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Abstract

Background

Density dependence in helminth establishment and heterogeneity in exposure to infection

are known to drive resilience to interventions based on mass drug administration (MDA).

However, the interaction between these processes is poorly understood. We developed a

novel individual-based model for onchocerciasis transmission, EPIONCHO-IBM, which

accounts for both processes. We fit the model to pre-intervention epidemiological data and

explore parasite dynamics during MDA with ivermectin.

Methodology/Principal findings

Density dependence and heterogeneity in exposure to blackfly (vector) bites were estimated

by fitting the model to matched pre-intervention microfilarial prevalence, microfilarial inten-

sity and vector biting rate data from savannah areas of Cameroon and Côte d’Ivoire/Burkina

Faso using Latin hypercube sampling. Transmission dynamics during 25 years of annual

and biannual ivermectin MDA were investigated. Density dependence in parasite establish-

ment within humans was estimated for different levels of (fixed) exposure heterogeneity to

understand how parametric uncertainty may influence treatment dynamics. Stronger over-

dispersion in exposure to blackfly bites results in the estimation of stronger density-depen-

dent parasite establishment within humans, consequently increasing resilience to MDA. For
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all levels of exposure heterogeneity tested, the model predicts a departure from the func-

tional forms for density dependence assumed in the deterministic version of the model.

Conclusions/Significance

This is the first, stochastic model of onchocerciasis, that accounts for and estimates density-

dependent parasite establishment in humans alongside exposure heterogeneity. Capturing

the interaction between these processes is fundamental to our understanding of resilience

to MDA interventions. Given that uncertainty in these processes results in very different

treatment dynamics, collecting data on exposure heterogeneity would be essential for

improving model predictions during MDA. We discuss possible ways in which such data

may be collected as well as the importance of better understanding the effects of immuno-

logical responses on establishing parasites prior to and during ivermectin treatment.

Author summary

Onchocerciasis, caused by the helminth parasite Onchocerca volvulus, is transmitted via

the bites of Simulium blackflies. The World Health Organization has proposed onchocer-

ciasis elimination in African countries by 2020/2025. Processes regulating parasite abun-

dance in the lifecycle of helminths are known to influence the endemic prevalence in

mathematical models. For example, when transmission intensity is low, a high proportion

of incoming parasites may establish within a human host, whilst the opposite may be true

when transmission intensity is high, possibly due to immunological processes. These pro-

cesses may interact with exposure as some people are bitten more than others and receive

more parasites. Therefore, regulatory processes that depend on parasite density and inter-

individual variation in exposure play a central role in the ability of transmission to bounce

back following mass drug administration. The former, because they may increase the suc-

cess of parasite establishment as treatment progresses; the latter, because a few highly

infected individuals may maintain transmission. We developed an individual-based

model for onchocerciasis transmission and show that the interaction between these two

processes impacts treatment outcomes. We highlight the need to obtain data on exposure

to vector bites and to understand how immunological processes potentially regulating

parasite establishment change under treatment.

Introduction

The World Health Organization (WHO)’s roadmap on neglected tropical diseases [1] has ear-

marked onchocerciasis for elimination by 2020 in selected African countries, and the Joint

Action Forum (JAF) of the WHO African Programme for Onchocerciasis Control (APOC)

proposed elimination in 80% of endemic countries by 2025 [2]. As onchocerciasis programmes

based on mass drug administration (MDA) of ivermectin transition from morbidity control to

parasite elimination [3], the usefulness of mathematical models will rest on our ability to iden-

tify and understand processes that may make parasite populations resilient to MDA and able

to persist at low prevalence [4].

Density-dependent processes acting on various parts of parasite lifecycles are well recog-

nised as an important aspect of helminth transmission dynamics, stabilising parasite
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populations and contributing to their resilience—their capacity to recover—during (and after)

control interventions [5,6,7,8,9]. Positive or facilitative density dependencies (e.g. the mating

probability in dioecious, separate sexes species) limit transmission at low parasite population

densities and create so-called transmission breakpoints [10]. Negative or constraining density-

dependent processes limit transmission at high parasite population densities and, as they are

relaxed during intervention, enhance transmission at low population densities [6,7,11]. It fol-

lows that density-dependent parasite establishment may have important implications for the

resilience of onchocerciasis to interventions [12, 13, 14]. Since parasites are typically overdis-

persed among hosts (i.e. the variance is substantially greater than the mean worm load), the

severity of density dependence differs among individuals and, therefore, the net population-

level effect is altered by the degree of parasite overdispersion [10,15]. A description of the bio-

logical motivation for accounting for a variety of density-dependent processes in onchocercia-

sis transmission models can be found in [6], [9], [16] and [17]. There are two representations

of density dependence in the establishment of the parasite life stage in humans. The first was

introduced by Dietz [18] and was later used in the deterministic precursor of the EPIONCHO

model (see [22] for a review) and is also adapted for use (for individual human hosts) in this

paper. The proportion of parasites that establish in humans is considered to be a function of

the annual transmission potential (ATP = L3 × ABR, the number of L3 larvae potentially

received per person per year, where L3 is the mean number of L3 larvae in the fly population

and ABR is the annual biting rate (the average number of bites received per person per year)).

This decreasing proportion of establishing parasites with increasing ATP has implications for

parasite resilience during mass drug administration (Fig 1A). The red points indicate how the

proportion of establishing L3 larvae may increase after treatment as the ATP declines. This

increase in the proportion of establishing parasites constrains the ability of treatment to reduce

transmission because—although the number of parasites in the fly population is reduced—a

higher proportion of these parasites establish. Duerr et al. (2006) [9] presented evidence for

density-dependent establishment using individual-level data. The equivalent output of Dietz’s

function can be reproduced using data from the 14 villages with paired nodulectomy and ATP

information in the OCP database, and the model in [9] (Fig 1B). Similarly, to Fig 1A, we see

that the proportion of establishing adult parasites decreases as the ATP increases.

