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Abstract: Indians, a rapidly growing population, constitute vast genetic heterogeneity to that of
Western population; however they have become a sedentary population in past decades due to rapid
urbanization ensuing in the amplified prevalence of metabolic syndrome (MetS). We performed
a genome-wide association study (GWAS) of MetS in 10,093 Indian individuals (6617 MetS and
3476 controls) of Indo-European origin, that belong to our previous biorepository of The Indian
Diabetes Consortium (INDICO). The study was conducted in two stages—discovery phase (N = 2158)
and replication phase (N = 7935). We discovered two variants within/near the CETP gene—rs1800775
and rs3816117—associated with MetS at genome-wide significance level during replication phase
in Indians. Additional CETP loci rs7205804, rs1532624, rs3764261, rs247617, and rs173539 also
cropped up as modest signals in Indians. Haplotype association analysis revealed GCCCAGC as
the strongest haplotype within the CETP locus constituting all seven CETP signals. In combined
analysis, we perceived a novel and functionally relevant sub-GWAS significant locus—rs16890462
in the vicinity of SFRP1 gene. Overlaying gene regulatory data from ENCODE database revealed
that single nucleotide polymorphism (SNP) rs16890462 resides in repressive chromatin in human
subcutaneous adipose tissue as characterized by the enrichment of H3K27me3 and CTCF marks
(repressive gene marks) and diminished H3K36me3 marks (activation gene marks). The variant
displayed active DNA methylation marks in adipose tissue, suggesting its likely regulatory activity.
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Further, the variant also disrupts a potential binding site of a key transcription factor, NRF2, which is
known for involvement in obesity and metabolic syndrome.

Keywords: genome wide association study; metabolic syndrome; genetic variants; gene regulation

1. Introduction

Metabolic syndrome (MetS) refers to a complex pathophysiological state attained by conjugation
of a set of cardiometabolic risk components in an individual that include—central obesity, dyslipidemia,
elevated blood pressure, and fasting plasma glucose [1]. MetS aggravates the risk for various health
complications including type 2 diabetes (T2D), cardiovascular disease (CVD), cancer, and mortality
from all causes [2–4]. The prevalence of MetS in India was observed to be ranging from 11–41% on the
basis of geographical region, socioeconomic status, urban–rural environment, age, sex, ethnicity of
the individuals, and the definition used [5–7]. Given the high prevalence of MetS in Indians, with its
prompt spread in younger adults [7] and adolescents [8], effective plans for its early detection and
intervention are critically desirable to mitigate the burden of associated diseases.

Genetic and environmental factors and their cumulative gene–environment interactions contribute
to pathophysiology of MetS [9–12]. The genetic heritability is liable up to 50% for some individual
metabolic components and 13–30% for collective MetS phenotype [9–12]. Several large-scale genetic
studies have been performed to identify MetS related single nucleotide polymorphisms (SNPs)
considering independent components of MetS as a quantitative trait [13–17]. In view of MetS as a
binary phenotype, several other genome-wide studies worldwide identified numerous loci influencing
the combined metabolic syndrome outcome. For instance, genetic loci in BUD13, ZNF259, APOA5, LPL,
and CETP in Europeans [18], TCF7L2, APOA5, LPL, CETP, APOE, and APOC1 in African Americans [19],
CA10 and CTNNA3 in Africans [20], APOA1/C3/A4/A5 gene cluster region in Finnish [21], APOA5,
BUD13, and ALDH2 in Han Chinese [22], LPL, MYL2, CCDC63, and CETP in Koreans [23], and APOA
and COLEC12 in Taiwanese [24] have been attributed for strong association with MetS. These studies
highlight multiple shared lipid metabolism pathway genes across diverse populations as well as novel
population-specific genes, which require the need for additional population-wide genetic studies to
delineate remaining genetic heritability of MetS across varied ethnicities [25].

Indians represent a unique population with a distinct genetic make-up, food habit, and lifestyle
compared to other world populations [26,27]. Moreover, Indians display comparatively higher
atherogenic dyslipidemia, glucose intolerance, subclinical inflammation, thrombotic propensity, and
endothelial abnormality compared to Caucasians [28,29]. Many of such metabolic deregulations
are extremely severe and have an earlier age of onset in Indians than Caucasians [28,29]. Besides,
Indians have an increased body fat mass, a greater truncal, intra-abdominal subcutaneous adipose
tissue with ectopic fat buildup compared to Caucasians, resulting in an enhanced risk for metabolic
syndrome and CVD [28,30]. These reasons underscore the possibility of population-specific genetic
risk towards MetS phenotype in India. We ourselves have shown this population-specificity of genetic
loci for a few metabolic phenotypes in previous reports [15,27], but this is yet unknown for compound
MetS phenotype.

