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Abstract: The nanomaterial-integrated chitinous polymers have promoted the technological
advancements in personal health care apparatus, particularly for enzyme-based devices like the
glucometer. Chitin and chitosan, being natural biopolymers, have attracted great attention in
the field of biocatalysts engineering. Their remarkable tunable properties have been explored
for enhancing enzyme performance and biosensor advancements. Currently, incorporation of
nanomaterials in chitin and chitosan-based biosensors are also widely exploited for enzyme stability
and interference-free detection. Therefore, in this review, we focus on various innovative multi-faceted
strategies used for the fabrication of biological assemblies using chitinous biomaterial interface.
We aim to summarize the current development on chitin/chitosan and their nano-architecture scaffolds
for interdisciplinary biosensor research, especially for analytes like glucose. This review article
will be useful for understanding the overall multifunctional aspects and progress of chitin and
chitosan-based polysaccharides in the food, biomedical, pharmaceutical, environmental, and other
diverse applications.

Keywords: biopolymer; biosensor; chitin; chitosan; electrochemical sensing; enzyme; glucose; glucose
oxidase; interface; nanocomposite; nanomaterial scaffold

1. Introduction

Chitin is the second most abundant natural structural polysaccharide after cellulose which is
derived from exoskeletons of crustaceans, cell walls of fungi and insects [1–5]. Chitin (CT) and chitosan
(CS) are considered as chemical analoges of cellulose, where the hydroxyl groups at the carbon-2 position
are replaced by acetamido and amino groups, respectively [6]. Although CT and CS are the collective
names for the family of de-N-acetylated chitin with various degrees of deacetylation [3–5], chemically,
CS and CT are not single entities, but vary in composition, depending on the origin and manufacture
process. CT is a long chain polymer, composed of β(1→4) linked 2-acetamido-2-deoxy-β-d-glucose
units also known as N-acetyl-d-glucosamine where the N-acetyl-glucosamine units exceed 50% [7].
While CS is aminopolysaccharide polymer which is prepared by deacetylation of CT and is consequently
a copolymer of N-acetyl-d-glucosamine and d-glucosamine. Although CS is derived from CT and the
N-acetylglucosamine content is less than 50%, CS is the preferred immobilization matrix due to its
distinct chemical and biological properties [2,7,8]. Acid soluble CT and its derivatives are often referred
as animal cellulose [9] and they are versatile materials that can be used in various fields including
environmental [10], foods-dietary supplements [11], pharmaceuticals-cosmetics [12], textiles, water
treatment and coatings applications [9–18] (Figure 1). The most prominent properties of both CT and CS
include biodegradability, bioactivity, biocompatibility, film coating ability, high miscibility, eco-friendly,
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nontoxicity and non-allergic [19–22]. These properties are highly desirable for enzyme immobilization,
electrode or transducer modification, development and application of biosensor/sensing system for
many applications [23].
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Figure 1. Multi-functionalities of chitosan (CS), chitin (CT) and their derivatives.

In this review, we focus on various innovative strategies used for the fabrication of biological
assemblies using chitinous-biomaterial interface for glucose sensors and their applications in food,
biomedical and other areas. Different roles of CS/CT such as a protective polymer, immobilization
matrix, interface modulators and transducer-amplifiers for biosensing devices will be discussed.
The literature studies are categorized into: Blend or composites of CT/CS, CT/CS nanocomposites
and the techniques for designing the interface based on enzyme functionalization and their influence
on sensor communication. The application for glucose detection using glucose oxidase (GOx) in
the biomedical field, food industry, environment, and other sections will be discussed (Figure 2).
This review will be useful for understanding the overall progress and role of these polysaccharides in
the interdisciplinary biosensor research especially for analytes like glucose.
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Figure 2. An overview of chitin and chitosan-based glucose biosensors using glucose oxidase.

2. Composites of Chitin and Chitosan

The polymer composite consisting of two or more chemically and physically different materials
is considered as a wonder material because it can yield a distinct new interface with structural and
functional superiority [24,25]. Although the composites are combinations of several different materials,
the individual constituents still retain their properties/identities. The primary matrix/phase is the
continuing matrix which holds the embedded secondary dispersed phase/reinforcement phase [25].
The CT/CS composites are also known as green composites with ecofriendly, fully degradable and
sustainable properties. Solution mixing, melt mixing, in situ polymerization, dry powder mixing, and
aqueous mixing techniques are some of the common but important methodologies to prepare CT/CS
composites [1,2,25–27]. These composites can be prepared judiciously to get anticipated archetypes with
desired physicomechanical, biochemical, morphological, bio-durable and biomimetic properties [26,27].
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Composites of conducting polymers and CS have also shown excellent properties as conducting and
biocompatible material for various bio-electronic applications. The CS-composites with conducting
polymers were mostly prepared by in situ electropolymerization, and characterized by electrochemical
measurements, such as FTIR, SEM and AFM analysis [28]. Koev et al. have documented the common
methodologies for fabrication, modification, and characterization of CT/CS-composite films-based
micro-scale devices and their applications [29].

3. Nanocomposites of Chitin and Chitosan

Nanocomposites are composed of reinforced nano-sized materials in a dispersed polymer
matrix, typically an organic matrix comprising inorganic nanoparticles/structures within [30].
Nanomaterials are one of the most essential components for enzymatic sensor devices due to their
large surface areas, super catalytic conductivity and signal amplification ability [31–34]. Although
agglomeration/aggregation due to high surface energy and poor binding to the substrate of these unique
and diminutive nanostructures sometimes limit their use for analyte detection in sensing systems, these
limitations can be easily overcome by using suitable matrix and nanomaterials as reinforced materials.
CT and CS are used as matrix phase when blend or blend with other polymeric materials [26,27,33,35].
Most of the properties of such composites directly depend upon the reinforcing phase/material’s
properties, which need to meet the practical purposes. These nanocomposites with special intrinsic
properties, mainly regulated by nanostructures, can be produced by bottom-up or top-down
methodologies including vapor phase deposition (VPD) and in situ synthesis [19,26,27,30,36–39].
Nanocomposites of CT/CS is a multiphase material where enzymes and nanomaterials are incorporated
into CT/CS matrix using various methods. We will discuss the impact of nanomaterials integrated
chitinous polymer for glucose biosensors in this review article.

4. Method of Preparation of Chitinous Nano-Structures

Nano derivatives of crustacean materials can be prepared by several methods, depending upon
the source of chitin. For example, chitin nanowhiskers are commonly produced by hydrochloric acid
hydrolysis [40], precipitation, ultra-sonication [41], mechanical treatment [42], spray drying [9,43],
ionotropic gelation [44–48], emulsion-droplet coalescence and reverse micellar method [49,50]. While
TEMPO method [51,52], electrospinning and a simple grinding treatment [53] were also used to
obtain chitin nanowhiskers [41]. Routinely, CS nanoparticles are prepared by degradation to
low-molecular-weight chitosan using hydrogen peroxide (H2O2), then cross-linking is followed
by the treatment of tripolyphosphate (TPP) [53–56]. The nanochitosan (NCS) was also produced based
on ionotropic gelation between low molecular weight CS and TPP under microwave-irradiation [55].
Various methods for preparing different nano-forms of CT and CS nanoparticles, nanowhiskers,
nanofibers, etc. have been well documented by Divya and Jisha, 2018 [10].

5. Chitinous Scaffold for Immobilization

Chitinous nanocomposites have great potential for biomedical, pharmaceutical and other versatile
applications. The desired properties of these engineered materials such as non-toxicity, biocompatibility,
biodegradability, and low-allergenicity led to an increased interest in the use of implantable biosensors
for continuous monitoring of physiological biomarkers. Due to superior physical properties including
film-forming tendency, high surface area, porosity, tensile strength and conductivity, they can be
easily molded into functional interfaces [57]. Enzyme immobilization is confinement of enzyme to
the matrix or support which allows the enzyme to stay active for a longer time with possibilities of
multiple uses without compromising its biological activity. Amenable reactive amino and hydroxyl
groups, cationic polyelectrolyte nature and acid solubility of CS, satisfy most of the demands of
enzyme immobilization and biosensor fabrication for many commercial applications. The derivatives
or composites of these chitinous supports are also prepared as per the demand of biomedical or food
industrial applications. Therefore, chitinous materials in various configurations such as powders,
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flakes, beads, membranes/films, capsules, fibers, sponges, lyposomes and sol-gels have been used
as the support for enzyme immobilization [7,8,58]. Here we will discuss the CS and CT-derived
composites and nanocomposites for enzyme immobilization and fabrication of biosensing devices for
practical applications.

5.1. Chitin as an Enzyme Matrix

A biopolymer like CT offers remarkable functional and divergent biological properties based
on electrostatic interaction with other materials. The protonation of the acetylamide group of CT
helps enzyme immobilization due to its negative charge. An electrochemical sensor for glucose
determination in a sport drink was developed using a modified carbon paste electrode (CPE). A thin
film of immobilized GOx-CT-platinum (Pt) powder was developed at the CPE surface for detecting
H2O2 produced from glucose [59]. The same research group also presented another glucose sensor
using a modified platinum electrode (PtE) with a chitin-glucose oxidase (CT-GOx) film. The constructed
electrochemical sensor can detect glucose content ranged from 5 × 10−7 to 3 × 10−5 mol·dm−3 [60].
The effective adsorptive equilibrium between the electrode surface and electrolyte showed constant
current response without enzyme leakage. The strong adsorption of the enzyme on CT is due to
electrostatic interactions of GOx with CT within the film.

