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TADCompare: An R Package for
Differential and Temporal Analysis of
Topologically Associated Domains

Kellen G. Cresswell † and Mikhail G. Dozmorov*†

Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States

Recent research using chromatin conformation capture technologies, such as Hi-C, has

demonstrated the importance of topologically associated domains (TADs) and smaller

chromatin loops, collectively referred hereafter as “interacting domains.” Many such

domains change during development or disease, and exhibit cell- and condition-specific

differences. Quantification of the dynamic behavior of interacting domains will help

to better understand genome regulation. Methods for comparing interacting domains

between cells and conditions are highly limited. We developed TADCompare, a

method for differential analysis of boundaries of interacting domains between two or

more Hi-C datasets. TADCompare is based on a spectral clustering-derived measure

called the eigenvector gap, which enables a loci-by-loci comparison of boundary

differences. Using this measure, we introduce methods for identifying differential and

consensus boundaries of interacting domains and tracking boundary changes over

time. We further propose a novel framework for the systematic classification of

boundary changes. Colocalization- and gene enrichment analysis of different types

of boundary changes demonstrated distinct biological functionality associated with

them. TADCompare is available on https://github.com/dozmorovlab/TADCompare and

Bioconductor (submitted).

Keywords: Hi-C, chromosome conformation capture, topologically associated domains (TADs), differential

analysis, TADCompare

1. INTRODUCTION

Recent research indisputably proves the importance of the three-dimensional (3D) genome
organization in regulating gene expression and other genomic processes (Osborne et al., 2004;
Schoenfelder et al., 2010a,b; Tanizawa et al., 2010; Steensel, 2011; Li et al., 2012; Papantonis and
Cook, 2013; Shavit and Lio, 2014; Symmons et al., 2014; Mifsud et al., 2015; Sexton and Cavalli,
2015; Franke et al., 2016; Mora et al., 2016). The 3D genomic structures consists of chromosome
territories (Cremer and Cremer, 2010), A/B compartments corresponding to active/repressed
chromatin (Lieberman-Aiden et al., 2009; Rao et al., 2014), topologically associated domains
(TADs) (Jackson and Pombo, 1998; Ma et al., 1998; Dekker et al., 2002; Dixon et al., 2012;
Nora et al., 2012; Sexton et al., 2012; Bonev et al., 2017), smaller sub-TADs (Phillips-Cremins
and Corces, 2013; Rao et al., 2014) and chromatin loops (Dowen et al., 2014; Rao et al., 2014;
Denker and Laat, 2016; Ji et al., 2016). These structures help to regulate global gene expression
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(de Laat and Grosveld, 2003; Osborne et al., 2004; Schoenfelder
et al., 2010a,b; Tanizawa et al., 2010; Steensel, 2011; Li et al.,
2012; Papantonis andCook, 2013; Shavit and Lio, 2014; Symmons
et al., 2014; Mifsud et al., 2015; Sexton and Cavalli, 2015;
Franke et al., 2016; Mora et al., 2016). Consequently, coordinated
changes in the 3D structures (Yaffe and Tanay, 2011; Dai and
Dai, 2012; Symmons et al., 2014) determine cell type-specific
gene expression and identity (Schoenfelder et al., 2010b; Dekker
et al., 2013; Jin et al., 2013; Phillips-Cremins and Corces, 2013;
Dowen et al., 2014; Rao et al., 2014; Vietri Rudan et al., 2015; Ji
et al., 2016), guide recombination (Jhunjhunwala et al., 2009), X
chromosome inactivation (Nora et al., 2012; Crane et al., 2015).
Many 3D structures are largely invariant between different cell
types, and even conserved between mammalian species (Dixon
et al., 2012; Nora et al., 2012; Naumova et al., 2013; Pope et al.,
2014; Rao et al., 2014; Vietri Rudan et al., 2015), indicating their
high biological importance during genome evolution.