Previously, a genome-wide association study was conducted in Indian Asian men (N = 4794) of
The London Life Sciences Population (LOLIPOP) cohort who were living in West London, United
Kingdom (UK) at the time of sample collection [31]. The study lacked a homogenous Indian population
as majority of Indian individuals were of mixed ethnicities (Indo-Europeans, Dravidians etc.) in
the LOLIPOP cohort that were not appropriately segregated. The study was also limited by only
considering Indians living in UK, who differ considerably from native Indians in terms of food habit
and lifestyle, which may have an influence on differential genetic architecture for MetS between the two
groups. Moreover, the study did not identify genome-wide association study (GWAS) level association



Biomolecules 2019, 9, 321 3 of 17

(p < 5 × 10−8) of any genetic variant for compound metabolic syndrome phenotype in representative
Indian individuals of London, UK.

The present two-stage genome-wide association study was intended to identify genetic variants
governing compound MetS phenotype in 10,093 native Indians (6617 MetS and 3476 controls) speaking
Indo-European language.

2. Materials and Methods

2.1. Ethical Approval

Ethical approval for the study was obtained from Human Ethical Committees of All India Institute
of Medical Sciences, New Delhi, India and CSIR-Institute of Genomics and Integrative Biology, New
Delhi, India, following principles of Helsinki Declarations (BSC0122, NIDDK GRANT NUMBER: UOO
DK085545). All the individuals included in the study were well informed about objectives of study
and written consent was taken from each one of them before their involvement in the study.

2.2. Study Subjects

All the study subjects were Indo-European speakers from Northern India primarily from
neighborhoods of Delhi. In India, genetic ancestry and language are strongly confounded. Moreover,
among the Indo-European speakers, the geographical origin of individuals is the essential correlate of
genetic variability [32].

The study individuals included in the present study were part of a type 2 diabetes GWAS
conducted previously in our laboratory [27] and were members of The Indian Diabetes Consortium
(INDICO) [33]. Non-diabetic control subjects who served as controls during GWAS study were enrolled
through diabetes alertness camps conducted across different zones of Delhi and adjoining areas [27,33].

Discovery phase T2D subjects were registered from the Department of Endocrinology, All India
Institute of Medical Sciences (New Delhi), who joined the clinic before September 2008. Replication
phase T2D subjects were registered from departments of collaborator hospitals: All India Institute of
Medical Sciences (New Delhi), Guru Teg Bahadur Hospital (New Delhi), and Sawai Man Singh Hospital
(Jaipur). T2D patients enrolled from All India Institute of Medical Sciences for replication phase were
the patients who joined the clinic post September 2008. In addition, patients with self-known diabetes
or under prescription for diabetes and recently diagnosed were also recruited from Diabetes Alertness
Camps. T2D subjects were identified as per WHO criteria as described previously [27]. Pregnant
females, children, teenagers, and those with type 1 diabetes were excluded from the study.

Blood samples were collected from subjects after an overnight fast, and their DNA was isolated
from peripheral blood through salt precipitation protocol. All the study individuals underwent
detailed measurements of biochemical and anthropometric measures as described earlier [32]. Waist
circumference (WC), fasting glucose (FG), high density lipoprotein cholesterol (HDL-C), triglycerides
(TG), and systolic and diastolic blood pressure (SBP and DBP) were measured using standard procedure
as described previously [33].

2.3. Phenotype Definition (MetS)

We defined MetS using modified National Cholesterol Education Program (NCEP) adult treatment
panel (ATP III) measure for Asian populations [34], as used earlier in our previous study [35]. Subjects
were classified as MetS cases who attained three or more of these metabolic measures: (1) WC ≥ 90 cm
in men or ≥ 80 cm in women, (2) FG ≥ 100 mg/dL or on medication, (3) HDL-C < 40 mg/dL in men or <

50 mg/dL in women or on medication, (4) TG ≥ 150 mg/dL or on medication, and (5) SBP ≥ 130 mm
Hg or DBP ≥ 85 mm Hg or taking medication for blood pressure control. Subjects having ≤ 2 number
of MetS components were classified as MetS controls.
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2.4. Genome-Wide Association Study

2.4.1. Discovery Phase

DNA samples were genotyped genome-wide using Illumina Human610-Quad Beadchips (Illumina
Inc., San Diego, CA, USA) as part of GWAS studies conducted for T2D and interrelated quantitative
metabolic phenotypes earlier in our laboratory [14,15,27,36–38]. The GenCall algorithm employed in
GenomeStudio software (Illumina, Inc., San Diego, CA, USA) was used to compute genotype calls.
The genotype calls were further exported in PLINK v1.07 for downstream analysis [39].

Brief analysis steps and quality control pipeline employed in the study have been summarized in
Supplemental Figures S1 and S2. Samples with less than 95% call rate, sex discrepancy, and extremely
low or high heterozygosity (mean ± 3 SD) were removed. Further, SNPs with less than 99% call rate,
MAF < 0.01, and Hardy Weinberg equilibrium (HWE) p < 1 × 10−7 were excluded. Identity by descent
(IBD) analysis was performed to identify related and duplicated individuals in the data and those with
pi hat score ≥ 0.1875 were excluded. Principal component analysis (PCA) was implemented to spot
population outliers. Linkage disequilibrium (LD) pruning of markers was carried in autosomal SNPs
using the –indep-pairwise command provided in PLINK v1.07 using r2 of 0.2 and window dimension
of 50 SNPs [39]. Analysis of the initial ten principal components detected 41 subjects as potential
population outliers (mean ± 6 SD) that were expelled.