5.2. Chitosan as an Enzyme Scaffold

The CS also has many promising biocompatibility characteristics, including excellent adhesion
property, high mechanical strength, and tunable functional groups for chemical modifications [3,61].
The environmental friendly CS is an ideal low-cost matrix. It meets the current market demands
because of its easy production, less immunogenicity, nontoxicity, high biodegradability and desirable
stability [61,62]. These superior properties have impelled extensive applications of CS as a
support/matrix for enzyme immobilization. The GOx conjugated with CS can improve its resistance to
chemical degradation, reduce leakage, and interference with metal ions. Reactive amino and hydroxyl
groups of CS provide good coupling efficiency with biological entities, including enzymes. The stable
interactions with CS help to prevent the enzyme from leakage when altering the diffusion rate [62–66].
CS plays a decisive role in the maintenance of the immobilized biocatalyst and has gained tremendous
interest in drug delivery technology without any cost-constraints. CS can also improve the thermal and
storage stability of the immobilized enzyme by providing biocompatible microenvironment [66–68].
CS-GOx in the form of microspheres showed remarkable storage stability with high encapsulation
efficiency. The redox enzyme was encapsulated in calcium alginate-CS microspheres using an
emulsification-internal gelation-GOx adsorption-CS coating method [69]. In another study, composites
of carrageenan (κ-, ι-, λ-) and CS were prepared for micro-encapsulation to protect GOx under acidic
conditions [70].

5.3. Chitosan Cryogel

Cryogel is a form of a gel formed by freeze-drying a sol. The porous structure of cryogel
provides a large surface area for biomolecule immobilization, which also has a significant impact
on enzyme activity and reusability [71–73]. The parameters including CS polymer ratio, amount
of cross-linker, the temperature of the cryogelation process, and stirring conditions would directly
influence the resulting gel′s chemistry, pore morphology, microsphere size, swelling behavior, and
degradation rate [74–80]. Recently, injectable chitosan cryogel microsphere scaffolds in the form of
microspheres were synthesized using a water in oil emulsification method. The cryogel microspheres
that were further cross-linked using glutaraldehyde (GA) had an average pore and particle size of
5.50 ± 0.63 and 220.11 ± 25.58 µm. It also showed that the as-prepared CS-cryogel is highly suitable
for different noninvasive tissue engineering applications [75]. In another study, a CS cryogel-based
sensor was fabricated to improve the biosensor performances, mainly their sensitivity and stability
during glucose detection [72]. The porous CS cryogel beads with a large surface area were proven to
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be an excellent matrix for enzyme immobilization by cross-linking with sodium tripolyphosphate at a
subzero temperature [74]. The permeable CS cryogel also allowed the test solution to flow through
easily and the analytes diffused freely over the surface and into the gel pores to interact with the enzyme,
ultimately reduced the reaction time. Hedström et al. reported a novel monolithic macroporous
material that was developed by cross-linking hen egg albumin (HEA) and CS with GA at subzero
temperatures [80]. This matrix was used for immobilization of various enzymes, including GOx, HRP,
savinase, and esperase for flow injection analysis (FIA). The low millimolar range detection of glucose
was achieved after GOx was covalently coupled with the CS-HEA matrix during FIA, proving enzyme
retention capability of HEA-CS-GOx for preparative applications [79].

5.4. GOx-Chitosan Electrochemistry

Commercial glucose sensors for daily blood sugar detection is a great breakthrough. However,
these point-of-care devices do suffer from high cost due to one-time use, low sensitivity, and
interference problems. Interference from other electroactive species in physiological sample is
the main challenge for these sensors. Therefore, tremendous efforts have been dedicated to establishing
an interference-free/resistant interface for these biosensing devices. The bioelectronics interface may
advance the transducer’s efficiency though it’s the inherent selectivity or specificity to amplify the
analytical signal. Therefore, an important thing is to achieve the best biochemistry between the
interface matrix and enzyme, which also comply with the morphological demands of these fragile
biological entities [81]. The ideal interface also needs to fulfill the demands like fast communication,
high signal amplification capabilities, and reusability issues. Apart from the communication challenge,
these bio-interfaces should have the bio-mimicking ability or background to facilitate the canalization
of the biological process at the device for active molecules such as enzymes.

Chitosan is known to be a perfect material for GOx immobilization as it provides a protective
shield to the fragile enzyme molecules. The amino group of CS makes it more suitable for enzyme
immobilization as compared to the other polymers. Chitosan accommodates the three dimensional
(3-D) conformation of GOx by providing comfortable hydrophilic vicinity and structural stability.
CS also provides pseudo cellular conditions via the cross-linked network of polymeric chains which
directly or indirectly maintains the enzyme-friendly microenvironment. For example, electropolymers
such as poly(N-methypyrrol) (PNMP) were used to synthesize film at the PtE surface to fabricate
a reusable glucose biosensor. CS-GA-GOx was dip-coated to prepare a second film on the PNMP
film on the electrode. The leakage of the enzyme was prevented by cross-linking immobilization
which was confirmed by 20 cycles of reuses with retention of 91.3% of initial current response [82].
Sol–gel approach at ambient conditions was used for the preparation of organic-inorganic hybrid
gel by entrapping GOx in CS with tetramethoxy silicane (TMOS). This study confirmed that the
highly porous micro-structured GOx-TMOS composite not only provided a high immobilization
yield (97%) but also prolonged bio-stability (15-day) at 30 ◦C [83]. The composite sol-gel film of
methyltrimethoxysilane (MTMOS)-CS-GOx was coated on the ferrocene-modified glassy carbon
electrode (GCE) for electrochemical sensor fabrication. This modulated composite material also
provided good biocompatibility and good GOx stability by alleviating the adverse microenvironment
around the enzyme [84]. Another example is the sol-gel composite of CS and silica (Si). The CS/Si
composite film showed improved features including physical rigidity, tunable porosity, and chemical
inertness because of the silica, while the controlled shrinking-swelling behavior, pH stability, and
thermal resistance could be attributed to the CS. The biosensor fabricated under optimal conditions
had a fast response time, superior sensitivity and long-term stability of over 60 days with good
substrate selectivity which again owing to the CS′s unique properties [85]. The submicron particles
of chitosan from gladius of Todarodes pacificus were produced by ball milling technique, they showed
high affinity and good biocompatibility for GOx [86]. In this case, CS was derived from β-chitin using
deacetylation procedure which was followed by ball mill pulverization to form an ultra-fine white
powder. When used for enzyme immobilization, the porous structure of ZnO/Pt nanocomposites
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could promote enzyme binding and provide higher conductive surface and more active sites for the
GOx molecules. Another CS-composite was prepared by incorporating the carbon nanotubes (CNTs)
with gum Arabics gA) to increase the membrane conductivity and GOx binding capacity. The CS
membrane with gA had two-fold enzyme loading capacity as compared with the membrane without
gA. The properties such as enzyme loading capacity, pH/thermal/storage stability and reusability of
this CS matrix were found superior to the other matrices [87]. In another attempt, a protective film
containing the permeability-controlling agent, Acetyl Yellow 9 (AY9), using glutaric dialdehyde as a
molecular tether for CS matrix was prepared in single-coatings. These novel films coated on PtE showed
potential application in noninvasive and portable device fabrication with ultralow and interference-free
glucose sensing [81]. Gao et al. fabricated a wireless magnetoelastic biosensor for detecting glucose
in urine using co-immobilized GOx and catalase in CS hybrid. The detection principle of this sensor
was based on GOx-catalyzed hydrolyzation of glucose into gluconic acid, resulting in shrinking
and corresponding mass decrease in this pH-responsive polymer, which subsequently increases the
resonance frequency [88]. CS also played a role as the supporting matrix for co-immobilization
of various enzymes. Multi-porous nanofibers (MPNF) of SnO2 with high surface area and good
electrical conductivity were synthesized by electrospinning and further polymerized with polyaniline
(PANI). These polymerized nanofibers were optimized for GOx and HRP conjugation with CS [89].
This MPNFs-based novel sensor showed potential for glucose detection in blood and urine, which
is indispensable for the diagnosis of diabetes [89]. In another study, HRP was coupled with GOx
for preparation of a fluorometric FIA system for glucose determination in beverages, Japanese sake,
and liquors [58]. Liposomes with entrapped GOx were prepared by covalent immobilization using
GA-activated CS gel beads for a practical bioreactor application with high stability and reusability
features [90]. Thus, various forms of CS matrix showed significant hospitality to host the 3-D
structure of biomolecules that would usually be ravaged by harsh chemicals during immobilization.
Chitosan/chitin glucose sensing systems based on suitable immobilization methodologies to obtain
stable GOx are presented in Table 1.
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Table 1. Chitosan/chitin composite-based glucose oxidase (GOx) sensors for glucose detection.