Despite the high level of conservation, recent research
uncovered the dynamic nature of the 3D genomic structures,
and this plasticity accompanies various biological functions and
phenomena (Yu and Ren, 2017). In Drosophila, exposure to
heat-shock caused local changes in certain TAD boundaries
resulting in TAD merging (Li et al., 2015). Another recent
study showed that during motor neuron (MN) differentiation
in mammals, TAD and sub-TAD boundaries in the Hox
cluster are not rigid, and their plasticity is linked to changes
in gene expression during differentiation (Narendra et al.,
2016). The global organization of the 3D genomic structure
is found in mitosis (Nagano et al., 2017), the earliest stages
of mammalian lineage development (Dixon et al., 2015; Bonev
et al., 2017; Du et al., 2017; Ke et al., 2017), and somatic
cell reprogramming of pluripotent stem cells (Novo et al.,
2018; Zhang et al., 2018). Fusion of TADs (Nora et al., 2012;
Dowen et al., 2014; Guo et al., 2015; Sanborn et al., 2015;
Tang et al., 2015; Flavahan et al., 2016; Fudenberg et al.,
2016), creation or destruction of sub-TADs within existing TAD
boundaries (Lupiáñez et al., 2016; Taberlay et al., 2016), and/or
switching TAD states between active and inactive conformations
(Lieberman-Aiden et al., 2009; Dixon et al., 2012) has been
associated with a variety of phenotypes (Misteli, 2010; Krijger
and Laat, 2016; Spielmann et al., 2018), ranging from limb
malformation (Lupiáñez et al., 2016), congenital disorders (Ibn-
Salem et al., 2014), to cancer (Mitelman, 2000; Rickman et al.,
2012; Gr̀‘oschel et al., 2014; Barutcu et al., 2015; Corces and
Corces, 2016; Flavahan et al., 2016; Hnisz et al., 2016; Krijger
and Laat, 2016; Lupiáñez et al., 2016; Valton and Dekker, 2016).
Chromatin loops are even more dynamic and change during
the cell cycle and other cellular events (Sanborn et al., 2015;
Fudenberg et al., 2016; Golfier et al., 2019). These observations
highlight the importance of studying changes in the boundaries
of interacting domains as a means to understand genomic
regulation. However, methods for identifying these changes
remain underdeveloped.

To our knowledge, there are only three methods that can
be adapted for detecting changes in boundaries of interacting
domains; the majority have been developed for the detection
of TAD-specific boundary changes. Among the three methods,

localtadsim (Sauerwald et al., 2020), HiCDB (Chen et al., 2018),
and DiffTAD (Zaborowski and Wilczynski, 2016), none provide
an intuitive, easy to use way of calling differential boundaries.
Both localtadsim and DiffTAD are two-step procedures requiring
separately defined TADs and comparing them using a command-
line utility. HiCDB has a built-in TAD caller but does not allow
for comparisons of chromosome-specific contact matrices. All
three methods require highly specific data types and file names to
be able to run. The lack of usability is compounded with issues,
such as a lack of upkeep, slow runtimes, and lack of statistical
rigor (Supplementary Methods).

As the costs of Hi-C data continue to drop, several studies
started to investigate the dynamics of 3D changes over time.
The most notable applications include cell differentiation studies
(Bonev et al., 2017), embryonic development (Du et al., 2017;
Hug et al., 2017; Ke et al., 2017), cancer progression (Zhou et al.,
2019). Typically, TAD boundary changes over time are quantified
by overlap (Du et al., 2017; Hug et al., 2017) and classified into
distinct patterns (Zhou et al., 2019). However, general-purpose
methods for systematic analysis of boundary changes over time
do not exist.

The number of replicates for Hi-C experiments continue to
rise, requiring methods for defining consistent boundaries of
interacting domains across replicates of Hi-C data. Two primary
approaches have been developed to identify TAD boundaries
across multiple replicates. The first approach involves merging
all replicates into a consensus contact matrix and then calling
interacting domains [e.g., Arrowhead (Rao et al., 2014)]. The
second is to call domains on individual replicates and aggregate
them. A third approach available in the TADBit tool (Serra
et al., 2017) allows for the alignment of TAD boundaries
to a reference set of boundaries. This method relies on the
reference set being “true boundaries” and is potentially sensitive
to the selection of reference boundaries. Altogether, methods for
detecting consensus boundaries of interacting domains across
Hi-C datasets remain underdeveloped.