In Onchocerca volvulus, density-dependent processes affect the proportion of microfilariae

(mf, the progeny of adult worms) establishing in blackfly (Simulium spp.) vectors [16], the sur-

vival of infected blackflies [17], and the establishment of juvenile larvae as adult worms in

humans [18,19,20]. A large amount of work has considered the impact of these density depen-

dencies on the transmission dynamics of onchocerciasis using population-based deterministic

models [6,21,22,23]. However, these approaches have not permitted investigation of the inter-

active effects of density dependence with heterogeneity in individuals’ exposure to blackfly

bites.

Individuals may differ in their exposure to blackfly bites due to their attractiveness to flies

[24], occupation [25,26] or age and sex [21,27]. Variation in exposure to vector bites has

received theoretical and empirical attention in the context of lymphatic filariasis [28,29], schis-

tosomiasis [30] and malaria [31,32] but is less well studied for onchocerciasis (although see

[33]). In lymphatic filariasis, high levels of exposure heterogeneity are associated with

increased resilience to MDA, allowing parasite persistence at low prevalence [28]. Moreover, it

has been shown that identical prevalence values can be produced by different combinations of

vector to host ratios (indicative of population average exposure) and levels of heterogeneity;

high exposure heterogeneity reduces parasite prevalence [28] and therefore, a higher vector to

host ratio is required to achieve a given prevalence. Thus, it has been suggested that prevalence

alone should not determine expectations on intervention success [28]; a population with high
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prevalence and high exposure heterogeneity will be more resilient to treatment than a popula-

tion with the same prevalence, but lower heterogeneity in exposure.

Here, we consider how the interaction between overdispersion in exposure to vector bites

and density-dependent establishment of O. volvulus in human hosts affects the parasite’s popu-

lation dynamics. We present a novel individual-based stochastic onchocerciasis transmission

model, EPIONCHO-IBM (an analogue of the population-based deterministic EPIONCHO

model (see [22] for a recent review)), which we parameterise using historical pre-intervention

epidemiological data from savannah settings in Africa to capture the interaction between

exposure heterogeneity and density-dependent parasite establishment within humans. We use

the model to explore the impact of these interactive processes on O. volvulus population

dynamics during MDA with ivermectin. We discuss how uncertainty in key parameters influ-

ences our projections and highlight data requirements for improving the accuracy of model-

based predictions. In addition to individual-based models (IBMs) being suited to modelling

heterogeneity in exposure (and potentially also in susceptibility) to infection, they are particu-

larly useful in context of public health questions (for example, allowing the consideration of

sensitivity and specificity to diagnostic tests; accounting for screen and treat protocols, among

others). A broader aim of this work is, therefore, to develop a tool with which a wide range of

questions (not within the scope of this paper) may be answered that is not possible with its

deterministic precursor (EPIONCHO [22]).

Fig 1. Density dependence in the establishment of adult Onchocerca volvulus. (a) Density-dependent establishment of worms in the human host

(δH ¼
δH0þδH1cHATP

1þcHATP

h i
, as described by [18] and using the parameterisation in [6]). The red points represent hypothetical values of δH before and after treatment.

δH0 is the proportion of L3 larvae developing to the adult stage within the human host, per bite, when ATP! 0; δH1 is the proportion of L3 larvae developing to the

adult stage within the human host, per bite, when ATP(t)!1 and cH is the severity of transmission intensity-dependent parasite establishment. (b) The model

and data in [9] are used to produce the equivalent of Dietz’s function [18], for the mean ATP values (black points), and their upper and lower confidence

intervals (blue and red respectively) as reported in [9]. The O. volvulus nodule (onchocercoma) establishment rate per village is given by NER ¼ 1

Z

Pn
i¼1

NERi
za
na
;

where NERi = ki/ai; ki is the number of nodules palpated in individual i at age ai; Z is the number of people across all villages entering the analysis for which

nodulectomy (and paired ATP) data were available for 14 villages in the Onchocerciasis Control Programme in West Africa (OCP) database; n is the population size

of the village under consideration; na is the number of people aged a, and za is the number of people aged a across all villages. The incidence of adult worms (parasite

establishment rate, PER) in a village is then, PER ¼ m
p NER, where p is the proportion of nodules accessible to palpation, and m is the average number of adult female

worms in a nodule. We set m (which was multiplied by 2 to find the total number of adult worms, assuming a balanced sex ratio) and p to values proposed by [34].

https://doi.org/10.1371/journal.pntd.0007557.g001
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Methods

There are three principal methodological components of this work: i) development of a novel

individual-based onchocerciasis transmission model (EPIONCHO-IBM); ii) parameterisation

of heterogeneity in exposure to blackfly bites and density-dependent establishment of worms

within humans, and iii) simulations to investigate the role of these processes and their interac-

tions on the dynamics of O. volvulus during MDA with ivermectin.

EPIONCHO-IBM

EPIONCHO-IBM is a stochastic, individual-based analogue of a previously developed popula-

tion-based model, EPIONCHO (see [22] for a recent review and [23] for the latest refinements

to the deterministic version). EPIONCHO-IBM follows each human in a closed population,

keeping track of the number of infecting adult O. volvulus (of each sex and reproductive status)

and microfilariae. The presence of both male and female worms is required for the production

of microfilariae, assuming a completely polygamous mating system [10, 34]. The model

accounts for age- and sex-dependent exposure of humans to blackfly bites, as in the determin-

istic version of the model [21], whilst additionally incorporating individual-level variation in

exposure. An individual-specific exposure factor is assigned at birth and is drawn from a

gamma distribution,

EðiÞ � gammaðkE; bEÞ ð1Þ

where kE and βE are the shape and rate parameters, respectively. We assume always that kE =

βE, such that the mean exposure in the population is unity, permitting the ABR (the average

number of bites per person per year), to be distributed among the host population.

