression level.

Regulatory influences driving the core response module
Network inference using CLR and topological analysis provided

some information about the potential regulation of the core

response module, but did not provide detailed information about

regulatory influences. Thus, to predict causative regulatory

influences acting on the core response module, we applied a

multivariate regression approach, previously developed and used

in microbial systems [31]. This approach uses L1 regression [32] to

learn a parsimonious set of regulatory influences that best

describes the behavior of a target cluster. Using only the

expression levels of the inferred regulators the inferred model

can predict the dynamics of the target at future time points. In

addition, the resulting model can be used to evaluate the

transcriptomic behavior of the target cluster under novel

conditions. The coexpression networks inferred by CLR above

provide valuable information about the general associations

between genes and functions. However the multivariate regression

approach employed provides additional insight into the regulatory

network by prediction of the directionality of regulatory

interactions. Importantly, this approach allows quantitative

prediction of the influence of regulators on their targets under

novel conditions, which can be used to validate these predictions.

The approach is based on a number of assumptions. The first is

that the mRNA abundance levels reflect the activity of the

regulator it encodes. Therefore the approach can only be

successful in the cases where this assumption is met, or in a case

where the activity of a regulator is reflected by the expression levels

of another closely associated gene. A second assumption is that

clustering applied to the expression data will identify co-regulated

groups of genes, or, alternately, that it captures important trends in

the data that may arise from multiple influences. The resulting

models can be validated empirically by assessing how well they can

explain the expression of the prediction target clusters under

Figure 4. Dynamics of core response module. A) Temporal regulation of gene expression levels for a cluster of upregulated genes in the core
response module. The three conditions LPS, Np (nanoparticle), and Salmonella (STM) are labeled with blue, purple, and green lines. Error bars signify
95% confidence and the average is over all gene expression profiles within a cluster. B) Individual gene expression levels of Ifit1 (dashed line) and Fos
(solid line) under each condition LPS (blue), Np (purple), and STM (green).
doi:10.1371/journal.pone.0014673.g004
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conditions not used to parameterize the model. Thus, the models

arising from this approach provide a useful basis for making

predictions and can be validated computationally, but are unlikely

to capture all the details of the system in a complete and fully

accurate manner.

Using hierarchical clustering, we divided the core response

module into four subclusters as shown in Figure 5A, to represent

potentially distinct regulatory programs responsible for the

transcription of the core response module. These subclusters are

enriched in transcription factors (red), genes with no known role in

macrophage activation (orange), interferon regulated factors

(green), and inflammation (blue). They are clustered vertically

according to condition. For modeling the subclusters are used as

targets and potential regulators are a list of 331 differentially

expressed genes annotated as transcription factors by gene

ontology [33]. Using both targets (clustered gene expression data)

and regulators we performed cross-validation; wherein, each set of

measurements for a given condition (i.e. LPS) is left out of the

training set and used to evaluate the performance of the resulting

inferred network. The results from each independent evaluation

are scored using Pearson correlation between predicted and

observed expression for each subcluster. The results of cross-

validation yield a high gene-normalized average correlation of

0.83 over all 25 independent condition groups in the macrophage

compendium. We then used the inferred regulatory model derived

from subcluster 1 to predict the dynamic gene expression of the

core response module under LPS and Salmonella infection, as

shown in Figure 5B. The predicted expression (dashed line, panel

1) closely approximates the observed (red line, panel 1) dynamic

gene expression for LPS; showing an initial amplification followed

by gradual decline. To validate the model we applied it to predict

the subcluster expression in the nanoparticle data, which is a very

different response (e.g. Figure 3A) from the others and was not

used in the cross-validation. Panel 2 (Figure 5B) shows that the

model captures the trend of the observed nanoparticle gene

expression well.

We tested the regulatory network on the Salmonella infection

data, including data from Salmonella infection of human macro-

phages [30] to show the dynamics of this cluster. The blue line

shows the mean gene expression for the human macrophage data

and the gray lines represent the dynamics of single genes.

Figure 5C summarizes our results, showing the correlation values

using cross validation for regulatory networks derived from

subcluster 1 (red), 2 (orange), 3 (green), and 4 (blue). The

regulators shown within each subcluster are predicted to be the

mediators of gene expression. We observe good overall prediction

in networks derived from subclusters 1, 3 and 4 that contain

transcription factors, interferon-regulated factors, and components

of the inflammatory response, respectively. Subcluster 2 contains

several genes with no known role in macrophage activation,

presenting a number of interesting hypotheses for further

validation, but apparently result from a regulatory program that

is not easily predictable by the model. Thus the predictions of

regulatory influences for subcluster 2 (listed in Figure 5) are

unlikely to be complete, and may represent false positive

predictions.