Immobilization Matrix Composition Method of Preparation Sensing System Characteristic Features/Application ReferencePrimary Phase Secondary Phase

Chitin GOx Adsorption based on
electrostatic interactions CS-GOx/CPE Glucose detection in sports drink [59]

Chitin GOx Adsorption based on
electrostatic interactions CS-GOx/PtE Glucose detection in sports drink [60]

Chitosan GDI-AY9-GOx Cross-linking CS-GDI-GOx-AY9/PtE
New composite composition for CS-film, simple, efficient, and

cost-effective enzyme immobilization, Standard glucose
detection with linear range = 10 µM–5.0 mM and LOD = 10 µM

[81]

Chitosan CS-PNMP-GOx Cross-linking CS-PNMP-GOx/PtE Standard glucose detection [82]
Chitosan TOES Sol-gel encapsulation CS-GOx-TOES/GCE Standard glucose detection [84]
Chitosan SiO2-GOx Sol-gel entrapment CS-SiO2-GOx/PB-NF/GCE Glucose detection in human blood samples [85]

Chitosan & pH sensitive
polymer GOx-CAT Cross-linking Urine glucose detection [88]

Chitosan GOx Absorption CT-GOx/PtE Layer-by-layer thin films, Standard glucose detection [91]

Chitosan Thiolated gold-GOx Adsorption CS-GOx-MPS/
CHIT/Naf/AuE Human Serum glucose detection [92]

Chitosan GOx-DNA Adsorption CS-GOx-DNA/GCE Standard glucose detection [93]
Chitosan GOx-CNCs Adsorption CS-GOx/CNCs/GCE Standard glucose detection [94]

Chitosan GOx
Adsorption

Hydrogel entrapment
Nanofibers entrapment

CS-GOx
CS-GOx

CS-PVA-GOx
Brain glucose detection [95]

Chitosan Cos-GOx Physical mixing Cos-GOx-Ferri/SPCE Standard glucose detection [96]

Chitosan Pb-G-GOx Sol-gel adsorption CS-GOx/PB-G/PS-StE
string sensor with PB modified graphite and CS, linear

range = 0.03 to 1.0 mM, LOD =10 µM Glucose detection in
spiked human serum samples

[97]

Chitosan
PB-GOx

PB-GalOD
PB-GluOD

Cross-linking
CS-GOx-PB/PtE

CS-GalOD-PB/PtE
CS-GluOD-PB/PtE

Human blood serum and fermented solution
Glucose, galactose glutamate detection [98]

Chitosan GOx Cross-linking CT-GOx/PtE Amperometric biosensor
Glucose detection in beverage drink samples [99]

Chitosan Fc-GOx Sandwich configuration with
cross-linking CS-Fc:GA-GOx-CS/CPE Fast response time, Linear range = 8 × 10−4 to 1.7 × 10−2 M,

LOD = 8 × 10−4 M, Glucose in soft drink samples
[100]

Chitosan AgNWs-GOx Covalent linkage CS-AgNWs-GOx/GCE Standard glucose detection [101]
Chitosan Pd@PtNC-GOx Covalent immobilization CS-GOx/Pd@Pt NC/GCE Standard glucose detection [102]

Chitosan HRP-GOx Electrodeposition and Covalent
coupling sol-gel

CS-GPTMS-GOx-
HRP/AuE Standard glucose detection [103]

Note: Acetyl Yellow 9-AY9, Catalase—CAT, Calcium alginate—CA, Carbon nanochips (CNCs), Carbon paste electrode—CPE, Carbon fiber—CF, Cos—chitosan oligomers,
Ferrocene—FC, Galactose oxidase—GalOD, Grafted poly (vinyl alcohol)—gPVA, Glutamate oxidase (GluOD), γ-glycidoxypropyltrimethoxysiloxane—GPTMS, Glutaric
dialdehyde—GDI, polyester spun—PS, Prussian blue—PB, poly(N-methypyrrol)—PNMP, Platinum electrode—PtE, Sodium salt 3-mercapto-1-propansulfonic acid—MPS, String
electrode—StE, Traethylorthosilicate—TEOS.
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6. Innovative Strategies for Sensor Interface

Enzymes are conjugated with nanomaterials and chitinous matrix to fabricate biosensors.
The retention of the morphological features and biological activity are the key for high sensitivity,
wide linear range, low LOD, and reproducibility of the devices. Skilled modification and linking
of such biomaterial-based interfaces increase electric communication and speedup the reaction rate
which ultimately enhance the sensor’s performance. As an example, the following section will discuss
various innovative approaches and methodologies for the preparation of probes for glucose sensing.

The first-generation glucose biosensors were based on the use of natural oxygen substrate
and the detection of the H2O2 produced. However, these sensors are highly susceptible for
the interference caused by the endogenous electroactive species and fluctuations in the oxygen
tension [87,104,105]. The redox mediators were introduced in the sensing assembly in the development
of the second-generation sensors. Mediators like ferrocene (Fc), ferricyanide (FCN), quinines (Q),
tetrathialfulvalene (TTF), tetracyanoquinodimethane (TCNQ), thionine, methylene blue (MB), and
methyl viologen (MV) were used to enhance sensor performance [104]. In the third-generation sensors,
immobilized enzyme(s), mediators, nanomaterials and polymers are in direct contact with probe.
The design of these wired-interfaces are for direct electrical contact, which helps electron migration
between the enzyme’s active site and the working electrode surface in the sensing assembly to generate
amplified and rapid response [104,105].

In most of the electrochemical biosensor, GOx-flavin adenine dinucleotide (FAD) redox center
catalyzes the electron transfer from glucose to gluconlactone. The communication between GOx-FAD
and electrode via direct electron transfer (DET) is a big challenge, especially for the third generation i.e.,
label-free glucose biosensors. It is well understood that an electron transfer of GOx is controlled mainly
by reorganization energies; potential differences and orientations of involved redox active sites and
distances between redox-active sites and mediator [84,94]. The two bound redox active FAD cofactors
of GOx are deeply buried inside the protein shell which acts as insulating shield. These prosthetic
shells act as barriers for DET with bare electrode surface [41,44,84,94,96]. Therefore, nanomaterials are
introduced to improve the electro-enzymatic process by enhancing the adsorption of the immobilized
enzymes in the vicinity of the transducer probe. These nanostructures also helped to retain the
biological catalytic activity of GOx in selected scaffold. The association or interaction of nanomaterials
with enzyme can be controlled using various physical properties of the nanostructures to promote
DET behaviors of matrix entrapped enzyme.

The surface energy, shape and size of the nanomaterials directly and dramatically improve their
conjugation with enzymes, and interface performance and pattern. As shown in Figure 3, inclusion
of nanomaterials to enhance the analytical performance of many biosensor designs also lead to a
high sensitivity and selectivity toward analytes with relatively low interference. Recent research
proved that when nanomaterials were used in combination with enzyme during immobilization and
subsequently sensor fabrication provided controlled, fast and enhanced detection sensitivity. Studies
have also shown that the chitinous biopolymer in sensor could stabilize nanostructures and facilitate
electron transfer to the transducer with high surface energy, it also offers maximum enzyme loading
due to increased compatibility. The structure geometry formed at the electrode is a key step for
sensor fabrication, which is highly sensitive to the enzyme-nanomaterial deposition conditions, matrix
nature, biofunctionality, and immobilization protocol. Therefore, in the following sections we will also
discuss the methods to create electrically active yet biologically and practically stable probe-interface
assemblies with remarkably improved sensor performance (Figure 4).
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Figure 3. Role of chitinous matrix in the stabilization of nanostructures: (a) uniform stabilization, (b) non-uniform stabilization, (c) fully merged nanoparticles,
(d) CS-coated nanomaterial free vesicles, (e) CS-coated nanomaterial vesicles stabilized in another polymer/CS-blend, (f) Nanoparticle decorated nanotubes network
dispersed in CS-matrix, (g) encapsulated CS-nanomaterials tablets, (h) micellar structures with CS-coating and (i) CS-filled micellar structures.
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6.1. Electrode Material/Refilling Matrix

Self-assembled monolayers (SAMs) or layer-by-layer (LBL) structures often hinder the electron
and substrate-product transportation due to compact architecture. Being biodegradable, non-toxic.
and highly bio-compatible, CS composites are proved to be the best biorecognition transducer. Some
studies investigated the application of chitosan nanocomposites as an electrode matrix/material for
glucose sensing where minimum interference at low potential is desired [83]. The increase in surface
area, enzyme loading, and other unique and multifunctional properties of the working electrode
substrate were notably improved by integrating the chitosan [83,106–108]. The electrode-surface
controlled reactions not only face electron-traffic problems but also lead to lowering bio-catalytic
activity of the immobilized enzymes. Surface-coated electrodes also suffer from leakage or fouling due
to the overloading of enzymes/nanomaterials [109]. This serious and practical problem can be resolved
by co-modification of electrode matrix with chitosan/nanocomposites of chitosan [26,27,109–111].
Modification of electrode with co-immobilized nanomaterials and enzymes with polymer matrix is
another experimental strategy to overcome the limitations of compact/layered structure. Chitinous
matrix also acts as a binder and 3-D framework when used as electrode packing material. In a study,
the black binding string composed of polyester spun coated with PB modified graphite (PB-G) ink
was used to fabricate electrode [97]. The GOx and CS were coated on the string electrode (StE) by
simple dipping process. The modified StE has properties such as stable reproducibility, reusability,
good sensitivity and selectivity with fastest response towards glucose. CS with excellent film-forming
ability and high permeability toward solvents showed good adhesion and biocompatibility. It also
accelerated the catalytic H2O2 reduction mediated by PB-G at string surface.