Parasite life-history traits

We assume senescence in parasite longevity and fecundity based on existing data [35]. Mortal-

ity rates of adult worms and microfilariae are assumed to increase with age, according to a

Weibull model fitted, in the case of microfilariae, to data presented by [36] (S1 Text, Text A,

Formal description of EPIONCHO-IBM, Fig A). Following [37], parasite fecundity decreases

with age (Fig B in S1 Text). Figures showing the dependency of parasite life history traits (mor-

tality and fecundity) on age, and the resulting fit of the model to temporal (declining) trends of

community microfilarial load (CMFL, as defined in [38]) since the inception of vector control

in Burkina Faso villages of the Onchocerciasis Control Programme in West Africa (OCP), are

included in S1 Text (Fig C).

Parasite population regulation

Density-dependent processes are assumed to act on three stages of the O. volvulus lifecycle,

namely: establishment of larvae within the vector; parasite-induced mortality of the vector,

and establishment of adult worms within the human. Herein, reference to ‘density dependence

parameters’ refers to the density dependence in the establishment of the parasite in humans

unless otherwise specified, and the parameters determining other density-dependent processes

remain fixed [23]. After accounting for individual-level variation, as well as age- and sex-spe-

cific exposure, the density-dependent establishment of adult worms in individual i is given by,

PHðiÞ½ATPðt � tHÞ;OTðaðiÞ � tHÞ� ¼
dH0 þ dH1cHATPðt � tHÞOTðaðiÞ � tHÞ

1þ cHATPðt � tHÞOTðaðiÞ � tHÞ

" #

ð2Þ
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where τH is the delay between L3 larvae entering the host and establishing as adult worms to

account for the duration of development into L4 stages and L5 (juvenile adults), a(i) is the age of

individual i,OT(a(i)) is the total exposure for individual i, δH0 is the proportion of L3 larvae devel-

oping to the adult stage within the human host per bite when ATP(t)! 0, δH1 is the proportion

of L3 larvae developing to the adult stage within the human host per bite when ATP(t)!1 and

CH is the severity of transmission intensity-dependent parasite establishment within humans.

The model accounts for a latent period in the development of the parasite in the vector by

including L1, L2 and L3 stages [23, 39], based on data for African (Cameroon) settings [40].

The dynamics of the parasite within the vector are modelled deterministically at a fly popula-

tion level, as in the deterministic EPIONCHO model [22, 23]. This population-based model-

ling of the vector population is also found in other individual-based models for vector borne

diseases [28, 41]. Treatment with ivermectin is assumed to have a large but finite microfilarici-

dal effect which decreases with time since treatment (following the dynamics presented in

[42]). Ivermectin temporarily sterilises some female worms while making others permanently

infertile [43]. A complete description and mathematical definition of the model, together with

parameters values, is given in S1 Text (Text A: Formal description of EPIONCHO-IBM, Tables

A to H, Figs A to D).

Parasitological data and model parameterisation

The degree of exposure heterogeneity and density dependence in parasite establishment in

humans were estimated by fitting the model simultaneously to pre-intervention microfilarial

prevalence and intensity (mean number of microfilariae per mg of skin) data and their corre-

sponding annual biting rate (ABR, the number of bites per person per year) from savannah

settings in [44, 45] (Northern Cameroon) and [46] (Burkina Faso and Côte d’Ivoire). Although

the model explicitly considers hypothetical individuals (which then allow the calculation of

microfilarial prevalence and mean microfilarial infection intensity in the population), no indi-

vidual-based data on exposure were used for its parameterisation as these data are not yet

available at suitable scales. Instead, population-based epidemiological data, which were col-

lected from different locations and timepoints, were used to parameterise the model regarding

the processes of interest (i.e. exposure and density dependence within humans). For other pro-

cesses, the model was parameterised based on epidemiological setting-independent data (e.g.

density dependence within blackflies; effects of ivermectin on parasite life stages, etc.), as

described in [22, 23] and S1 Text.

Parameter sets for density dependence were generated using Latin hypercube sampling

(LHS, n = 100), with each set simulated for a range of kE values (0.2, 0.3, 0.4). (S1 Text, Text B:

Uncertainty and sensitivity analysis using the Latin hypercube parameter sets, Fig E, illustrates

the results for kE = 0.3 in the form of box-and-whiskers plots for microfilarial prevalence and

intensity.) The estimation of the density dependence parameters separately for each value of kE

allows the simulation of MDA for each level of exposure heterogeneity, and consequently

exploration of how uncertainty in this parameter may influence the outcome of intervention

programmes. The fit produced by each value of kE (with the corresponding density depen-

dence parameters estimated for that value of kE) can then be compared.

We calculated the sum of squared residuals (the discrepancy between the modelled microfi-

larial prevalence and intensity and the observed data) as a measure of the goodness-of-fit of

each parameter set. Residuals were normalised between 0 and 1 to allow the prevalence and

intensity to influence the fitting equally. We calculated the partial rank correlation coefficients

for δH0, δH1 and cH (following [47]) to quantify how each parameter influenced the pre-inter-

vention model predictions (Fig F in S1 Text).
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The microfilarial prevalence and intensity data used to fit the model [44, 45, 46] were com-

plemented with additional data from [9] (OCP, microfilarial prevalence only) and other epide-

miological settings with simuliid species without cibarial armatures and vector competence

characteristics similar to those of Siumulium damnosum sensu stricto (s.s.)/S. sirbanum [7],

namely Amazonian focus communities with transmission by S. guianense sensu lato (s.l.) [48],

and Ecuadorean communities with transmission by S. exiguum s.l. [49, 50] to validate the

model fit. For microfilarial prevalence data, binomial 95% confidence intervals (95% CIs) were

calculated using the Clopper-Pearson method [51]. Individual host microfilarial intensity data

were only available for [44] and these were used for calculating 95% CIs around the arithmetic

means using bootstrapping [52].