Followed by quality control (QC), a total of 519,607 SNPs and 2158 individuals (1596 MetS and
562 controls) remained that were followed for logistic regression analysis assuming an additive model
adjusted for age, sex, and the first two principal components in PLINK. Median χ2 statistics were
applied to infer genomic inflation factor λ. Manhattan and quantile-quantile (QQ) plots were created
using qqman package in R (http://www.r-project.org/) [40].

2.4.2. Replication Phase and Meta-Analysis

The current study is part of a large-scale genetic study to discover genetic variants influencing
type 2 diabetes pathophysiology and levels of related quantitative metabolic phenotypes in Indian
population [14,15,27,36–38]. Markers with discovery phase p < 10−4 for MetS and other traits, besides
earlier known signals for MetS and other traits, were genotyped in replication phase using GoldenGate
assay (Illumina, San Diago, CA, USA). In total, 930 samples (11.72%) were genotyped as technical
replicates and an error rate of <0.01% was observed between them.

Samples with less than 90% call rate were removed from the analysis. Further, SNPs with genotype
confidence score < 0.25, GenTran score < 0.60, cluster separation score < 0.4 and call rate < 90% were
expelled. SNPs with MAF < 0.01 were also discarded. From SNPs with MAF > 0.01, those with
HWE p < 1 × 10−7 were excluded. After rigorous QC, we retained 2699 SNPs and 7935 individuals
(5021 MetS and 2914 controls) in the replication phase that were tested for logistic regression under an
additive model adjusted for age and sex.

PLINK [39] was employed for meta-analysis of summary association statistics of discovery and
validation phases under a fixed-effect inverse variance model.

Previous associations of identified variants and genes were obtained from the GWAS catalog,
GWAS atlas, and Type 2 Diabetes Knowledge Portal [41–43]. Regional association plot within ± 1 Mb
of lead signal was plotted using locuszoom [44].

2.5. Statistical Power of the Study

We calculated the power of the study using Quanto software (Department of Preventive Medicine,
University of Southern California, Los Angeles, CA, USA) [45]. Log-additive model of inheritance for
allele frequencies in the range from 0.01–0.5 and odds ratios (OR) in the range from 0.63 to 2.08 derived
from literature were used. Prevalence of disease was taken as 11% at significance level of 0.05.

http://www.r-project.org/


Biomolecules 2019, 9, 321 5 of 17

2.6. Conditional and Haplotype Association Analysis

Conditional analysis for seven variants identified in CETP locus was performed in replication
phase data employing logistic regression model. Age, sex, and identified SNP genotypes were used as
covariates in the model using PLINK.

Haplotype-based association analysis of CETP locus was carried out using a logistic regression
model adjusting for age and sex at 10,000 permutations in replication phase data using PLINK.

2.7. Imputation Analysis

Imputation analysis of novel sub-GWAS loci near SFRP1 in the discovery phase dataset was
performed as detailed earlier [27]. For reference population, 1000 Genome phase 3 panel was used.
Prephasing of chromosome 8 was performed with SHAPEIT [46]. A total genomic region of 2 Mb
(1 Mb each towards 5′ and 3′ end of the variant) was imputed utilizing IMPUTE 2 [47] which covered
the entire LD block of the variant. After imputation, SNPs underwent stringent QC. Imputed SNPs
with certainty score <0.90, info score <0.5, and MAF < 0.01 were removed. Further, the QC qualified
SNPs were used in association test with compound MetS phenotype using logistic regression adjusting
for age, sex, PC1, and PC2 as covariates in the model using PLINK.

2.8. Overlaying Gene Regulatory Features

For identification of potential functional relevance of novel sub-GWAS loci near SFRP1, we used
several publicly available gene regulatory databases. Tissue-wide gene expression profiles of SFRP1
were downloaded from GTEx-portal-v7 (https://www.gtexportal.org/home/) [48]. ATAC-seq data
for human subcutaneous adipose tissue was obtained from an adult female of 53 years of age from
ENCODE [49]. ChIP-seq data for regulatory histone marks H3K36me3 or H3K27me3 had been derived
from subcutaneous adipose tissue of 5 adult females aged 25, 41, 49, 59, and 81 years, and was obtained
from ENCODE [49]. ChIP-seq data for CTCF binding was derived from subcutaneous adipose tissue
of 2 adult females aged 51 and 53 years from ENCODE [49]. Whole genome bisulphite sequencing
data (WGBS) for adipose tissue was derived from a male adult subject aged 34 years from ENCODE
dataset [49]. Predicted sites for transcription factor (TF) binding were obtained from JASPAR portal [50].
UCSC browser was used for visualization of genome regulatory features of sub-GWAS loci [51].