A 3-D porous film of CS and single-walled carbon nanotubes (SWCNTs) were utilized to construct
a thin film-electrode after entrapping and cross-linking with GOx. The enzyme immobilized on this
CS-SWCNTs film had higher enzyme loading and enzyme activity as compared to the non-porous
planar films [112]. Such electrode-assembly has high surface area and interconnected porous structure
that could enhance reaction efficiency. The microporous electrode matrix also minimizes substrate
diffusion effects which limit the use of multilayer films of enzymes assembled on planar substrates
due to thickness, and the electrode efficiency was enhanced by one or more order than that of the
corresponding surface modified electrodes. Reagentless glucose sensor based on the excellent electron
transfer acceleration rate of CNTs, Fc, and GOx on the electrode matrix was reported by Zhou et al.,
2017 [113]. The high loading of the enzyme within the nanocomposite was achieved by covalent link
between the positively charged CS particles and negatively charged GOx. An effective biocompatible
environment to facilitate electronic communication with improved catalytic nature was possible due to
the porous zinc oxide/platinum nanoparticle (ZnO/Pt)NPs-based electrode. Submicron particles from
gladius of Todarodes pacificus (GCSPs) with porous structure effectively promoted the immobilization
of enzyme by providing comparatively larger conductive surface and more active sites for the GOx
molecules [86]. Besides, the CT-based paste was made by mixing graphite powder, GOx, Pt powder,
and Nujol, and this paste filled the cavity of the carbon electrode [59]. In this study, chitin not only
held the biological activity of GOx but also provided longer lifetimes of the fabricated electrode.
The electrodes with enzyme-CT polymer-mediator also restrain the leakage of GOx.

Graphene (GR) is a two-dimensional monolayer of carbon atoms bonding with sp2 hybrid
orbitals [114]. Qian and Lu (2014), reported that ice-induced assembly of 3-dimentional porous GR-CS
composites from freeze-drying as a matrix for enzyme immobilization. This GR-CS-GOx composite with
porous and layered structure showed properties like high mass transfer speed, effective electroactive
surface, high conductivity and loading capacity when used as sensor [114]. A glucose sensor-based
GR-CS-GOx was reported by Kang et al., 2009. The excellence of the sensor was attributed to large
surface-to-volume ratio and high conductivity of GR and good biocompatibility of CS. According to
the authors, physically absorbed GOx on GCE surface showed superior dispersion stability of GR
and excellent catalytic efficiency. The chemical functional groups of hydrophilic graphene (–C–OH,
–COOH) well interacted with CS matrix to form stable hybrid structure. The electron-transfer-rate
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constant (ks) of the GOx in CS-GR nanocomposite suggested that the modified electrode provides
direct electron transfer between the redox center of the enzyme and the electrode surface due to
CS-nanostructured confinement [115].

A single nanofiber electrode made up of one-dimensional (1D) mesoporous ZnO/CS
inorganic–organic hybrid nanostructure with high enzyme loading and stability features was
reported [116] (Figure 5).
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This device had mesoporous nanostructure with protuberances which favored enzymes loading
via electrostatic adsorption and enhanced electrical communication efficiency. This free probe type
biosensor prototype is highly suitable for micro-targets detection in microcell and enzymatic studies.
It also has the potential to be inserted into single cell or other microorganism for biological studies in
the future.

6.2. Bare Electrode Modification

Most of the electrochemical biosensor are based on the enzyme-catalyzed reactions and electron
transfer between enzyme(s) and electroactive species with electrodes/transducers. However, one of the
big challenges is to DET at the surface of bare working electrode (for example: GCE disc electrode).
The insulation-shelled redox center of the bare electrode surface directly hamper the performance
of the sensor [117]. Therefore, there are constant efforts to resolve this problem by modification
of working electrode with coating, or casting of electrode surface by matrix with or without redox
enzymes/matrices, nanomaterials, etc. either in the form of sol-gel coating or thin film attachment.
Incorporation of electroactive materials with electrode material has also been investigated for controlled
surface interactions and fast analytical performance [26,27,118–121].

6.2.1. Electrode Surface Coating

Chitosan possesses excellent adhesive film forming property, it has been demonstrated to be the
most suitable matrix for inclusion of single or multiple nanostructures via coating techniques. CS sol-gel
to form film or membrane, are the first choice to construct an enzyme-electrodes. CS-hydrogel with or
without other constituents showed the pH-dependent volume phase transition which was highly useful
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and effective for enzyme-nanomaterial integration in film layout. This strategy is also convenient for
holding its natural properties to construct GOx and other analytical important sensors. Herein, we
have discussed some of the examples where different configuration methodologies involving CT/CS
films for probe modification to prepare enzyme-electrode interface and their application for either
reusable or disposable sensors.

Sol-Gel Casting

The 3-D network of CS can be formed by addition of sequester biomolecules/nanomaterials and
this thick, uniform sol-gel can be drop cast on the tip/surface of the electrode to form film structure after
drying. The porous and adhesive feature of the sol-gel CS is an effective entrapment/encapsulation
matrix for the immobilization of biological element such as GOx. The electrode could also be
modified by blank CS film formed at the top of the working electrode first, and then enzyme was
linked via chemical treatment. Nafion (Nf), butyl carbitol acetate, dimethylformamide, cellulose,
cellulose acetate, polyvinyl alcohol, etc. have been used as CS-film binder at electrode surface [31].
Strong physical adsorption and electrostatic interactions between sol-gel matrix and enzyme has been
achieved by chemical functionalization using GA or formaldehyde (FA). Simple drop cast [98,114,122],
dip-coating [97], spray drying [122], spin coating/casting [123] and shear spreading technique [124]
are some of the common coating methods used for manual probe modification. For example,
microwave-assisted synthesis of nanocomposite consisting of reduced graphene oxide (rGO), zinc
oxide (ZnO) and silver nanoparticles in CS matrix and its reduction for enzyme immobilization was
reported. This biosensor was highly selective, well reproducible and stable with the detection limit
is 10.6 µM and linearity range of 0.1 to 12.0 mM for glucose [125]. Figure 6 depicts the general
methodology used for the construction of an enzyme sensor by modification of electrode. Figure 6a
shows the modified electrode prepared by spin casting methodology using CS-nanocomposite core-shell
while Figure 6b shows highly stable self-assembled layer by layer formation of N-doped enzyme
matrix. The encapsulated bio-nanohybrid film formation at GCE surface can be seen in Figure 6c.
Effective immobilization of GOx on CS-submicron particles for amperometric glucose biosensor is
illustrated in Figure 6d. The disc electrode such as glassy carbon (GC)/platinum (Pt)/graphene (GR)
were modified using CS for glucose sensor. The bare electrode surface was cleaned by polished with
alumina first, followed by ultra-sonication in deionized water, and finally subjected to air-drying.
Either pure CS or GA-activated CS solution was drop-casted on the electrode surface [101]. After
natural drying, enzyme was added for cross-linking to form CS-enzyme membrane using GA/FA.
Monolayer coating of CS-graphene oxide (GRO) composite with protein affinity also effectively prevent
the leakage of the mediator. High enzyme stability was achieved when two-dimensional plenary sheet
with open structure of graphene oxide nanosheets (GRONSs) utilized for supporting enzyme(s) [126].
Another nanocomposite-based electrochemical potential sensor for clinical utility and home care was
reported with sensitive detection limit of 0.6 µM [127]. The sensor assembly was constructed using
GOx/Pt/functional graphene sheets (FGRS) in CS for a rapid monitoring of glucose. The biosensor
also showed good reproducibility, long-term stability and negligible interfering signals from AA and
UA with the electrocatalytic synergy of FGS and Pt nanoparticles to H2O2. New CS-nanocomposite
matrix comprising polypyrrole nanotubes decorated with AuNPs was prepared by simple physical
entrapment method [124]. The electrochemical analysis revealed that the highly conducting Au-NPs
entrapped in 3-D matrix of CS-PPy-NTs were responsible for a surface confined enzymatic process.
These metallic nanoparticles had a major effect on the exchange of electron between GOx redox site
and ITOE surface. The bioelectrode with quasi reversible behavior also depicted good linearity for
glucose [124]. The physisorption of GOx within hetero-structured film of CS-ZnO-PtNPs was partially
based on electrostatic interaction between positively charged chitosan biopolymer and negatively
charged GOx [128].

The synergistic action of PtNPs, MWNTs and sol-gel of CS-SiO2 was proved for amperometric
glucose detection. The excellent stability for 50 days with 90% enzyme activity could be attributed
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to two features. First, as the enzyme was physically entrapped in the CS-SiO2 gel, large quantities
of hydroxyl and amino groups help to maintain the enzyme activity by forming strong interaction
between GOx and hydrogel. Secondly, the natural composite provided a good microenvironment with
the bottleneck effect of the silica sol-gel to prevent the enzyme from leaking [129]. Another drop-coated
reagentless nanosheets-based platform for electrochemical biosensor was successfully constructed by
entrapping GOx in a Fc-branched organically modified silica material (ormosil)-CS-GRONSc composite
by Peng et al., 2016 [130].