Population dynamics during mass drug administration (MDA) with

ivermectin

We used the best fit parameter sets (for each value of kE) which gave the lowest sum of squared

residuals to project the dynamics of microfilarial prevalence (from two skin snips, assuming

that a Holth corneoscleral punch-derived skin snip weighs, on average, 2 mg [22]) during

MDA with ivermectin. Since ivermectin has been distributed in savannah areas of northern

Cameroon since the late 1980’s we generated predictions for annual (yearly) treatment for 25

years. For comparative purposes, we also simulated biannual (6-monthly) treatment for the

same programme duration. We made predictions for populations with baseline microfilarial

prevalence values� 30% (hypoendemic), 50% (mesoendemic), 60% and 70% (hyperendemic).

The choice of baseline conditions was motivated by the frequency of those that were observed

in the OCP prior to the commencement of control [53]. We assume that 1% of the population

are non-compliant (they never receive treatment), and that the mean treatment probability in

any treatment round is 0.8 (i.e. there is 80% therapeutic coverage of the total population). An

overview of how compliance structure influences resilience to treatment in a generalized set-

ting can be found in [54].

Results

Endemic microfilarial prevalence and intensity

Fig 2 shows the relationship between pre-control microfilarial prevalence, arithmetic mean

microfilarial intensity and ABR, using the parameters obtained by LHS that achieved the mini-

mum squared residuals compared with the observed data from [44, 45, 46] for each value of

kE. A value of kE = 0.3 and the associated density dependence parameters (δH0 = 0.186, δH1 =

0.003, cH = 0.005) gave the lowest squared residuals.

When using kE = 0.3, EPIONCHO-IBM captures well not only the pre-intervention

observed microfilarial prevalence and intensity across the biting rates used for comparing the

model fit to data, but also the other data sources used for validation (i.e. excluded from the

least squares calculation) [9, 48, 49, 50]. A value of kE = 0.2 predicted well the microfilarial

intensity but tended to under predict microfilarial prevalence; conversely, a value of kE = 0.4

underpredicted intensity but was better able to capture microfilarial prevalence across all

ABRs than kE = 0.2. Fig 2 shows that model predictions generated by values of kE = 0.2, 0.3 and

0.4 encompass most of the prevalence and intensity data points in the range of ABR values

explored (1,000 to 176,500). Figures showing microfilarial prevalence and intensity for all

parameter sets from the Latin hypercube sample (for kE = 0.3), as well as the influence of indi-

vidual density dependence parameters on (endemic equilibrium) model outputs for a range of

ABR values, are shown in S1 Text, Text B (Fig E and Fig F, respectively).
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Threshold biting rate

Increasing the level of exposure heterogeneity (i.e. decreasing the value of kE) decreases the

threshold biting rate (TBR, the minimal ABR necessary for endemic onchocerciasis, i.e. for

which the basic reproduction number of the parasite, R0, is equal to 1 [16]), giving TBR values

ranging from approximately 97 for kE = 0.2 to 429 for kE = 0.4, assuming that the proportion

of bloodmeals taken on humans is 0.63 for S. damnosum s.s./S. sirbanum [50] (Fig 3).

Population and individual-level parasite establishment within humans

We see also that the population mean density dependence in the stochastic model developed

here departs from that found in the simpler deterministic framework without exposure hetero-

geneity (when using the estimated density dependence parameters from the stochastic model)

(Fig 4A). In the stochastic setting, density-dependent establishment of the parasite in an indi-

vidual depends on their exposure to fly bites (Eq 2), which is determined by a gamma-distrib-

uted individual level exposure, as well as age- and sex-dependent exposure. This creates a

distribution of PH curves in the host population (Fig 4B), which can vary depending on kE (as

well as on the host sex ratio and age distribution). Since (for the kE values tested), most individ-

uals in a population have low exposure (and therefore weak density-dependent establishment

relative to the annual transmission potential), there is a higher mean proportion of establishing

parasites in the human population for higher annual transmission potentials than in the deter-

ministic model.

Dynamics of microfilarial prevalence under ivermectin treatment

Treatment dynamics indicate that resilience to MDA is markedly higher for kE = 0.2 than for

kE = 0.3 and 0.4. This difference between the different levels of exposure heterogeneity tended

to increase as the pre-intervention microfilarial prevalence increased but decreased with an

increase in treatment frequency (Fig 5). Although this difference in resilience between the dif-

ferent values of kE is in part due to the resulting exposure heterogeneity, it is also associated

with different estimated strengths of density dependence (Fig 4). More heterogenous exposure

leads to the estimation of stronger density dependence, principally due to a higher proportion

of parasites establishing as ATP decreases. Since increasing exposure heterogeneity (reducing

kE) reduces the microfilarial prevalence, a higher proportion of parasites establishing (than

when exposure is less overdispersed) is required to reach a given observed prevalence and

intensity. Simulations assuming either a fixed level of exposure heterogeneity, and different

strengths of density dependence, or a fixed level of density dependence and different levels of

exposure heterogeneity are shown in S1 Text, Text B: Uncertainty and sensitivity analysis

using the Latin hypercube parameter sets, Figs G and H.