3. Results and Discussion

The present study was the first genome-wide association study that identifies a common genetic
basis of compound MetS phenotype in Indians of Indo-European origin living in India. Our study was
robustly powered to detect loci with similar odds ratios as identified in previous GWAS studies for
MetS in literature (>98%) (Supplemental Figure S3). Further, the QQ plot displayed good agreement
of calculated p-values with theoretical p-values under the null hypothesis (Supplemental Figure S4).
The genomic inflation factor (λ) was observed to be 1.06 reflecting a homogenous study population.
Characteristics of the study population are presented in Supplemental Table S1.

3.1. Genome-Wide Association Analysis of MetS

In the discovery phase, variant rs11108860, which was located within a long intergenic non-coding
RNA gene RP11-541G9.1, was the strongest signal (p = 8.72× 10−7) [Figure 1]. Though, in the replication
phase, association of RP11-541G9.1 was not sustained (p = 0.96).

https://www.gtexportal.org/home/
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Figure 1. Manhattan plot of association p-values for metabolic syndrome (MetS) in discovery
phase, replication phase, and meta-analysis. The −log10 p-values of genotyped single nucleotide
polymorphisms (SNPs) calculated from association analysis have been presented with respect to SNP
positions across autosomes (National Center for Biotechnology Information Build 37).

Interestingly, amid the earlier known gene regions for MetS and related metabolic traits that were
genotyped in the replication phase, variants-rs1800775 (p = 3.48 × 10−9) and rs3816117 (p = 7.71 × 10−9)
within/near the CETP gene were associated with MetS at genome-wide significance levels in Indians
(Table 1, Supplemental Table S2, Figure 1). This was followed by modest associations of an additional
five CETP loci-rs7205804 (p = 1.58 × 10−6), rs1532624 (p = 5.57 × 10−6), rs3764261 (p = 9.52 × 10−5),
rs247617 (p = 1.67 × 10−4), and rs173539 (p = 3.48 × 10−4) (Table 1, Supplemental Table S2, Figure 1).

Table 1. Association status of known metabolic traits associated gene regions with MetS in replication
phase in Indians (p < 1 × 10−3).

Replication Phase

Gene Region CHR Start Base Pair (hg19) Number of SNPs p-Value (Lead SNP) N

CETP 16 56988044 7 3.48 × 10−9 4671
MC4R 18 57851097 2 3.66 × 10−4 4666

LPL 8 19919655 1 8.82 × 10−4 4650

Association analysis with compound MetS phenotype, adjusted for age and sex as covariates. Start base pair is
position of farthest 5′ SNP in context of gene. CHR: Chromosome; N: Number of non-missing individuals.

The identified GWAS variant near CETP in Indians—rs1800775 (C allele)—has been recently
demonstrated to have a nominal association with risk of MetS and its individual components (high FG
and low HDL-C levels) in the Uyghur ethnic group of China [52]. Besides, another GWAS locus within
CETP-rs3816117, though not documented in association with MetS until now, is in strong LD with
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rs1800775 in Africans, Americans, Asians, and Europeans (both r2 and D’ > 0.9) [53], including Indians
(r2 = 0.88, D’ = 0.95) [Supplemental Figure S5], suggesting it’s potential association with MetS and
related components in certain ethnic origins. Supplemental Figure S6 depicts a regional association
plot of signals within/near ± 1 Mb of CETP gene region in discovery phase, replication phase and
meta-analysis in Indians.

CETP gene(cholesteryl ester transfer protein) mRNA is primarily expressed by the spleen, adipose
tissue, kidney, liver, lungs, and thyroid [48]. CETP protein plays an important role in the net transport
of neutral lipids such as cholesteryl esters and triglycerides [54]. It transfers cholesteryl esters of
high-density lipoproteins (HDL) to very low-density lipoproteins (VLDL), in exchange for equimolar
amounts of triglyceride from VLDL or chylomicrons to HDL [54]. CETP is also a central protein that
maintains the reverse cholesterol transport pathway, wherein overloaded cholesterol is taken from
peripheral tissues and restored to the liver for removal from the body [54].

The CETP gene is vastly polymorphic. Our identified CETP loci serve as strong cis-expression
quantitative trait signals (cis-eQTL) in various human tissues including liver stomach, aorta artery,
pancreas, and subcutaneous adipose tissue etc., thereby affecting the expression of their occupied
gene [Supplemental Table S3]. These variants also confer risk for various cardiometabolic and mental
health diseases including dyslipidemia, coronary artery disease, hypertension, obesity, type 2 diabetes,
depression, bipolar disorder, and schizophrenia [Supplemental Table S3].

It has been found that high CETP protein activity lowers the concentration of HDL-C [55]. A few
functional genetic variants in this gene also present lower plasma protein levels and activity, with parallel
increases in HDL-C levels [56,57]. For instance, our identified GWAS locus for MetS—rs1800775-A
(protective allele), located in promoter region of the CETP gene—has been reported to affect the
promoter activity and thereby lowers the gene expression [58], which may have further influence
on encoded protein function to maintain lipid levels in the body. This was further demonstrated in
another interesting report where subjects with rs1800775-A displayed reduced CETP protein level and
activity, and higher HDL-C and apolipoprotein A-I concentrations [59].