We developed TADCompare, an R package aimed at
providing a fast, accurate, user-friendly, and well-documented
approach to differential analysis of boundaries of TADs and
chromatin loops. We introduce a method based on the boundary
score statistic (Cresswell et al., 2019) and use it to identify
five types of boundary changes. The method is extended to
allow for calling consensus boundaries and comparing them
between groups of Hi-C replicates. We further demonstrate
how the boundary score statistic may be used to analyze the
dynamics of boundaries of interacting domains over the time
course. For both differential boundary detection and time course
analysis, we provide novel terminology for the classification
of boundary changes. We demonstrated the robustness of
TADCompare using simulated data with pre-defined interacting
domains (Forcato et al., 2017) and its ability to reveal distinct
biological roles of different boundary changes. In summary,
TADCompare provides an all-in-one pipeline from consensus
boundary calling to differential boundary detection, including
time course. The output is formatted in a commonly used
BED format that allows for flexible downstream analyses
and visualization.
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2. METHODS

2.1. Representation of Hi-C Data as a
Graph
For a given Hi-C experiment, Hi-C data is represented by
a chromosome-specific contact matrix C of non-overlapping
regions (aka bins) of size r (resolution of the data). Each entry
Cij corresponds to the number of contacts between region i and
region j. Previous work has shown that this contact matrix is
essentially an analog of the adjacency matrix found in graph
theory and Hi-C data can be thought of as a naturally occurring
graph where edges are contacts and vertices are genomic regions
(Boulos et al., 2013; Wang et al., 2013, 2019; Cresswell et al.,
2019), or genes associated with them (Merelli et al., 2013). The
graph representation of Hi-C data is the foundation of our
method and allows us to use a graph-clustering based approach
to identify and analyze TADs.

2.2. Calculating the Graph Spectrum
The first step of our method is to calculate the graph spectrum,
defined as the eigenvectors of the Laplacian of an adjacency
matrix. Using the interpretation of the contact matrix as a
naturally occurring adjacency matrix, we calculate the Laplacian
directly from the contact data. Briefly, the graph spectrum for a
given contact matrix is calculated as follows:

1. Calculate the normalized Laplacian L̄:

L̄ = D− 1
2CD− 1

2

whereD = diag(1TC), where 1 is a column vector of size C where
each entry is 1.D can be thought of as a vector containing the sum
of the degrees for a given node.

2. Perform an eigendecomposition of the Laplacian:

L̄v = λv

In practice, we calculate the first two eigenvectors with the largest
absolute values of eigenvalues and organize them into a matrix
V̄ with dimensions i × 2, where i is the number of regions in
the contact matrix. V̄ is referred to as the graph spectrum of the
contact matrix.

2.3. Eigenvector Gap as a Measure of
Pattern Change
We can think of each row of the matrix V̄ as a quantification
of the pattern of contacts in each region of the contact matrix.
Previous work (Cresswell et al., 2019) has demonstrated that
by taking the Euclidean distance between row Vi. and its
neighboring row V(i+1)., one can measure the similarity in
the pattern of contacts between region i and region i + 1
of the chromosome, termed “eigenvector gap.” A boundary
between interacting regions manifests itself as a sudden break
in the pattern of contacts. This pattern is reflected in the
eigenvector gap by a spike in gap size followed by and preceded
by smaller gaps (Figure 1). The eigenvector gap quantifies the
degree of this break, acting as a proxy for TAD boundary

FIGURE 1 | Boundary score distinguishes boundaries better than monotonic

metrics. Boundary scores calculated with four methods: directionality index,

insulation score, RobusTAD, and TADCompare are shown. X-axis—distance

from the boundary, measured in bins (40 kb each), Y-axis—score (signed log10

values centered at zero). Results from five simulated contact matrices, 40 kb

resolution, with manually annotated boundaries (Forcato et al., 2017) are

shown.

likelihood. To calculate the eigenvector gaps, we perform the
following procedure:

1. Normalize columns of V̄ to sum to 1:

V̂ ij =
V̄ ij

‖V̄ .j‖

where the subscript .j corresponds to column j.

2. Normalize V̂ and project onto a unit circle:

Z̃ = Diag(diag−
1
2 (V̂ i.V̂ i.

T))V̂ i.

3. Calculate the distance between neighboring regions (rows i
and i− 1 of Z̃) and store in a vector Di:

Di =

√

(Z̃i1 − Z̃(i−1)1)2 + (Z̃i2 − Z̃(i−1)2)2

We refer to D as the vector where each entry Di is referred
to as an eigenvector gap. Formally, an eigenvector gap is the
Euclidean distance between each successive row of the first two
eigenvectors. In practical terms, the eigenvector gap for a given
locus is a measure of how likely that loci is a boundary.