Fig 2. Pre-intervention Onchocerca volvulus microfilarial prevalence and intensity vs. the annual biting rate of simuliid vectors. The predicted microfilarial

prevalence (percent) and microfilarial intensity (mean no. of microfilariae, mf, per mg of skin) (from 2 skin snips) for the annual vector biting rates reported in the

combined epidemiological dataset (i.e. fitting and validation data, solid colour circles), using the estimated parameters, are represented by solid lines. The best-fit

parameter values of the density-dependent parasite establishment within humans were δH0 = 0.186, δH1 = 0.003 and cH = 0.005 for exposure heterogeneity parameter kE

= 0.3 (thick red line); δH0 = 0.385, δH1 = 0.003, cH = 0.008 for kE = 0.2 (thin light blue line), and δH0 = 0.118, δH1 = 0.002, cH = 0.004 for kE = 0.4 (thin dark blue line).

The EPIONCHO-IBM predictions are based on a host population size of 500 and 100 runs for 80 years to reach endemic equilibrium (human demography was

simulated to equilibrium before simulating the epidemiology to equilibrium). The error bars are binomial (Clopper-Pearson) 95% confidence intervals for prevalence

and bootstrapped 95% CIs for intensity (for which the raw individual microfilarial intensity data were available [44]). The main vectors in each setting are Simulium
damnosum s.s./S. sirbanum (African savannah in Benin, Burkina Faso, Cameroon, Côte d’Ivoire, Ghana, Guinea, Mali, Togo); S. guianense s.l. (Amazonian focus in

southern Venezuela) and S. exiguum s.l. (Cayapas focus in Ecuador), all species are without armed cibaria and have vector competence features similar to those of S.

damnosum s.s. [7]. Fitting data are from [44, 45, 46]; validation data are from [9, 48, 49, 50]. The prevalence and intensity data points for an annual biting rate of 81,000

were excluded from the fitting of the model as according to [45] a large number of flies were nulliparous.

https://doi.org/10.1371/journal.pntd.0007557.g002
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Discussion

We have developed a novel stochastic individual-based onchocerciasis transmission model,

EPIONCHO-IBM, based on the deterministic population-based analogue, EPIONCHO.

EPIONCHO-IBM captures explicitly the interactive effects of heterogeneity among humans in

exposure to blackfly vector bites and density-dependent processes that operate fundamentally

at the individual host level and that are key determinants of the resilience of parasite popula-

tions to intervention. Modelling this interaction is, therefore, essential for predicting the likely

impact of interventions on parasite population dynamics and ultimately the feasibility of elimi-

nation. This is the first study to explore this effect in the context of onchocerciasis using

Fig 3. Threshold biting rates for each endemic microfilarial prevalence varying the exposure heterogeneity parameter kE and associated best-fit parameters of the

density-dependent parasite establishment within humans. Endemic prevalence values of 0 indicate annual biting rates (number of bites per person per year) that are

below the so-called threshold biting rate (TBR) for transmission (indicating that the basic reproduction number R0 <1). The EPIONCHO-IBM predictions are based on

a host population size of 500, 1000 runs and for 80 years to endemic equilibrium, assuming 63% of blood meals are taken on humans [55]. Density dependence

parameter values for each value of kE are as in Fig 2 TBR values are 97, 239 and 429 for kE = 0.2, 0.3 and 0.4, respectively.

https://doi.org/10.1371/journal.pntd.0007557.g003
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epidemiological data to parameterise and validate these interactive population processes. In

doing so, we demonstrate that data collection on exposure heterogeneity may make an impor-

tant contribution to reducing uncertainty when modelling parasite dynamics during MDA.

The range of exposure heterogeneity levels explored (kE = 0.2 to 0.4) fits to the variation in

pre-control microfilarial prevalence and intensity with ABR, encompassing most of the data

points collated (including fitting and validation datasets), with kE = 0.3 providing the best

overall fit. A value of kE = 0.2 tended to underestimate prevalence but fitted better low preva-

lence values, whilst kE = 0.4 tended to overestimate prevalence but fitted better high preva-

lence. The results suggest that exposure heterogeneity may decrease as the annual biting rate

increases (i.e. kE increases with increasing ABR).

This decrease in heterogeneity with increasing ABR may represent that, in a small popula-

tion of blackflies, the physical limit on how many times a fly can bite constrains the number of

people that may be bitten. This would result in a high heterogeneity in exposure to bites. Con-

versely, a large population of flies is capable of biting many people, leading to lower levels of

heterogeneity in exposure to bites. If such a relationship between exposure heterogeneity and

ABR were supported by other data sources and incorporated into the model, it may have sub-

stantive implications for the predicted population dynamics during MDA. In particular, the

degree of heterogeneity in exposure would be less in highly endemic settings with high preva-

lence and high ABRs. Consequently, the resilience to intervention in these settings would be

reduced and the impact of MDA enhanced. The projected parasite population dynamics

Fig 4. The EPIONCHO-IBM density-dependent parasite establishment within-humans using the best-fit estimates of the parameters δH0, δH1 and ch for each

value of kE. In panel (a), solid lines show the population mean density dependence with age-, sex- and individual-specific heterogeneity in exposure to vector bites.

Dashed lines show the density-dependent establishment function without heterogeneity in exposure using the same parameters. Panel (b) shows the density

dependence for 100 individuals in the stochastic setting (each line is for one individual) for each value of kE. The mean of these lines (for each exposure

heterogeneity value) gives the solids lines in panel (a). Density dependence parameter values for each value of kE are as in Fig 2. Note that the y-axis label has been

abbreviated for presentational purposes; specifically for panel (b) this is ПH(i), in panel (a), we represent the value given by taking the mean output of this function

for all individuals in the population with ПH (solid lines), and represent the function without exposure heterogeneity using ПH also (dashed lines).

https://doi.org/10.1371/journal.pntd.0007557.g004
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during treatment with ivermectin would likely be somewhat more closely aligned with the cor-

responding deterministic predictions of EPIONCHO, which incorporates a functional rela-

tionship between the degree of adult worm overdispersion and ABR [23]. The assumption of a

fixed level of exposure heterogeneity (either across the wide range of annual biting rates col-

lated, as in Fig 2, or for single modelled endemic communities, as in Fig 5) is unavoidable due

to data availability. More likely, there will be a distribution of kE values depending on the spe-

cific ecological and sociological context of a geographical area. Even if such a distribution

allowed kE to vary between 0.2 and 0.4, we might expect substantial spatial variation in popula-

tion responses to treatment for a given baseline microfilarial prevalence.