On similar lines, rs1800775-A has been shown to confer protection for coronary artery disease
(CAD) in a recent large-scale GWAS conducted in individuals from the United Kingdom [60]. In addition
to rs1800775, other CETP variants, rs247616 and rs1532624, have also been linked to influencing the
risk of CAD in Polish populations [61], and rs173539 with coronary artery calcification in a GWAS
conducted with Finnish individuals [62].

Further, two variants near MC4R-rs17782313 (p = 3.66 × 10−4) and rs12970134 (p = 6.75 × 10−4),
and one variant near LPL-rs4128744 (p = 8.82 × 10−4) were also modestly associated with MetS in the
replication phase in Indians (Table 1, Supplemental Table S2, Figure 1). Discovered MC4R locus is a
previously documented signal for obesity and type 2 diabetes (rs17782313 and rs12970134) in multiple
ethnic cohorts [41]. Moreover, one variant within ZNF259-rs964184 (p = 2.61 × 10−3), an earlier reported
variant for MetS [21], also featured a nominal association with MetS in Indians (Supplemental Table S4).

Genetic variance is essentially governed by multiple SNPs of little effect size that are frequently
neglected due to strict GWAS p-value limits and multiple testing corrections [63]. We did not detect
any genome-wide significant signal in combined analysis during meta-analysis of the discovery and
replication phases (Table 2). We only observed a novel sub-GWAS level association (p < 1 × 10−4)
of locus rs16890462 (p = 8.75 × 10−5), that is 23kb 5’ of SFRP1 locus, for the first time in association
with MetS in Indians (Table 2, Figure 1). This was followed by modest associations with other
signals in STK32B, IFLTD1, EYS, CAND1, ZHX2, LOC283867, UBE3A, MPHOSPH6, C7orf10, ASTN2,
LOC284688, ZNF460, MGAT4A, NEDD1, LOC201617, HAAO, RALA, PPP1R3A, RASGEF1C, CCNH,
and LOC100505768 genes (Table 2, Figure 1).
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Table 2. Novel signals associated with MetS (p-value < 1 × 10−3) in meta-analysis in Indians.

Discovery Phase Replication Phase Meta-Analysis

SNP CHR Base
Position

Nearby
Gene

SNP
Location

Alleles
(Effect/Other) MAF N p-Value OR N p-Value OR p-Value OR Dir I Q

rs16890462 8 41309355 SFRP1 Intergenic A/G 0.21 2156 5.48 × 10−3 1.29 3259 5.51 × 10−3 1.25 8.75 × 10−5 1.26 ++ 0 0.78

rs1530611 4 5206254 STK32B intronic A/G 0.29 2148 6.69 × 10−3 1.23 3257 6.37 × 10−3 1.21 1.18 × 10−4 1.22 ++ 0 0.89

rs11048180 12 25735148 IFLTD1 intergenic A/G 0.08 2157 5.46 × 10−4 0.66 3259 0.04 0.8 1.25 × 10−4 0.73 – 31.56 0.23

rs16896746 6 66289412 EYS intronic G/A 0.08 2156 4.32 × 10−5 0.62 3259 0.1 0.86 1.51 × 10−4 0.73 – 75.4 0.04

rs710630 12 65983583 CAND1 intronic G/A 0.46 2158 0.01 1.18 3259 4.61 × 10−3 1.19 2.08 × 10−4 1.19 ++ 0 0.91

rs710628 12 65943747 CAND1 intergenic A/G 0.46 2157 0.01 1.18 3258 5.53 × 10−3 1.19 2.47 × 10−4 1.18 ++ 0 0.93

rs7005211 8 123538147 ZHX2 intergenic G/A 0.47 2155 6.69 × 10−3 0.83 4654 8.90 × 10−3 0.89 2.72 × 10−4 0.87 – 0 0.33

rs1060350 12 65992732 CAND1 synonymous G/A 0.48 2157 6.15 × 10−3 1.21 3254 0.01 1.16 2.85 × 10−4 1.18 ++ 0 0.67

rs1152877 12 65989452 CAND1 intronic G/A 0.48 2155 5.50 × 10−3 1.22 3220 0.01 1.16 2.89 × 10−4 1.18 ++ 0 0.62

rs564210 16 64314818 LOC283867 intergenic A/G 0.26 2156 3.55 × 10−4 0.76 3251 0.1 0.89 3.30 × 10−4 0.83 – 60.29 0.11

rs12595506 15 25744981 UBE3A intergenic G/A 0.39 2156 0.01 1.19 7930 4.99 ×10−3 1.1 3.53 × 10−4 1.11 ++ 0.22 0.32

rs2967379 16 80770811 MPHOSPH6 intergenic G/A 0.49 2156 4.52 × 10−6 0.73 3258 0.4 0.96 3.69 × 10−4 0.84 – 88.69 2 × 10−3