Gold nanoparticles (AuNPs) decorated CS-GR nanocomposites film was prepared and
characterized by Shan et al., 2010 [131]. The gold electrode was modified using dual nanomaterials
AuNPs-GR by direct absorption into CS matrix for glucose biosensing. The sensor showed lower
detection limit of glucose of 180 µM with good reproducibility when employed for real blood
samples. Another amperometric GOx-GCE sensor composed with CS-AuNPs and gold-Prussian
blue nanoparticles (Au-PB) NPs coating proved that electrocatalytically prepared layer not only
provides satisfactory sensor′s operational stability but also gives wide calibration for glucose
detection with fast response. The sensor without CS protection showed the PB desorption from
the electrode within 10 min. The CS nanocomposite matrix provides better surface protection
for the immobilized enzyme when continuous functioning for more than 2 h. [132]. Furthermore,
a homogenous CS with Fc and AuNPs-GOx biocomposite film was deposited by simple and controllable
electro-catalytic methods to fabricate glucose sensor. This enzyme-nanocomposite film retained
biological activity of the immobilized enzyme due to a biocompatible microenvironment around
the biomolecules [133]. Graphite rod (Gr) electrode was modified using CS-stabilized gold-coated
iron oxide (CS-Fe3O4-Au) magnetic nanoparticles and GOx via cross-linking for blood glucose level
estimation [134]. The CS-Fe3O4-Au nanoparticles facilitated the oxidation of H2O2 at the electrode and
exhibited a good selectivity and fast amperometric response. This third generation of sensor technology,
the GOx was directly immobilized onto the Gr electrode to improve shelf-life and reusability for practical
application in clinical analysis. A potentiometric glucose sensor based on the CS-GOx-Fe3O4NPs
composite modified gold coated glass electrode was reported by Khun et al., 2012 [135]. This work
provided an alternative way for the fabrication of glucose sensor without the use of Nafion or cross
linker molecules. CS-stabilized enzyme was directly absorbed by iron ferrite nanoparticles due to
its large pore size and volume. These particles also provided desirable microenvironment which
remains useful for the display of the active center and thereby increases the catalytic activity of
enzyme. Fabrication of ZnO-CS-graft-poly(vinyl alcohol) (gPVA) core-shell nanocomposite-based
potentiometric biosensor was prepared by a simple two-step spin casting technique. First, a colorless
ZnO core-shell CS-gPVA nanocomposite solution was spin-casted on ITO glass plate at the speed of
2000 rpm to make core-shell nanocomposite film. After air drying, thin enzyme layer was constructed
using spin-casting equipment at a speed of 500 rpm. The resulting GOx immobilized core-shell
nanocomposite electrode was tested for sensor characterization and glucose detection on blood serum
and urine samples collected from a healthy person [123]. However, the sensor was suffered from
~10–15% detection error mostly due to the interferences of the electroactive species from real sample.
Another core-shell polymeric–metal oxide nanocomposites was prepared by spray-drying technique.
The manganese dioxide-core–shell hyperbranched CS provided rapid, efficient and direct electron
transfer when used for screen printed electrode surface modification by drop-casting [122].

Dip coating/dipping, spin coating, and blade coating methods are also used for creating various
low-cost configurations at electrode surface. Self-assembly of PANI-grafted CS/GOx nanolayered
films prepared by LBL-dip coat technique for electrochemical biosensor applications were reported
by Xu et al., 2006 [136]. These hydrophilic and biocompatible films showed a rapid response and
high sensitivity. A higher response current to glucose can be achieved with increasing in number
of layers. The different layered patterns/configurations and other preparation methods for sensor
improvement are summarized in Table 2. Some sensors with notable features from previous research
are also discussed.
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Table 2. Chitosan/chitin nanocomposite-based glucose biosensors.

Conjugation Method Chitinous Sensing System Reinforced Secondary Phase Linear Dynamic Range LOD Target Sample Reference

Electrostatic
adsorption CS-GOx/AuNPs/PAA/PtE AuNPs-GOx 0.5–16 mM 7.0 µM Human serum

glucose [44]

Encapsulation CS-κ-Cg-GOx/AuNPs/AuE
CS-κ-Cg-GOx/AuE CNT-PtNP-MTOS 10 µM–7.0 mM

10 µM–7.0 mM
5.0 µM
5.0 µM Spiked saliva glucose [70]

Adsorption GCSPs-GOx-(ZnO-Pt) NPs/FTOE
SCS-GOx-(ZnO-Pt)NPs/FTOE GCSP-GOx 0.05–1.0 mM

0.05–1.0 mM
0.22 mM
0.31 mM Standard glucose [86]

Cross-linking CS-GOx /PtNPs/SCS/ZnO
CS-GOx/PtNPs/GCSP/ZnO PtNPs-GOx 0.05–1.0 mM

0.05–1.0 mM
0.09 mM

0.053 mM Standard glucose [87]

Absorption PANI-SnO2-NF/GOx-HRP-CS/GCE GOx-HRP-CS 5.0–100 µM 1.8 µM Spiked human
urine glucose [89]

Adsorption CS-GOx-DNA/GCE GOx-DNA 0.04–2.28 mmol L−1 0.04 mmol·L−1 Standard glucose [93]
Covalent bonding GOx-CDI/CS-CNTs-GA/PANI-AuE GOx-CS-CNTs 1.0–20 mM 1.0 mM Standard glucose [105]
Covalent linkage CS-G-MNPs-GOx/Pt-ITOE MNPs-GOx 16 µM–26 mM 16 µM Standard glucose [107]

Entrapment & cross
linking CS-GOx-SWNTs/E GOx-SWNTs 10µM–35 mM 2.5µM Standard glucose [112]

Covalent linking CS-CNT-GOx-Fc-RD/E GNPs-GOx 0.02–2.91 mM 7.5 µM Human blood glucose [113]
Entrapment CS-GR70-GOx-NF/GCE CS-GR70-GOx 0.14–7.0 mM 17.5 mM Standard glucose [114]
Adsorption CS-G-GOx/GCE G-GOx 0.08–12 mM 0.02 mM Standard glucose [115]
Electrostatic
adsorption CS-ZnONF-GOx/E ZnONF-GOx 0.2–12 mM 0.2 mM Intra cellular glucose [116]

Electrochemical
deposition CS-GOx/Fe3O4NPs-AuNPs/AuE Fe3O4Nps-AuNPS-GOx 3.0 µM–0.57 mM 1.2 µM Human blood glucose [117]

Electrostatic
interactions CS-rGO-Con A/GCE Con A-rGO 1.0−10.0 mM 1.0 mM Glucose, Urea [118]

Electrochemical
deposition CS-AuNPs-GOx/GTE AuNPs-GOx 0.616–14.0 mM 0.202 mM Blood serum glucose [119]

Encapsulation CS-gPVA-ZnONPs/GOx/ITOE gPVA-ZnONPs-GOx 2.0 µM–1.2 mM 0.2 µM Blood serum,
urine glucose [123]

Entrapment CS-PPyNTs-AuNPs-GOx/ITOE PPyNTs-AuNPs-GOx 3.0–230 µM 3.10 µM Standard glucose [124]
Adsorption CS-GOx-rGO(HHA)-ZnO-AgNPs/GCE GOx-rGO(HHA)-ZnO-AgNPs 0.1–12 mM 10.6 µM Blood serum glucose [125]
Electrostatic
adsorption CS-Fc-GONS-GOx/GCE Fc-GONS-GOx 0.02–6.78 mM 7.6 µM Standard glucose [126]

Adsorption CS-FGS-PtNPs/CS-GOx/GCE FGS-PtNPs-GOx 0.3 µM–5.0 mM 0.6 µM Blood glucose [127]
Electrostatic
adsorption

CS-GOx-PtNPs/ZnO-FTOE
CS-GOx/ZnO-FTOE

CS-GOx-PtNPs
CS-GOx

16.6 µM–2.0 mM
31.19 µM–2.0 mM

16.60 µM
31.19 µM Standard glucose [128]

Entrapment CS-SiO2-GOx-Nf-Pt/MWNTs/GCE SiO2-GOx 1.0 µM–23 mM 1.0 µM Standard glucose [129]
Entrapment CS-GOx/TEOS-APTES-Fc-GONS/GCE GOx/TEOS-APTES-Fc-GONS 0.02–5.39 mM 6.5 mM Blood serum glucose [130]
Adsorption CS-G-AuNPs-GOx/AuE G-AuNPs-GOx 2.0–14 mM 180 µM Blood glucose [131]

Electrochemical
deposition

CS-GOx-(Au-PB) NPs/GCE
(Au-PB)NPs-GOx/GCE GOx-(Au-PB)NPs 0.2–3.0 × 10−3 M

0.2–1.9 × 10−3 M
0.2 mM
0.2 mM Standard glucose [132]

Electrochemical
deposition CS-Fc/AuNPs/GOx/GCE Fc-GOx 0.02–8.66 mM 5.6 µM Serum glucose [133]
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Table 2. Cont.