The threshold biting rate decreased with increasing levels of exposure heterogeneity which

is consistent with similar work on lymphatic filariasis [28]. Furthermore, the threshold biting

rate for the best fit parameters was similar to previous deterministic versions of the model

assuming the same proportion of blood meals taken on humans (380 in [6], 300 in [19]), but

lower than a different model based on the same data (730 [20]).

A key distinction between EPIONCHO-IBM and its deterministic counterpart is that in the

former, overdispersion is generated mechanistically via heterogeneity in exposure and density

dependence operating at the level of the individual host. In EPIONCHO, the effects of parasite

overdispersion on the severity of density dependence are modelled empirically [15, 21, 22, 23].

More generally, worm overdispersion in the host population is an input in deterministic

Fig 5. Microfilarial prevalence dynamics during 25 years of annual (a–d) and biannual (e–h) mass drug administration (MDA) with ivermectin for various levels

of endemicity, heterogeneity in exposure to vector bites (measured by kE) and the associated density-dependent establishment parameters. The baseline

microfilarial prevalence (30%, 50%, 60%, 70%, indicative of hypo-, meso-, hyper-, and high hyperendemicity, respectively) is modelled by increasing the annual biting

rate. At each treatment round, 80% of the population receive treatment, excluding children aged<5 years who are ineligible to receive ivermectin. We assume 1% of the

total population are systematic non-adherers (i.e. they never take treatment during the programme duration). The EPIONCHO-IBM predictions are based on a host

population size of 500, 1000 runs and with 80 years to reach endemic equilibrium before initiating MDA. Parameters for the thick red lines (kE = 0.3), thin light blue

lines (kE = 0.2) and thin dark blue lines (kE = 0.4) are as in Fig 2.

https://doi.org/10.1371/journal.pntd.0007557.g005
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population-based models, and an output of individual-based stochastic models (calculated by

fitting a negative binomial distribution to predicted worm burdens), depending on exposure

heterogeneity and potentially density dependent processes. This is a crucial difference and

implies individual-based models are not simply approximations of their deterministic counter-

parts. How density-dependent processes influence the relationship between exposure hetero-

geneity and parasite overdispersion (of adult worms and microfilariae) in EPIONCHO-IBM is

an important question which remains to be addressed and will be presented elsewhere.

The phenomenological nature of density-dependent establishment of the parasite in the

human host is an important limitation of this work. The use of population-level data to simul-

taneously estimate both density dependence and exposure heterogeneity allows the parameters

involved to counteract, reducing identifiability and diminishing mechanistic interpretation.

Since direct estimation of density-dependent parasite establishment within humans is not fea-

sible experimentally (with the only available observational study on parasite establishment

rates being that of [9]), data collection on heterogeneity in exposure to fly bites will be an

important step in better resolving density dependence. This has been discussed previously [26]

but available data remain limited. Since blackflies have very specific environmental require-

ments, with breeding sites varying in distance to human settlements, the estimation of individ-

ual-level variation in exposure to bites poses a substantial challenge.

Heterogeneity in exposure to mosquito bites has been estimated by comparing DNA

extracted from (indoor resting) mosquito bloodmeals with DNA from individuals living in

study households [32]. Since Anopheles mosquitoes breed in standing water, which may be lit-

tered throughout villages, this is a viable method for finding mosquitoes which have fed on

study participants. In the context of onchocerciasis, this process may be impractical because

blackflies do not bite and rest indoors, and outdoor resting sites are very difficult to find, so

studies investigating bloodmeal origin rely on host-dependent and host-independent sampling

methods [55]. The former (human landing catches) would require a large number of partici-

pants to find enough flies which that could be matched to the individuals on which they previ-

ously fed, and the latter (using oviposition traps in nearby breeding sites) may not sample

sufficient flies which would have fed on the residents of the nearby communities [55]. Irvine

et al. [29] have suggested there may be spatial variation in exposure heterogeneity to mosquito

bites, adding an additional layer of complexity and uncertainty in obtaining generalizable esti-

mates. Perhaps more suitable for estimating exposure to blackfly bites is the method which has

recently been applied in an empirical study of Leishmania infantum transmission among dogs

in Brazil [56]. Levels of (IgG) antibody responses to sandfly saliva were found to vary with the

intensity of transmission, declining after periods of low transmission, as well as to vary greatly

between dogs, correlating with the intensity of transmission experienced by individual dogs.

Studies such as these require the development of anti-saliva antibody assays, which are cur-

rently lacking in simuliids (partly because their colonisation in the lab is very difficult). If these

assays could be developed in the context of onchocerciasis, based initially on titres of antibody

responses to crude blackfly salivary antigens, they could be used in population samples across

all age and sex groups and may provide useful data for estimating heterogeneity in individual-

level exposure. Such a study may also provide data to increase the accuracy of assumptions

regarding age- and sex-dependent exposure. Currently this is estimated by fitting models to

data on age- and sex-specific profiles of microfilarial prevalence and intensity [21]. However,

these modelled age and sex exposure profiles are determined not by exposure to vectors and

parasite infective stages alone, but also by processes involving parasite development and para-

site fecundity within the host, as they rely on (downstream) microfilarial data. Reducing the

uncertainty in age- and sex-dependent exposure patterns is particularly important for optimal

selection of age (and potentially sex) groups for (serological) assessment of exposure to parasite
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antigens in foci thought to be nearing elimination [57]. Ideally, assays for anti-blackfly saliva

could be combined with assays for exposure to O. volvulus to investigate both exposure to vec-

tor bites and parasite antigens (e.g. Ov16 [58]).