rs10499618 7 40787165 C7orf10 intronic G/A 0.11 2158 3.98 × 10−3 1.41 3257 0.03 1.26 3.82 × 10−4 1.32 ++ 0 0.48

rs1337212 9 119239170 ASTN2 intergenic A/G 0.11 2157 4.53 × 10−4 1.55 3259 0.09 1.18 3.93 × 10−4 1.31 ++ 62.74 0.1

rs7554931 1 170365623 LOC284688 intergenic A/G 0.41 2157 2.91 × 10−3 0.81 4673 0.01 0.9 3.98 × 10−4 0.87 – 44.4 0.18

rs3746228 19 57804362 ZNF460 3’-UTR A/G 0.18 2158 7.18 × 10−4 1.38 4529 0.03 1.13 4.02 × 10−4 1.18 ++ 70.48 0.06

rs885036 2 98671225 MGAT4A intronic G/A 0.49 2157 2.96 × 10−5 1.35 3254 0.3 1.07 4.18 × 10−4 1.18 ++ 83.49 0.01

rs1066396 12 66005634 CAND1 intergenic G/A 0.48 2157 6.14 × 10−3 1.21 3254 0.02 1.15 4.37 × 10−4 1.17 ++ 0 0.59

rs11108860 12 96081536 NEDD1 intergenic G/A 0.04 2157 8.72 × 10−7 0.45 3259 0.9 1.01 4.52 × 10−4 0.66 -+ 91.59 6 × 10−4

rs4677119 3 72291958 LOC201617 intergenic A/G 0.33 2158 5.76 × 10−3 0.81 4653 0.01 0.89 4.80 × 10−4 0.87 – 22.01 0.26

rs9309089 2 43028132 HAAO intergenic A/G 0.35 2158 0.1 1.12 4623 1.54 × 10−3 1.15 5 × 10−4 1.14 ++ 0 0.72

rs6948816 7 39661439 RALA intronic A/G 0.03 2158 5.36 × 10−3 0.62 3257 0.03 0.69 5.13 × 10−4 0.65 – 0 0.62

rs10983653 9 119237233 ASTN2 intergenic A/G 0.11 2158 6.15 × 10−4 1.53 3259 0.09 1.19 5.14 × 10−4 1.31 ++ 60.43 0.11

rs1333144 1 170364401 LOC284688 intergenic G/A 0.41 2157 5.40 × 10−3 0.82 4654 0.02 0.9 5.92 × 10−4 0.88 – 27.92 0.24

rs17530234 7 40783104 C7orf10 intronic G/A 0.11 2155 5.49 × 10−3 1.38 3258 0.03 1.24 6.25 × 10−4 1.3 ++ 0 0.49

rs2462683 7 112971889 PPP1R3A intergenic G/A 0.34 2158 6.34 × 10−4 1.3 3257 0.1 1.11 6.51 × 10−4 1.18 ++ 59.06 0.12

rs11749727 5 179540965 RASGEF1C intronic G/A 0.44 2156 6.75 × 10−3 1.21 3258 0.03 1.15 6.59 × 10−4 1.17 ++ 0 0.55

rs475479 16 64324819 LOC283867 intergenic G/A 0.26 2158 5.41 × 10−4 0.76 3259 0.1 0.9 7.12 × 10−4 0.83 – 61.71 0.12
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Table 2. Cont.

Discovery Phase Replication Phase Meta-Analysis

SNP CHR Base
Position

Nearby
Gene

SNP
Location

Alleles
(Effect/Other) MAF N p-Value OR N p-Value OR p-Value OR Dir I Q

rs35814902 5 86835416 CCNH intergenic A/G 0.32 2158 5.04 × 10−3 1.24 4573 0.02 1.11 8.01 × 10−4 1.13 ++ 38.95 0.2

rs17529882 7 40761636 C7orf10 intronic G/A 0.09 2157 2.10 × 10−3 1.48 3259 0.08 1.22 8.28 × 10−4 1.32 ++ 26.33 0.24

rs17456070 1 87599332 LOC100505768 intronic G/A 0.30 2155 0.05 0.86 3257 5.98 ×10−3 0.83 8.56 × 10−4 0.84 – 0 0.74

rs12650617 4 5238437 STK32B intronic A/G 0.22 2157 3.35 × 10−5 1.45 3245 0.3 1.07 8.81 × 10−4 1.21 ++ 85.49 8.70 × 10−3

rs13177543 5 86842168 CCNH intergenic A/G 0.32 2158 5.04 × 10−3 1.24 4658 0.03 1.1 9.93 × 10−4 1.13 ++ 42.89 0.18

Novel loci associated with compound MetS phenotype in meta-analysis, adjusted for age, sex, and first two principal components in discovery phase, and age and sex in replication phase.
Meta-analysis was done using fixed effect inverse variance method in PLINK. SNP location is position of SNP in context of gene. CHR: Chromosome; MAF: Minor allele frequency; N:
Sample number; OR: Odds ratio; Dir: Direction; I: I2 heterogeneity index (0–100); Q: p-value for Cochrane’s Q statistic. Direction ++/– features a concordance between the discovery and
replication phase.
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3.2. Conditional Analysis of CETP Locus

To classify robust independent variants within the CETP locus, conditional analysis was
performed using a logistic regression model. Identified GWAS significant CETP loci—rs1800775
and rs3816117—were the primary leading signals in the MetS-associated CETP region (Supplemental
Table S5). Association of other variants with MetS were lost upon adjusting for genotypes of rs1800775
and rs3816117.