Conjugation Method Chitinous Sensing System Reinforced Secondary Phase Linear Dynamic Range LOD Target Sample Reference

Cross-linking CS-Fe3O4-AuNPs-GOx/GrE Fe3O4-AuNPs-GOx 5.0–30 mM 0.55 mM Blood glucose [134]
Adsorption CS-GOx-Fe3O4NPs/ Au-coated glass E GOx-Fe3O4NPs 1.0 × 10−6–3.0 × 10−2 M 0.04 mmol·L−1 Standard glucose [135]

Electrodeposition CS-g-PAN-GOx/PtE g-PAN-GOx 0.5–16 mM 0.5 mM Standard glucose [136]
Adsorption CS-GOx/Fe3O4/ITOE Fe3O4NPs-GOx 10–400 mg dL−1 0.5 mM Standard glucose [137]

Adsorption
Cathode;

CS-GQDs-AuNPs/PDDA-MWCNTs/CS/CBC and
Anode: GOx-CBA

CS-GQDs-AuNPs-PDDA-MWCNTs 0.1–5000 µM 64 nM Blood glucose [138]

Cross linking CS-GOx/Nano-CuO-FTOE CS-GOx 0.2–15 mM 27 µM Blood serum glucose [139]
Electrostatic
adsorption CS/GOx/GNPs/Ppy-Nf-fMWCNTs/GCE FMCNTs-GOx 5.0 µM–4.7 mM 5.0 µM Human serum

glucose [140]

Cross-linking CS-GOx/ZrO2/NF/PtE ZrO2-GOx 1.25 × 10−5–9.5 × 10−3 M 1.0 × 10−5 M Blood glucose [141]
Entrapment CS-GOx/ MnO4NPs/AuDE GOx-MnO4NPs NA NA Standard glucose [142]

Entrapment CS-NG-GOx-PSS/AuQC
CS-GOx-PSS/AuQC

NG-GOx
GOx-PSS

0.2–1.8 mM
0.2–1.8 mM

64 µM
112 µM Standard glucose [143]

Entrapment CS-GOx-FMC-AFSNPs/MCPE GOx-FMC-AFSNPs 1.0 × 10−5 –4.0 × 10−3 M 3.2 µM Standard glucose [144]
Encapsulation and

entrapment CS-GOx-LM/GCE CS-GOx-LM 0.01–10 mmol·L−1 1.31µmol·L−1 Food sample-Fruit
juice glucose [145]

Electrodeposition CS-GOx/Au-PtNPs-CNTs/GCE Au-PtNPs-CNTs-GOx 0.001–7.0 mM 0.2 µM Human blood, urine [146]
Electrochemical

deposition CS-GOx/AuNPs/GCE AuNPs-GOx 5.0 × 10−5–1.30 × 10−3 M 13 µM Standard glucose [147]

Electrochemical
deposition CS-AuNPs-GOx/PB-GCE AuNPs-GOx 1.0 × 10−6–1.6 × 10−3 M 6.9 × 10−7 M

Human serum
glucose [148]

Electrodeposition CS-GOx/AuNPs/AuE AuNPs-GOx 5.0 µM–2.4 mM 2.7 µM Serum glucose [149]
Cross-linking GOx-(CS-ZnO)NS-NF/PtFe(III) ZnONS-GOx 10 µM–11.0 mM 1.0 µM Standard glucose [150]

Electrodeposition CS-GOx-MWCNTs/AuE GOx-MWCNTs 5.0 µM–8.0 mM 6.8 mM Standard glucose [151]
Electrodeposition CS-GOx-Pt–PbNPs/SSNE GOx- Pt–PbNPs 0.03–9.0 mM 0.03 mM Standard glucose [152]
Electrodeposition CS-GOx-IL-MWCNTs/nanoAuE GOx-IL-MWCNTs 3.0 µM–9.0 mM 1.5µM Serum glucose [153]

Adsorption CS-GOx-AgNWs/GCE GOx-CS-AgNWs 10 µM–0.8 mM 2.83 µM Spiked serum glucose [154]

Encapsulation CS-GOx/CNT-PtNP-MTOS/GCE CNT-PtNP-MTOS 1.2 × 10−6–6.0 × 10−3 M 3.0×10−7 M
Human serum

glucose [155]

Encapsulation 1. CSNPs-GOx/AuE
2. CS-GOx/AuE CSNPs-GOx 0.001–1.0 mM 1.1 mM Standard glucose [156]

Covalent bonding CS-Cys-GOx/AuE Cys-GOxc126 10.5–27 mM 316.8 µM Standard glucose [157]

Note: Chitin nanocomposite—CTNC, 1,4-carbonyldiimidazole—CDI, Ferricyanide—FCN, Ferrocene—Fc, Fluorine doped tinoxide electrode—FTOE, Functional graphene sheets—FGS,
Gladius chitosan submicron particles—GCSPs, Gold disk electrode—AuDE, Gold–Platinum alloy nanoparticles—Au-PtNPs, Gold-Prussian blue nanoparticles—(Au-PB)NPs, Grafted
dendrimer—RD, Graphene tape electrode—GTE, Graphite Rod—Gr, Hydrazine hydrate—HHA, IL-Ionic liquid Iron oxide nanoparticles—Fe3O4NPs, kappa-carrageenan—κ-Cg,
Liposome microreactor—LM, Magnetic nanoparticles—MNP, Microelectrode—µE, Monocarboxylic acid—FMC, Nafion—Nf, Nanofiber—NF, Nanosheet—NS, Polyaniline—PANI,
Poly(allylamine)—PAA, Poly(allylamine)—PAA, Porous graphene—GR, Standard chitosan (SCS), Stainless steel needle electrode—SSNE.
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Electrochemical Deposition

Electrodeposition is another conventional surface modification method to improve the surface
characteristics and functional properties of a wide variety of materials including biomolecules [137–147].
The surface of a conductive composite material can be immersed in a sol-gel solution containing
a metal salt, and by the action of an electric current the coated films with controllable thickness
could be obtained [148]. This technique also allows the co-deposition of enzyme and nanomaterials
onto transducers for the fabrication of biosensors. Reactive, patterned layer of CS-GOx-AuNPs was
electrodeposited on the gold disk electrode surface (cathode) for biosensor construction. The biosensor
covered with NF was successfully applied to serum sample analysis [149]. Chitosan’s electrodeposition
is a simple and versatile method to form thin-film assembly for the fabrication of optical/electrochemical
or mass-based biosensors [150]. The multi-parameter electrochemical quartz crystal microbalance
(EQCM) based on crystal electroacoustic impedance analysis was used to dynamically monitor the
deposition processes of MWCNTs-CS-GOx nanocomposite films on Au substrate. Zhu et al., 2007
reported the electroreduction protocol where oxidants (p-benzoquinone) or H2O2) were added for
wider applications in development of pH-sensitive composite films for sensing. Authors have achieved
simple, fast, uniform, and controllable co-deposition of CS-hydrogel, GOx, MWCNTs for constructing
biosensors [151]. In another attempt, a stainless steel needle electrode (SSN electrode) was modified
using co-electrodeposition of Pt–Pb nanoparticles and then CS-GOx biocomposite with benzoquinone
(BQ). This bio-electrodes showed accelerated electron transfer rate and larger effective surface area of
the working electrode. This electrode also has a low cytotoxicity and may have possible application for
in vivo uses [152].

Gold disk electrode (AuDE) was modified by CS film integrated with manganese dioxide
(MnO2NPs) and entrapped GOx, this electrode showed high resistance to the ascorbic acid (AA) during
electrochemical glucose estimation. CS-stabilized MnO2NPs directly suppressed the interfering signals
of ascorbates by converting AA to an inactive product before it reached the electrode surface. Thus, the
proposed CS-GOx/ MnO4NPs/AuDE sensor is another possibility for the fabrication of interference-free
glucose biosensors [158]. In another study, the synergistic influence of AuNPs, MWCNTs, CS and ionic
liquid (IL) on direct electron transfer between GOx and electrode was achieved within six seconds.
Chronoamperometry, CV and EIS were used during GOx sensor analysis which precludes interferences
from UA and AA [153–160]. Nano-gold electrode was prepared by CS-IL-GOx electrodeposition
for glucose detection in serum samples. The developed sensor showed 20-fold sensitivity, wider
detection range and better anti-interference ability as compared with the plain nano-gold electrode.
Electrochemical properties of IL such as non-volatility, non-flammability, high ionic conductivity,
thermal stability and wide electrochemical window might have contributed to the excellence of
nano-gold biosensor [154]. However, voids and bubbles of the CS-enzyme embedded films are the
most significant disadvantage. Such deformation arises during the electrodeposition process due to
hydrogen gas formation from the reduction of water/protons [161–163]. The bubble/void formation
can be reduced by using proton consumers such as BQ/ chloramphenicol (CAM).

6.2.2. Various Geometrical CS-Based Interfaces

Self-Assembled Monolayers

As mentioned above, drop, dip, spin coating and spread/blade spreading methodologies are used
for preparing aligned self-assembled monolayers (SAMs) to smooth the ruff electrode surface using CS
matrix. In some cases, entrapment/encapsulation/electrochemical deposition/electropolymerization
have been performed using hybrid solution of enzyme-chitosan and nanomaterial to construct mono
or multi-layered film structure [44,131,136,148,155–159]. CS-based SAMs provides great benefit to
enzyme in a number of ways as they can be designed in various geometrical shapes depending
upon the interface (Figure 6). These SAMs prevent non-specific adsorption of species (interferons),
shield enzyme and improve the analyte sensitivity. The nanoscale individual GONSs were acted as



Polymers 2019, 11, 1958 19 of 34

“molecular wires” to connect the active sites of GOx and electron mediator Fc with the electrode via
self-assembled membrane/film structure to increase the electron transfer rate significantly [126,130].
Furthermore, these SAMs also improved film morphology, thickness and crack-free feature.