Discussion

Understanding the mediators of innate immunity requires

interrogating compendia of knowledge generated from high-

throughput technologies [30]. In this study we analyzed

macrophage activation across a broad-spectrum of innate

immunity stimuli; inert nanoparticle exposure, TLR agonists,

and Salmonella infection. Using a combination of bioinformatics

techniques we determined a highly focused group of candidate

genes for further experimental investigation. The topology of the

inferred macrophage regulatory network was used to identify

many of these important genes. We showed that the bottlenecks of

the network are significantly enriched in known targets of

pathogens. This finding can be compared to those reported in

the human protein-protein interaction network [24] and our

previous findings that bottlenecks were enriched in virulence

essential genes [22].

We next examined genes that are differentially regulated in

response to multiple stimuli and identified a subset of genes that

are differentially expressed under all conditions examined and

occupy a highly central location in the inferred network.

Interestingly these genes are highly enriched in conserved

homologs and pathogen targets, indicating that they are

biologically significant in macrophage activation. This group, the

macrophage core response module, which encompasses 38 genes

including chemotactic cytokines (Ccl3, Ccl4, Cxcl2), transcription

factors (Fos/Jun AP-1 complex, Egr1 and 2, and Mafb), apoptosis

(Ddit3 and Gadd45b), steroid biosynthesis (Fdft1, Sc4mol, and

Scd1), other immune response-related genes (Ifit1, Ifit2, Mx1,

Mx2, Oas2, Oasl1 and Ptsg1 [Cox1]) and a number of genes with

unknown roles in immune response (see Table 1). Previously,

Ramsey, et al. (2008) [27] analyzed a macrophage compendium

(also used as part of the present study) using a variety of

approaches and described two ‘core early response’ clusters that

overlap with our module significantly (,50% shared genes).

Furthermore, through motif enrichment they found that genes in

these clusters were enriched in AP1, JUN, CREB, ATF, EGR, and

PPARA binding sites, indicating that components of our core

response module may be regulated by the Fos/Jun AP1 complex,

and the Egr1 and 2 transcription factors that are in the module as

well.

To represent the dynamics of the genes in this module and

predict the regulatory influences governing their expression we

developed a predictive model. By describing the regulatory

network of the core response module in a machine learning

algorithm [31], we were able to predict gene expression on a new

data set. Multivariate regression techniques have been applied to

model data in prokaryotes [34] or yeast [35], and here we have

successfully applied this method to model data from a mammalian

system. Our resulting model accurately predicts the behavior of

the core response module in combinations of treatments and

genetic backgrounds in a cross-validation approach. Furthermore,

the model can accurately predict the expression of a subset of these

genes in macrophages responding to nanoparticle exposure, which

induces a very different response than the TLR pathway.

Our predictive model identifies a number of regulatory

influences that provide the basis for further experimental

investigation. Core response module subcluster 1, which is

enriched in transcription factors like Egr1/2 and Fos/Jun, is

predicted to be regulated by Nfkß2, a component of the alternative

Nfkß pathway [36], and negatively regulated by Purb and

Zkscan1, intriguingly neither of which has a demonstrated role

in innate immunity. Using the Metacore program (GeneGO, St.

Joseph, MI) that has a curated database of known regulatory

relationships, we found that six of the 14 members of subcluster 1

were known to be regulated by one or more of the regulators

inferred in our analysis. Subcluster 3 is composed of many

interferon regulated genes, and is predicted to be regulated by Irf4

and Nr2f6. Irf4 may be involved in alternative macrophage

activation by IL-4 [37], and is known to regulate Ifit2 [38], but the

function of Nr2f6 in macrophages is unknown. Interestingly,
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ISGF3, a regulatory complex composed of Stat1, Stat2, and Irf9, is

known to be a primary regulator of the interferon response, but is

not identified by our analysis. This is likely due to the fact that the

activity of this complex is not closely tied to the expression levels of

its component genes, requiring phosphorylation and assembly of

the protein complex itself. This limitation does not refute the

predictions made by our approach since it has been shown that

regulation of the interferon response is complicated and involves

multiple redundant pathways [39]. Finally, cluster 4 is composed

of three genes, Ptgs1 (Cox-1), and the cytokines Ccl4 and Cxcl2.

These genes are highly upregulated under nearly all stimuli

examined and are predicted in our model to be regulated by Nfkß

and Rela, the complex responsible for primary activation of the

inflammatory response. Strikingly, all three of these genes are

known to be regulated by Nfkß, supporting our inferred model. Of

the other predicted regulatory influences Nfix has no known

immune response functions, but St18 is a known regulator of the

proapoptotic response [40], which is related to inflammation.