However, the remaining five CETP loci—rs7205804, rs1532624, rs3764261, rs247617, and
rs173539—also had prominent influence on leading GWAS loci (rs1800775 and rs3816117), as adjustment
with genotypes of these five loci resulted in loss of genome-wide significance of GWAS loci, though
nominal significance was maintained (Supplemental Table S5).

All the identified CETP SNPs are in moderate–high LD with each other in Indians (r2 = 0.32–0.99,
D’ = 0.75–1) (Supplemental Figure S5).

3.3. Haplotype Association Analysis

Haplotype analysis revealed a stronger haplotype within CETP locus (OR = 1.26, p = 7.97 × 10−8

for GCCCAGC haplotype) harboring risk alleles of SNPs rs173539, rs247617, rs3764261, rs1800775,
rs3816117, rs7205804, and rs1532624 respectively for association with MetS in Indians (Supplemental
Table S6).

3.4. SFRP1—A Novel Sub-GWAS Locus for MetS in Indians

We searched for all reported genetic variants within/near our novel sub-GWAS significant SFRP1
locus. The region has never been reported for metabolic syndrome [43]. However, an intergenic
signal-rs973441 near SFRP1 has been robustly associated (p = 3.4 × 10−8) with Type 2 diabetes in a
GWAS conducted in Europeans [43]. Indeed, the SFRP1 locus has also been modestly associated with
all MetS component phenotypes including—waist circumference, fasting glucose, HDL cholesterol,
triglycerides, and systolic and diastolic blood pressure, as evident from literature [43].

3.5. Imputation Analysis of Novel Locus

For SFRP1, we perceived few variants that exhibited greater significance with MetS than index
variant rs16890462 (Supplemental Table S7). Imputation analysis pipeline has been briefly described in
Supplemental Figure S7. A few imputed variants (rs57208963, rs73628732, rs58109926, rs11986767,
and rs76305295) were positioned in key regulatory elements and modulated strong binding sites for
several key transcription factors like RREB1, Nkx2-5, SREBF2, HNF4G, and EBF1, respectively, that
have been already implicated earlier in the context of metabolic disease and associated complications.
The identified variants may affect the binding of these transcription factors to SFRP1 genic regions,
and thereby alter the transcriptional and translational levels of SFRP1 mRNA and protein levels.

3.6. SFRP1, a Biologically Relevant Locus

Interestingly, the SFRP1 gene was found to be considerably expressed in human
subcutaneous/visceral adipose tissue and kidney-cortex, and weakly in liver, skeletal muscle, pancreas,
and whole blood [Supplemental Figure S8]. This gene encodes SFRP1 protein (secreted frizzled
related protein 1), which is a soluble inhibitor of Wnt/β-catenin signaling pathway [54], a key pathway
that maintains adipocyte differentiation [64,65]. It has been shown that adding recombinant SFRP1
protein to 3T3-L1 adipocyte cells hampers the antiadipogenic Wnt/β-catenin pathway and stimulates
preadipocyte differentiation [66]. Further, another interesting study found SFRP1 deficient mice to
display augmented adiposity, deregulated glucose homeostasis, and elevated inflammation in response
to diet induced obesity [67].

In humans, both RNA and protein levels of SFRP1 are increased in slightly obese subjects that
get lowered in morbidly obese individuals due to extreme body weight [66]. Moreover, increased



Biomolecules 2019, 9, 321 11 of 17

obesity results in elevated proinflammatory cytokine secretion and macrophage-infiltration where
SFRP1 and Wnt5a are speculated to modulate the inflammatory response. For instance, Wnt5a, which
is secreted by antigen presenting cells in joints of rheumatoid arthritis patients, facilitates production
of cytokines, like Interleukins (IL-1, IL-6 and IL-8) via Fzd5-CamKII non-canonical Wnt signaling [68].
SFRP1 has been demonstrated to hinder this process [69] and also inhibits the activation of leukocytes
and cytokine production in vitro [70], in addition to reducing infiltration of neutrophils in ischemic
tissue in vivo [71]. These studies indicate an important role of SFRP1 in fine tuning the adipogenesis,
glucose metabolism and, inflammatory response.

Besides, adipose tissue, SFRP1 is also considerably expressed in the kidney cortex (Supplemental
Figure S8). The Wnt/β-catenin pathway, which is also regulated by SFRP1 protein, is a critical regulator
of various important cellular functions including maintenance of homeostatic state, embryonic
development, and tissue injury [72]. This pathway also gets activated during kidney development and
renal injury besides adipocyte differentiation [64,65,73].