In addition to exposure, susceptibility to infection may also vary between individual hosts.

Work on schistosomiasis has shown that there is marked variability in susceptibility to infec-

tion [59, 60], and that accounting for both exposure and susceptibility can better capture Schis-
tosoma transmission to snails than accounting for exposure alone [61]. It is possible, that what

we term exposure heterogeneity, does also account for individual variation in susceptibility,

given the way it is estimated. However, as there is a lack of data on individual heterogeneity in

exposure and susceptibility to infection, making this distinction explicit is unlikely to lead to

better parameterisation or improved accuracy of the model. In addition, since density-depen-

dent establishment of adult worms might represent immunological processes (which interact

with exposure at the individual level in the model), it is not necessarily clear how variation in

susceptibility (which is likely determined by genetic and immunological processes) should be

accounted for. Therefore, although we do not account for variation in susceptibility explicitly,

the proportion of incoming parasites which establish in an individual depends on their expo-

sure, implying a relationship between exposure and susceptibility.

The density-dependent within-human parasite establishment function used in EPIONCHO

and EPIONCHO-IBM, derived from the work in [18], is a phenomenological representation of

a possible immune-mediated response to infective (L3) larvae driven by the intensity of expo-

sure to these parasite stages. In areas of low ATP (or in individuals with little exposure), low lev-

els of exposure to L3 larvae may be responsible for a poor development of protective immune

responses, leading to high parasite establishment rates. Conversely, in areas of high ATP (or in

individuals highly exposed), stronger immune responses against incoming worms may decrease

parasite establishment rates. The operation of anti-L3 responses in putative immunes living in

areas of hyperendemic onchocerciasis has been shown by [62, 63]. In the Teladorsagia circum-
cincta–Scottish Blackface sheep parasite–host system, priming of the immune system early in

the season by exposure to (ingestion of) infective L3 larvae in pasture, reduces parasite establish-

ment and growth and, therefore, faecal egg counts in a density-dependent fashion, not unlike

our own parasite establishment function (see Figs 2 and 3 of [64]).

Density-dependent processes may also (or instead) act on parasite fecundity [65]. Here we

assume for simplicity, that one worm of each sex is required for reproduction, i.e. that one

male worm is sufficient for all adult female worms to be fertilised and produce mf [10, 34], and

that increasing female worm density does not reduce the per capita fecundity rate [19]. How-

ever, if in addition to density-dependent parasite establishment, the fecundity rate was to

decrease as the density of adult parasites increases, we might expect additional resilience dur-

ing treatment, since the fecundity rate per worm would increase as MDA reduces the number

of parasites in the population. Of interest, previous work indicates that, when investigated sep-

arately, density-dependent fecundity contributes less to the rate of bounce back following

treatment than density-dependent adult worm establishment [8].

The EPIONCHO-IBM projections indicate that there is a disproportionate increase in resil-

ience with increasing pre-intervention prevalence for kE = 0.2. That is, as pre-intervention

prevalence increases, particularly from low hyperendemic (microfilarial prevalence� 60%) to

high hyperendemic (microfilarial prevalence� 70%) settings, the O. volvulus population

becomes disproportionally more resilient to MDA. This can be partly understood in the con-

text of the strongly nonlinear prevalence vs. ABR relationship, in which prevalence begins to

saturate at ABR values exceeding 7,000 (daily biting rates> 20/person, ~70% mf prevalence).

This phenomenon would also be found for lower levels of exposure heterogeneity, as the prev-

alence vs. ABR relationship begins to saturate, albeit at higher ABRs. Another contributory
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factor to resilience to MDA-based interventions in our model is that our parasite establish-

ment function is not affected by the potential interaction between microfilaricidal treatment

and the immune response. Therefore, as treatment progresses and the ATP declines, the para-

site establishment rate inevitably increases. However, ivermectin-facilitated immunity in

onchocerciasis has been reported [66, 67]. Human immunological studies have demonstrated

that filarial parasites induce a state of hypo-responsiveness in the host that is associated with

the presence of circulating mf (patent infection), and O. volvulus is no exception [68]. The

reversal of this mf-associated immune-suppression, following clearance of skin mf due to iver-

mectin treatment, may contribute to controlling O. volvulus infection [66]. In the O. ochengi–
cattle system, animals treated with ivermectin and exposed to blackfly bites under natural

transmission conditions did not develop patent infections whilst treated but recovered their

susceptibility and acquired infection (at rates higher than untreated counterparts) once treat-

ment stopped [69]. Similar observations have been made in a large pharmaco-epidemiological

study of Dirofilaria immitis in dogs [70]. A better understanding of how ivermectin-facilitated

immunity could impact the establishment of incoming worms in human onchocerciasis would

greatly improve the modelling of parasite establishment rates during the implementation and

after cessation of MDA programmes.