A SAMs-based glucose biosensor was fabricated in stepwise process where two layers were
casted on the surface of gold electrode (AuE). The main problem during electrochemical studies is
peeling-off of enzyme film located at the electrode surface due to weak non-covalent interactions
between GOx and Au surface. Therefore, strong bonding or protective layer is required to form
SAMs. When the CS at a pH above its pKa value (6.3) it will deprotonate the primary amino
groups and become insoluble with retention of its natural properties i.e., film forming ability and
biocompatibility [144,158]. The development and characterization of SAMs at Au electrode for glucose
biosensor was reported by Zhang et al., 2014 [158]. In this study, the working electrode was chemically
modified using multilayered membrane structure with first layer of cysteamine (Cys) followed by
GOx layer and CS as a final protective and adhesive layer. This sensor can be stored for up to
30 days, which may be attributed to the biocompatibility and strong interaction between AuE-Cys,
Cys-GOx and CS-GOx. The hydrophilic CS can interact with GOx via –OH and –NH3

+ side groups
to form self-assembly for direct electron wiring to enhance the DET, as reported by Kumar-Krishnan
et al. [101,102]. The enzymatic probe fabricated with CS stabilized bimetallic nanostructures with
tailored geometries (Pd@Pt Core–Shell Nanocubes) was also reported by the same research group [101].
Silver nanowires (AgNWs) with high bio-affinity were stabilized in CS, which can covalently attach
on GCE tip to improve the charge transportation and sensitivity for electrochemical detection of
glucose [102]. Thus, the multi-layered configuration showed possibilities of the patterning of proteins
and nanomaterials in CS-matrix. Furthermore, fast response time for enzymatic reaction with
satisfactory sensor performance was noticed due to integrated CS with superior biological properties.
Qui et al., demonstrated that the amino-functionalized ferrocene-conjugate Fe3O4@SiO2 nanoparticles
(Fc-AFSNPs) could be effectively employed for the fabrication of reagentless glucose sensors by
forming CS-GOx-enzyme nanocomposite films on magnetic carbon paste electrodes (MCPEs) [145].
For this purpose, CS-Fc-AFSNPs solution was spread evenly onto the well-polished, clean MCPE
surface and allowed to form a FMC-AFSNPs/CS composite film. The GOx incorporated composite
film was also casted on previous dried film. The entrapped enzyme and mediator showed efficient
electronic communication and promising approach for construction of biosensor and bioelectronic
devices for many analytes. In another study, GCE was modified in two steps, the electrochemical
deposition of CS-CuNPs followed by cross-linking of GOx on CS-CuNPs-GCE surface using GA and
bovine serum albumin (BSA). The resulting interface (CS-CuNPs/GOx-GA-BSA/SWCNTs-GCE) not
only amplified the reduction current of H2O2 but also inhibited the responses of interferents at a
much lower applied potential [158]. The synergistic electrocatalytic effect of CuNPs and SWCNTs
exhibited good characteristics including a large determination range, good sensitivity, fast response
time (<4 s), high stability, and excellent selectivity. Although SAMs provide many advantages, the
blocking behavior of the SAMs may decrease electron-transfer rates significantly.

Layer by Layer

The alternate adsorption of polyanions and polycations with integration of different materials
such as nanomaterials, proteins/ enzymes in matrix onto solid substrates in the form of thin film is
so called the layer-by-layer (LBL). LBL is a self-assembly-driven surface modification strategy which
allows the construction of multilayered nanostructured films onto substrates of any geometry, from
simple bi-dimensional surfaces to more complex 3-D porous scaffolds [160]. Multi-layered structure
can be formed by repeating the same procedure for desired configuration and morphological features.
The layered architecture also as an additive and protective sheet which acts as a shield for protein
conformation and prevent destabilization of active sites of the biomolecules. Super conductivity
of the enzyme-wired CS-matrix is still big challenge for researchers to build-up fast and real time
glucose biosensor. Multilayers structures can be produced using LBL technique which exponentially
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increased the chances of enzyme-binding to the matrix and its reusability, long term stability with
regeneration and reusability of the transducing component. LBL with multilayer composition not only
results in excellent electrochemical properties but also favors functionality of the designed assemblies.
Chitosan′s inter-chain structure and its associations with other reactive groups in LBL can trigger a 3-D
hydrogel network and accommodate/trap more enzymes easily [44,59,60,92,161]. An enzymatic glucose
biosensor based on the self-assembling supramolecular LBL architecture comprising of CS-derivatives,
sodium salt of 3-mercapto-1-propansulfonic acid, salt of 3-mercapto-1-propansulfonic acid, NF and
GOx onto thiolated gold electrodes was reported by Miscoria et al., 2006 [92]. The bioelectrode modified
with five quaternized CS/GOx bilayers exhibited highly selective response with zero percent interface
effect from AA and UA. It has very good analytical performance with consumption of small amounts
of reagents. Further, the credit also goes to the rational design of biorecognition layers where an
alternate electrostatic adsorption of polyelectrolytes allows noticeable improvements in the selectivity
and sensitivity of a biosensor with easy immobilization. Metallic nanostructured layer of copper
oxide (Nano-CuO) sputtered thin film on the conductive fluorinated-tin oxide (FTO) layer that was
exploited for covalent linkage of GOx via CS for impedimetric glucose biosensing. One –CHO group
of glutaraldehyde linked covalently to –NH2 group of chitosan while other –CHO group is covalently
linked to –NH2 groups on the surface of GOx. This mulit-layered electrode modification afforded
excellent microenvironment for rapid biocatalytic reaction to glucose in real sample [139].

Sandwich Configuration

Biosensor with sol-gel matrix mostly suffer from the limited diffusion, slow response time
and restricted electron transfer. The sandwich configuration can be better option to overcome
these limitations where enzyme layer is protected by top and bottom layer of composites or
nanocomposites. The typical sandwich configuration at electrode allows homogenous distribution of
enzyme and nanomaterials with controlled matrix porosity. High amount of active enzyme triggers
fast enzymatic catalysis and layered porous matrix provides rapid diffusion of substrates and analytes
required [162,163]. Miao et al., 2000, reported the enzymatic sensor based on sandwich configuration
using inner layer of CS-Fc and GA cross-linked GOx-CS as outer layer on CPE [100]. This sandwich
biosensor proved that this kind of biosensors collaborate well with a classical UV spectrophotometric
technique with a relatively fast response.

In some cases, a separate film/ membrane containing enzyme was placed on the surface of a moist
dialysis membrane as a lamination layer and fastened with an O-ring [164]. While in most of the
cases, CS layer on the electrode surface has the same function without the need of any extra binder.
For example: carbon nanochips (CNCs) and GOx were fixed tightly using CS as binder to the surface
of the GCE surface. The synergistic effect of CS and CNCs-GOx enhanced and promoted electron
transfer thereby decreasing resistance [94]. This sandwich configuration also favors adsorption of GOx
and retains its native secondary structure with excellent electrocatalytic properties.



Polymers 2019, 11, 1958 21 of 34

  

Polymers 2018, 10, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/polymers 

 

Figure 6. Some of the examples of different strategies reported for the modification of electrode surface: (A) spin-casted biocompatible core-shell porous CS-nanocomposite 
modified zinc oxide/platinum electrode [86]; (B) highly stable self-assembled layer by layer formation of N-doped enzyme matrix on indium-tin oxide glass substrate [123]; 
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6.2.3. Microelectrode Arrays/Printing