Figure 5. Modeling the dynamics of the core response module. A. Heatmap representation of the expression of the core response module.
Each row represents a gene and each column represents a time series. The values in the heatmap are the maximum absolute value of differential
expression from all time points. Shown at right is a dendrogram indicating the relationships between the genes and the color bars indicate sub-
clusters that were used for further modeling. B. Predictive dynamics of regulatory cluster. The observed (red lines) versus predicted (dashed
black lines) expression for cluster 1 (the regulatory cluster) is shown over a 24 hour time period after exposure to LPS or 300 nm nanoparticles, or
infection with Salmonella. Given the sparse Salmonella infection data in mouse macrophages we use the expression of genes (grey lines) from the
cluster in a study of infection of human macrophages to illustrate cluster dynamics. The mean expression of the genes is shown as a blue line. C.
Inferred regulatory influences for core response sub-clusters. The correlation of predicted to observed expression is listed for each sub-
cluster. Predicted regulators for the cluster are listed; black indicates a positive influence, blue indicates a negative influence, and pairs of regulators
separated by a slash denote inferred combinatorial influences.
doi:10.1371/journal.pone.0014673.g005
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Our identification and characterization of the core response

module suggests that it plays an important role in macrophage

activation. The known functions of some of its members, for

example AP1, the module’s central location in the inferred

network, and its preferential targeting by pathogens suggest that it

may be an early mediator of downstream functions, possibly as a

checkpoint of progression to apoptosis or inflammation. Our

analysis suggests that lipid and cholesterol biosynthesis pathways

are an important response, a portion of which is triggered by a

general response to particles and possibly not through classical

TLR pathways, though further investigation is needed to confirm

this observation. A future direction is to investigate the

downstream functions that the module may be involved in

regulating and determine how pathogen proteins may alter this

regulation to promote virulence.

Bioinformatic studies of macrophage response to TLR agonists

and to bacterial infection using a compendia of transcriptomic

data have been published previously [27,30], and have reported

similar core response sets of genes that are much larger than ours.

Our study is the first to compare these responses with those elicited

by inert manufactured nanoparticles; deducing a more concen-

trated subset of regulators. We identified lipid and cholesterol

biosynthesis pathways as being potentially responsive to particles

including nanoparticles and live bacteria. The core response

module appears to be highly relevant to macrophage activation as

we showed by training on TLR agonist and Salmonella infection

and very accurately predicting the dynamic behavior of gene

expression under nanoparticle exposure. This analysis is significant

because it shows that although much of the macrophage response

differs for nanoparticles, a set of genes is regulated by all three

kinds of responses, and this set, our core response module, seems

to be a very important component of macrophage activation.

Methods

Datasets
We used three transcriptomic datasets in this analysis. A

compendium of 170 microarrays analyzing murine macrophages

in time course responses to various stimuli including TLR agonists

and Salmonella infection, described in greater detail in [27] was

used for the CLR network analysis and topology. A compendium

of human responses to many different pathogens described in [24]

was used to provide dynamics of the core response module to

Salmonella infection. And the nanoparticle response data is from

our study, described below.

Nanoparticle exposure was assessed as follows. The RAW 264.7

murine macrophage cell line was obtained from the American

Type Culture Collection (Rockville, MD) and cultured as we have

previously described [10]. RAW 264.7 cells were plated in 60 mm

plates (7.56105 cells) overnight and then exposed to 10 nm (5 mg/

ml) or 300 nm (150 mg/ml) amorphous silica particles for 1, 2, 4,

8, or 24 hr in serum-free medium. The concentrations used were

chosen such that the total administered surface area was the same

for both particles sizes and should provide relatively equivalent

response pathways, as we have shown previously [10]. Whole

genome microarray analysis was performed using Affymetrix

Mouse Genome 430A 2.0 chips (Affymetrix, Santa Clara, CA,

USA; 22,690 probesets). Raw intensity data were quantile

normalized [41] and subjected to analysis of variance (ANOVA)

[42] with Tukey’s posthoc test and 5% false discovery rate

calculation [43] to identify differentially expressed genes. The list

of known pathogen targets was obtained from the supplemental

data for [24]. Mouse gene ontology annotations and homology

relationships were obtained from the MGI [33].

A list of proteins targeted by pathogens was obtained from

Supplemental Data in Dyer, et al. [24]. This list was compiled from

existing literature and a number of high-throughput screens. This list

contains 15,524 physical interactions between pathogen proteins and

host proteins including 1234 host proteins and 718 pathogen proteins.

In this list, 1134 proteins were found to be targeted by viruses and 124

by bacteria (24 are targeted by both). This bias is largely due to the fact

that it is often easier to study the interactions of viral proteins but is not

expected to significantly affect the results presented here.

Network inference and topology
We inferred regulatory influence relationships between genes in

the murine macrophage compendium using the context likelihood

of relatedness (CLR) method [19]. CLR calculates mutual

information between pairs of gene expression profiles then filters

the resulting matrix to retain statistically significant relationships

between genes.