The microsimulation model for onchocerciasis ONCHOSIM [22, 33, 41, 71], which also

uses a gamma distribution to model individual-level variation in exposure, uses parameter kE

as 1 or 3.5, giving substantially less exposure heterogeneity than in EPIONCHO-IBM (kE =

0.3). It has been shown that EPIONCHO (the deterministic analogue of EPIONCHO-IBM)

predicts more resilience to intervention than ONCHOSIM under a range of treatment scenar-

ios (using kE = 3.5 for ONCHOSIM) [13, 14]. Although our treatment dynamics were simu-

lated under high (and likely unrealistic) levels of therapeutic coverage and adherence, the

programme duration (25 years) was motivated by that in the Vina valley of northern Camer-

oon (from which the data used to estimate the parameters investigated in this paper originated

[44, 45]). In Cameroon, there was no interruption of transmission after 15 [72, 73], 17 [74], 18

[75] or 25 years [76] of annual ivermectin MDA in some communities. Although this may be

due to a number of factors including lower than reported coverage, decreased ivermectin effi-

cacy [77], movement of infected individuals between foci and spatial variation in exposure het-

erogeneity, it may indicate that the more pessimistic predictions of EPIONCHO-IBM for

hyperendemic populations, are not necessarily out of touch with observed trends. It is note-

worthy that EPIONCHO-IBM can mimic the behaviour of ONCHOSIM (i.e. less pessimistic

treatment dynamics) by removing density-dependent parasite establishment within humans

(absent in ONCHOSIM) and increasing kE. This process—and its interaction with heterogene-

ity in exposure—is a critical determinant of the different population dynamics predicted by

the two models (to be formally discussed elsewhere).

EPIONCHO-IBM has a wider scope of application than its population-based predecessor,

albeit at the cost of reduced tractability (a general drawback of many individual-based stochas-

tic models). A particular advantage is the capacity to model individual-based interventions.

For example, individuals co-infected with O. volvulus and Loa Loa are at risk of severe adverse

events (e.g. encephalitis) following treatment with ivermectin if harbouring heavy loiasis

microfilaraemia [78]. Consequently “test and treat” (testing for O. volvulus) or “test and not

treat” (testing for L. loa) strategies have been proposed and trialled for control in areas co-

endemic with onchocerciasis and loiasis [79]. EPIONCHO-IBM, as an individual-based

model, can simulate such strategies, incorporating performance features (i.e. sensitivity, speci-

ficity) of a variety of diagnostics and detailed information on observed screening, coverage

and adherence patterns among demographic groups. It follows that co-infection dynamics
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may also be modelled, although the within-host interaction between O. volvulus and L. loa and

helminth species more generally is poorly understood (but see [80]).

Conclusions

In conclusion, we have developed a novel individual-based stochastic onchocerciasis transmis-

sion model, EPIONCHO-IBM, based on the well-established deterministic analogue,

EPIONCHO. We have used EPIONCHO-IBM to better understand how density-dependent

processes—in particular the density-dependent establishment of newly acquired O. volvulus
parasites—and heterogeneity in individual human exposure shape both the relationships

between microfilarial prevalence, microfilarial intensity and ABR, and the resilience of oncho-

cerciasis to MDA with ivermectin. In future, EPIONCHO-IBM will be used to model the con-

trol and elimination of onchocerciasis using current and alternative interventions, including

the use of anti-Wolbachia therapies [81], moxidectin [82], ground-based vector control [83]

and new macrofilaricidal therapies [84]. Our work also highlights the importance and uncer-

tainty in the key and interactive population processes of density dependence and heterogeneity

in exposure to blackfly vectors. Novel approaches for generating data on exposure heterogene-

ity and anti-L3 immunity during and after the cessation of ivermectin MDA programmes

would be particularly valuable in helping to resolve outstanding uncertainty on their relative

importance to the population dynamics of O. volvulus. Combined with more statistically

advanced approaches for estimating the parameters of individual-based models [85], and fit-

ting such models to longitudinal epidemiological trends, such data would greatly enhance the

reliability and accuracy of onchocerciasis modelling projections.
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22. Basáñez MG, Walker M, Turner HC, Coffeng LE, de Vlas SJ, Stolk WA. River blindness: mathematical

models for control and elimination. Adv Parasitol. 2016; 94:247–341. https://doi.org/10.1016/bs.apar.

2016.08.003 PMID: 27756456

23. Walker M, Stolk WA, Dixon MA, Bottomley C, Diawara L, Traoré MO, et al. Modelling the elimination of
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42. Basáñez MG, Pion SDS, Boakes E, Filipe JAN, Churcher TS, Boussinesq M. Effect of single-dose iver-

mectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infect Dis. 2008; 8

(5):310–322. https://doi.org/10.1016/S1473-3099(08)70099-9 PMID: 18471776

43. Plaisier AP, Alley ES, Boatin BA, van Oortmarssen GJ, Remme H, de Vlas SJ, et al. Irreversible effects

of ivermectin on adult parasites in onchocerciasis patients in the Onchocerciasis Control Programme in

West Africa. J Infect Dis. 1995; 172(1):204–210. https://doi.org/10.1093/infdis/172.1.204 PMID:

7797912

44. Renz A, Wenk P. Studies on the dynamics of transmission of onchocerciasis in a Sudan-savanna area

of North Cameroon I. Prevailing Simulium vectors, their biting rates and age-composition at different

distances from their breeding sites. Ann Trop Med Parasitol. 1987; 81(3):215–228. https://doi.org/10.

1080/00034983.1987.11812115 PMID: 3662664

45. Duke BOL, Anderson J, Fuglsang H. The Onchocerca volvulus transmission potentials and associated

patterns of onchocerciasis at four Cameroon Sudan-savanna villages. Tropenmed Parasitol. 1975; 26

(2):143–154. PMID: 1172308

46. Thylefors B, Philippon B, Prost A. Transmission potentials of Onchocerca volvulus and the associated

intensity of onchocerciasis in a Sudan-savanna area. Tropenmed Parasitol 1978; 29(3):346–354.

PMID: 214908

47. Wu J, Dhingra R, Gambhir M, Remais JV. Sensitivity analysis of infectious disease models: methods,

advances and their application. J R Soc Interface. 2013; 10(86):20121018. https://doi.org/10.1098/rsif.

2012.1018 PMID: 23864497
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volvulus and Loa loa microfilariae in central Cameroon: are these two species interacting? Parasitology.

2006; 132(6): 843–854.

81. Walker M, Specht S, Churcher TS, Hoerauf A, Taylor MJ, Basáñez MG. Therapeutic efficacy and
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