A study found increased SFRP1 protein expression in mice models of kidney injury [74]. In addition,
they also found that in these models, kidneys of SFRP1 knock-out mice showed enhanced renal fibrosis,
suggesting it as a protective factor to inhibit renal fibrosis, an initial stage for successive renal
diseases [74]. This is in agreement with SFRP1’s protective role for influencing a few metabolic
syndrome component phenotypes as well [67]. Also, individuals with metabolic syndrome are
under greater risk for microalbuminuria/chronic kidney diseases in later stages, depending on the
number of aggregated components of metabolic syndrome [75]. In some instances, hypertension,
which is one of the components of metabolic syndrome, is considered a prime risk factor for kidney
related complications [76]. Thus, metabolic syndrome represents an initial precursor for renal
complications where SFRP1 may serve as an essential protective factor linking metabolic syndrome
with renal complications.

Further, to decode the likely functional role of our identified SFRP1 variant, rs16890462, we explored
the open chromatin features, active and repressive histone modifications (H3K36me3 and H3K27me3
respectively), transcription factor (TF), and CTCF binding sites in human subcutaneous adipose tissue.
ATAC-seq and histone marks data suggested the desired region under closed chromatin state in
subcutaneous adipose tissue, displayed by substantially higher enrichment for H3K27me3 and CTCF
marks and an absence of H3K36me3 marks, which symbolizes repressive chromatin state (Figure 2).
Further, dynamic peaks of CTCF binding and hypermethylation (from WGBS data) at variant regions in
adipose tissue indicates its potential regulatory activity [Figure 2]. Intriguingly, the variant represented
strong binding sites for Nfe212 (also known as NRF2), a crucial transcription factor implicated in
obesity and metabolic syndrome [77].
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Figure 2. Regulatory features of SFRP1 locus - rs16890462. Gene regulatory signatures in human subcutaneous adipose tissue. H3K36me3: Active transcription; 
H3K27me3: Repressed transcription; ATAC-seq peaks: Open chromatin; CTCF: TF that is enriched in repressed genic regions [ENCODE data]. Predicted binding 
sites for TFs where gray scale denotes enrichment of TF [JASPAR data]. 

 

Figure 2. Regulatory features of SFRP1 locus - rs16890462. Gene regulatory signatures in human subcutaneous adipose tissue. H3K36me3: Active transcription;
H3K27me3: Repressed transcription; ATAC-seq peaks: Open chromatin; CTCF: TF that is enriched in repressed genic regions [ENCODE data]. Predicted binding sites
for TFs where gray scale denotes enrichment of TF [JASPAR data].
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4. Conclusions

Lipid metabolism is closely coupled with energy balance cycle and physiological homeostasis.
Lipid molecules are involved in diverse biological functions ranging from acting as long-term energy
depots to a variety of signaling functions. Deregulated lipid metabolism is increasingly being implicated
in plentiful metabolic diseases including obesity, cardiovascular disease, and diabetes. CETP as a
quantitative trait locus for lipid levels in human body is already established. Here, our study reveals
association of CETP loci with MetS, which is a precursor for numerous complex disease phenotypes.
So, in future, CETP may serve as a potential drug target for MetS.

In conclusion, our study assigns CETP, a known gene controlling lipid homeostasis, as a major
locus for regulating MetS pathophysiology in Indians. We also discovered a novel sub-GWAS locus in
SFRP1, which has already been functionally tested in mice and humans to regulate a few individual
components of MetS, including obesity and glucose metabolism.

Supplementary Materials: The following are available online. Figure S1: Brief data analysis pipeline employed
in the study; Figure S2: Data quality control executed in discovery and replication phase of the study; Figure S3:
Statistical power of the study; Figure S4: Quantile-Quantile plot (QQ plot) between calculated and theoretical
distribution of p-values in discovery phase; Figure S5: Pairwise linkage disequilibrium (LD) between the 7 CETP
variants associated with MetS in the present study; Figure S6: Regional association plots of CETP signals in
discovery phase, replication phase, and meta-analysis; Figure S7: Imputation flow chart for signal near SFRP1;
Figure S8: Gene expression summary of SFRP1 in major human tissues related to MetS; Table S1: Characteristics
of study population; Table S2: Association status of known metabolic traits associated GWAS variants with MetS
in replication phase in Indians (p < 1 × 10−3); Table S3: Reported eQTL and trait/disease associations of CETP
region; Table S4: Association status of known metabolic traits associated GWAS variants with MetS in replication
phase in Indians (1 × 10−3 < p > 0.05); Table S5: Conditional analysis of CETP variants in Indians; Table S6:
Haplotype association analysis of CETP locus for rs173539, rs247617, rs3764261, rs1800775, rs3816117, rs7205804,
and rs1532624 respectively; Table S7: Association analysis of novel imputed SFRP1 variants with MetS in Indians.
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