Network topology measures (degree and betweenness) were

calculated using the igraph network library (http://igraph.

sourceforge.net/) in the R statistical language. Random networks

were generated by transforming the original network using the

rewire.edges function with a probability of 0.5 (i.e. half of the edges

are randomly reassigned in each network). The values for random

networks were obtained as the mean and standard deviation from

analysis of 100 random networks.

Response set analysis
For the response set analysis we used a threshold of 1.5 fold change

from control condition (defined according to the particular stimulus).

We considered a stimulus to differentially regulate a gene if that gene

was greater than 1.5 fold up- or down- regulated by the stimulus at

any time point considered in the analysis. Time points for the TLR

agonist and Salmonella infection time courses were considered out to

6 hours post-treatment, two time points for three strains of Salmonella

tested, and varying numbers of time points for the TLR agonists. The

nanoparticle data set was measured at all time points to 24 hours. To

assess the significance of overlap in the fully overlapping set we

randomly chose genes from the total 9707 genes considered in sets

corresponding to the size of the differentially regulated set for each

stimulus. We repeated this process 10,000 times and assessed the

number of random genes shared by all stimuli.

Inference of predictive regulatory models
We used a multivariate regression approach, the Inferelator

[31], to infer predictive models based on the transcriptomic

dataset. We identified subclusters of the core response module with

similar expression patterns using hierarchical clustering (Euclidean

distance, complete linkage) and chose to divide the core response

module into four subclusters based on visual observation of the

cluster dendrogram (Figure 5A). The mean expression of all genes

in a target cluster was used as the input to Inferelator. Potential

regulators were identified as all genes annotated with the GO

category ‘transcription factor activity’.

In the learned model the relation between the expression of a

target (y) and the expression levels of regulators with non-null

influences on y (X) is expressed as:

t
dy

dt
~{yz

X
bjXj ð1Þ

Here, t is the time step used in model construction and ß is the

weight for relationship X on y as determined by L1 shrinkage using
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least angle regression [44]. To make predictions using a learned

model eq. 1 can be solved for y, the expression of the target cluster.

Assuming equilibrium conditions the derivative dy/dt is 0 and so

equation (1) can be represented simply as a linear weighted sum:

y~
X

bjXj ð2Þ

and the dynamic version (for time series) is expressed for each time

point (m) as:

ym~
{ym{1z

P
bjXm{1j

t
{ym{1 ð3Þ

In our modeling we used a t of 30 minutes, which is appropriate

for mRNA dynamics in a eukaryote [45].

For determination of regulatory influences we considered only

regulators with expression patterns that were correlated with the

target at levels below 0.9. This threshold was used to reduce the

number of predicted regulatory influences that are based on

correlation, but are not true causative influences.

Cross-validation was performed by constructing 25 models,

each leaving out a specific set of conditions that reflect a particular

treatment (all LPS time points, e.g.) for a total of 25 sets of

conditions from the 170 measurements. The resulting model was

used to predict the expression of the targets given the expression

levels of the inferred regulators. Performance for each target

cluster was evaluated using Pearson correlation coefficient

between the predicted and observed expression levels for all 170

conditions. Performance is evaluated as the average correlation of

observed versus predicted expression values for each target

weighted by the number of genes in each target, to produce a

weighted gene-normalized overall performance score for the

model, as:

P~

PT
i~1 corr(predi,obsi)niPT

i~1 ni

ð4Þ

where P is the overall performance score, T is the number of

targets in the model, pred and obs are the predicted and observed

expression patterns, respectively, and n is the number genes in the

target i. This cross-validation approach allows relatively unbiased

assessment of model performance because the data used to

evaluate the model is not included in the training data.

Regulatory influences were determined by considering those

regulators and combinations of regulators present in more than

50% of all independent models from cross-validation. Cross-

validation and following analysis was performed using in-house

software written in R and available upon request.

Enrichment
Statistical significance for enrichment in pathogen targets and

homologs was calculated using Fisher’s exact test and a

significance threshold of 0.05. P-values were adjusted using a

Bonferroni multiple hypothesis correction, where appropriate.

Supporting Information

Figure S1 Significance analysis of betweenness values in the

CLR-inferred macrophage network. Z scores (Y axes) were

calculated for the real betweenness values versus the mean

betweenness of the node with the same betweenness rank (X

axes) in 100 networks with 50% or 0.1% of the edges rewired. The

results show that the betweenness values in real inferred networks

are very different from those in randomized networks, even when

the networks have been perturbed very little.

Found at: doi:10.1371/journal.pone.0014673.s001 (0.60 MB TIF)

Table S1 List of genes considered in network inference and

response set analysis. Response group analysis, a 1 indicates that

the gene was found to be differentially regulated (fold change 1.5)

in the specified stimulus.

Found at: doi:10.1371/journal.pone.0014673.s002 (1.38 MB

XLSX)
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