Conventional electrodes suffer from sensitivity and sluggish electron transportation. Electrode
micro-fabrication technology offers great way to overcome these issues. Such microelectrodes
(µ-electrode) deal with issues like diffusion controlled current, low charging current, high signal
to background ratio (Faradaic/charging), and reduced solution-resistance due to their highly
compact-arrayed design with bulk production of multi-electrodes [165,166]. Multianalyte-sensing
systems with improved durability and interference-free features can be developed using miniaturized
electrodes and CS-matrix. Protective feature of the CS and its pH-dependent solubility were also
confirmed by Voltage-dependent study of amine-rich CS-polysaccharide. The study revealed that once
the CS has deposited on electrode surfaces, it can act as a potential interface between biological systems
and microelectronic devices for wide range of applications [167–169]. Micro-electrode array-based
glucose biosensors integrated with chitosan-modified interfaces are summarized in Table 3. Thin film
printed electrodes produced by photolithography method were further modified by sol-gel solution
of CS and enzyme for glucose sensing. Huang et al., 2013 reported an enzymatic µ-electrode array
sensor prepared by photolithography. The interface surface was coated with a layer of GOx, entrapped
in a three-dimensional network composed of CS and tetraethyl orthosilicate (TEOS) sol-gel [165].
The GOx-CS-TEOS interdigitated µ-electrode showed good sensitivity, selectivity and stability when
optimized for maximum GOx loading, the applied voltages, the concentration of mediator and the
pH for glucose sensing. The resulted stable and reproducible biosensor exhibited a good response to
glucose with a wide linear range and the small Michaelis–Menten constant value. This enzymatic-array
was tested for 100 cycles using CV and confirmed stability of the probe, and flexibility with high
reproducibility. The as-prepared gold interdigital array also possessed superb resistance to oxidation
and has great potential for applications in portable and disposable sensors [165]. GOx-embedded
cylindrical carbon fiber-based µ-electrodes were fabricated through the reduction of BQ and CAM to
produce uniformly-coated films with the highest throughput [161]. The long-term stability of such
µ-electrodes was possibly due to strong chemical bonding between BQ-CS and GOx through free
amines of lysine residues on the enzyme to the CS-matrix. Smith et al., 2018; demonstrated and
confirmed that GOx immobilization by entrapment in a CS-hydrogel is another effective method
for µ-electrode fabrication, which can be used for the measurements of brain glucose. Researchers
combined GOx-modified carbon-fiber µ-electrodes with fast-scan voltammetry (CV) for real-time
measurements of glucose in brain tissues [95]. The detection range of the sensor was from 0.2 to
50 mM glucose in vitro using the flow-injection apparatus. The experimental finding demonstrated
that sensor prepared with GOx entrapped in CS-hydrogel was most effective for real-time monitoring
of glucose with high sensitivity, stability, low cost, and nontoxicity. While in another case, aligned
carbon nanotubes (ACNTs) modified electrode has been developed [120]. The ACNTs electrode for
reagentless biosensors were developed by electrodeposition and encapsulation for direct electron
transfer in redox reaction of FAD/FADH2. Artigues et al., proved that sensor architecture utilizing
titanium dioxide nanotube arrays (TiO2NTAs) not only has features like simplicity and low cost but
also can be used for measuring glucose in four different food products, including soft drinks, soy
sauces, dairy products and tomato sauces [170].



Polymers 2019, 11, 1958 23 of 34

Table 3. Micro-electrode array-based glucose biosensors integrated with chitosan-modified interfaces.

Sensing System Method of Preparation Linear Dynamic Range Sensitivity LOD Target Sample Reference

(CS-PVA)-GOx Nanofibers entrapment 0.2–50 mM ~0.4–15 nA·mM−1 ~0.6–1.0 mM Brain glucose [95]

CS-GOx-CdS/ACNTs-Ptnano/GCE Electrodeposition and
encapsulation 400 µM–21.2 mM 1.0 µA·mM−1 46.8 µM Standard glucose [120]

CS-BQ-GOx/Au-µE
CS-CFM0-GOx/ Au-µE Covalent bonding 0–1.6 mM 14.4 nA·mM−1

13.5 nA·mM−1
8.9 µM

11.5 µM Standard glucose [160]

(CT-GOx)n = 6/PtE Absorption Layer-by-layer
thin films NA NA NA Standard glucose detection [162]

CS-TEOS-GOx/Au-SiO2µE Entrapment-So-gel 0–35 mM 8.74 µA·mM−1
·cm2 1.0 mM Standard glucose [165]

(CS-PVA-GO)Nf-GOx/PtE Cross-linking & co-electrospinning 5.0 µM–3.5 mM 11.98 µA·cm−1
·mM−1 5.0 µM Human serum glucose [169]

(CS-GOx)/TiO2NTAsE Physical entrapment-hydrogel 0.3–1.5 mM 5.46 µA·mM−1 0.07 mM Soft drinks, Dairy products,
tomato & soy sauces [170]

Note: Not available—NA, aligned carbon nanotubes—ACNTs, benzoquinone—BQ, Nafion—Nf, Polyvinyl alcohol—PVA, TEOS—Tetraethyl orthosilicate, Titanium dioxide nanotube
arrays—TiO2NTAs.
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This nanotube array-based amperometric glucose sensor was constructed by physical
immobilization of GOx in CS hydrogel onto highly ordered TiO2NTAs. GOx with CS-Neodymium
orthophosphate nanoparticles (NdPO4NPs) composite with high specific surface area offered sensitive,
selective and stable enzymatic biosensor for determination of glucose in human plasma. The CV and
EIS studies revealed that the modified electrode can also be used to immobilize other redox enzymes
due to composite configuration [171]. The analytical parameters of the array-device were ensured that
the new methodology was accurate and specific. The detection quality was reproducible and robust
over the specified range of food samples for glucose.

6.3. Nano-Chitinous Material for Glucose Sensors

Like CS and CT precursors, their micro and nano-form are also promoting the compatibility with
natural surroundings to the biological counterpart during conjugation [26,27,157,172]. The unique
physicochemical and biological properties of these chitinous structures are improved when their
size is reduced exponentially [86]. Due to the superior physicochemical, optical, catalytic and
reactive properties, nanomaterials of CS and CT have a wide range of applications in areas
such as pharmaceuticals, biomedical research, cosmetics, purification technology, and sensing
devices [173,174]. These cost-effective small-size particles of CT/CS are outstanding stabilizing
agents with film-forming capabilities and high absorption power. Due to their mechanical strength,
nanofibers (NF) are used to form blended nanomaterials with synthetic polymers (poly(ethylene
oxide) (PEO) [175], PANI [28,89,176], poly(vinyl alcohol) (PVA) [9,41,42,123,135,174], poly(L-lactide)
(PLA), poly(glycolic acid) (PGA), polypyrrole (PPy) [124], polyvinyl pyrrolidone (PVP) [177], natural
polymers (silk, cellulose, collagen, alginate, zein and agarose), and mineral (hydroxyapatite) [173–178].
The biocompatibility, non-toxicity and large surface area make these composite materials a potential
scaffold for enzyme immobilization. For example: CS-NFs-AuNPs for cholesterol oxidase [179];
magnetic chitin nanofiber (CT-NF) composite for chymotrypsin [180] and CS-cellulose acetate for
physical adsorption of protease [181], etc.

6.3.1. Nanochitin

Dilute acid hydrolysis of chitin at high temperature resulted into nano-whiskers (CTNWs)
with slender parallelepiped rods [182,183]. These CTNWs have been successfully explored in
nanotechnology and biosensing application. Nakorn investigated the possibilities of CTNWs (size
300 nm) and chitosan nanoparticles (CSNPs, size 39 nm) as immobilization material for GOx under
different conditions to fabricate an efficient biosensor with improved features. The CSNPs appeared
to be a better support than CTNWs for GOx immobilization due to longer storage time and more
GOx binding [172]. Non-enzyme glucose electrochemical sensor was reported by Solairaj et al., 2017
using copper nanoparticle immobilized CT-nanocomposite (CTNC-CuNP). This study also confirmed
that CTNC-CuNPs could be a potential antimicrobial, nontoxic and low cost material to develop
sensors [184]. The biodegradable, electro-active CT-NF films were explored for flexible piezoelectric
transducers, and their ferroelectric characteristic was confirmed by polarization measurements [183].

6.3.2. Nanochitosan

Nanochitosan has very low toxicity and excellent adhesion property for enzyme immobilization
and interface design for various applications [184–190]. Easy and convenient methodologies
for CS-micro-particle preparation such as coagulation/precipitation, covalent cross-linking, ionic
cross-linking, ionic gelation, polyelectrolyte complexation, coacervation or phase separation and
emulsion droplet coalescence have been used for the synthesis of nanochitosan [187]. In one case, the
tree-like structure of core–shell hyper-branched chitosan nanoparticles were prepared using nanospray
dryer. The electrocatalytic performance of the developed bio-probe for fast electron communication
between the enzyme′s active sites and the screen printed electrode was attributed to high surface
area provided by branched CS particles. Such new architectures carrying a huge number of positive
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charges around the shell by creating more amino and hydroxyl groups can be more useful for enzyme
functionalization [122]. The CS nano-layers was prepared using LBL thin film technique and GOx was
adsorbed on these layers for the detection of glucose in body fluids, beverages and foodstuffs [162,170].
The relationship between frequency variation and number of bilayers of CS-GOx nanolayers deposited
on platinum surface was studied and its morphological features were observed under atomic force
microscope. The adsorption of positively charged CS on Pt electrode facilitated enzyme immobilization
due to GOx’s negative charge, and CS also provided a favorable microenvironment for GOx to oxidize
glucose and exchange electrons with underlying electrodes.

7. Future Prospectus

The reactive functional groups and surface charge of chitin have been successfully utilized
for preparation of a wide spectrum of its derivatives such as chitosan, alkyl chitin, sulfated chitin,
dibutyryl chitin carboxymethyl chitin, and nanostructured chitin/chitosan with high commercial
values. However, there are limited studies based on chitin nanocomposites for biosensing application
due to its insolubility in organic and inorganic solvent, low metal ion capacity, separation difficulty,
non-tunable porous structure and low surface area. Still there is strong need for the development of
simple and easy synthesis methodology for chitin composites and nanocomposites that can be used
for applications for industrially important enzyme immobilization and practically useful biosensor
fabrication. Ecofriendly and renewable chitinous materials when redesigned with nanomaterials, have
the potential to become new, superior and advance materials. These nanocomposites could possess
important properties such as compatibility, biodegradability, and mechanical strength for biosensors.
In the future, these innovative interfaces with further tuning can be used for the modification of
different kinds of transducers for versatile sensing with relatively short analysis time.
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