To maintain the association of each entry of the vector with
its corresponding matrix region, a placeholder is used in the first
entry of the vector. This is necessary because we cannot calculate

Frontiers in Genetics | www.frontiersin.org 3 March 2020 | Volume 11 | Article 158

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cresswell and Dozmorov TADCompare: Differential and Temporal Analysis of TADs

an eigenvector gap for the first entry of the contact matrix due to
a lack of left-bound neighbor. In mathematical terms, this means
that for a matrix of size n the total number of eigenvector gaps
is n− 1.

2.4. Converting Eigenvector Gaps to
Boundary Scores
We showed that the distribution of eigenvector gaps
can be approximated by a log-normal distribution
(Supplementary Figure 1). The log-normality allows us to
convert the eigenvector gap values into boundary scores:

Bi =
(ln(Di)− µ)

σ 2

where ln(D) ∼ N(µ, σ 2) where µ and σ 2 are the mean and
variance of the distribution of the natural log of the eigenvector
gaps, respectively, and B is a vector of boundary scores with a
N(0,1) distribution. In practice, this value is simply the Z-score
for the natural log of eigenvector gaps.

2.5. Sliding Window Eigenvector Gap
Calculation
The frequency of interactions decays following power law as the
distance between the interacting regions increases (Lajoie et al.,
2015). This decay leads to noisy and non-informative interactions
farther off-diagonal of the contact matrix. To alleviate the effect
of noisy distant interactions, we perform spectral decomposition
within a fixed-size window that moves along the diagonal of the
matrix. For instance, a window size of 15 bins (default setting,
Supplementary Figure 2) means that only values within 15 bins
of the diagonal will be used to calculate the eigenvector gap.
The sliding window approach improves the performance of the
eigenvector gap calculation (Cresswell et al., 2019). Additionally,
it provides for faster calculations, operating on many small
matrices instead of one large matrix. In general, we found that the
results are robust to window size (Supplementary Figure 2). At
higher levels of noise and sparsity, we found that larger windows
tend to perform marginally better (Supplementary Figure 2).
This is likely due to the fact that more data points are needed
to capture pattern change in these scenarios. To achieve a good
compromise on performance, we used a window size of 15 for
each resolution.

2.6. Handling of Non-informative Bins
Non-informative bins refer to bins with <20% of non-zero
interactions. This percentage is calculated based on regions
within our sliding window. Such bins can introduce instability
in the algorithm and lack important information. To counter
this, we remove these bins before the analysis. This is done for
both contact matrices such that, if one contact matrix contains a
non-informative bin at a given location and the other does not,
we remove it from both. This allows us to make a one-to-one
comparison of bins.

2.7. Differential Analysis Using Boundary
Scores
To define the differences between two contact matrices, P and
R, we compare their eigenvector gaps DP and DR, respectively.
Given that ln(DP) ∼ N(µP, σ

2
P ) and ln(DR) ∼ N(µR, σ

2
R),

it follows that ln(DP) − ln(DR) ∼ N(µP − µR, σ
2
P +

σ 2
R). These results allow us to calculate a vector of differential

boundary scores:

DBi =
(ln(DPi)− ln(DRi))− (µP − µR)

σ 2
P + σ 2

R

or more simply,

DBi =
σ 2
PBP − σ 2

RBR

σ 2
P + σ 2

R

where BP and BR are the boundary scores for the P and R
matrices, respectively. This score can be thought of as the
difference in boundary likelihood for a given locus in two data
sets. Due to the aforementioned normality of the difference in
log eigenvector gaps, DBi can be thought of as a simple z-score
where DB∼ N(0, 1).

Boundary differences may be visualized using the package’s
TADcompare::DiffPlot function (Supplementary Figure 3C), or
by external tools [e.g., HiCexplorer (Ramirez et al., 2018)].

2.8. Time Course Boundary Changes
Boundary scores provide a convenient method for modeling
the change of boundaries over time. For a given boundary, or,
any region of the genome, we can monitor the trajectory of
the boundary score. Over time, we can define boundary score
changes based on their deviation from a baseline level (typically,
the first time point). It is expected that these scores will be
relatively constant over time except in regions where a boundary
appears or disappears. The trend across time points can be
recorded and the pattern of change classified accordingly. Our
implementation of time course boundary analysis allows for the
usage of multiple replicates for a given time point. Briefly, at each
region of the genome, the consensus boundary score is calculated,
defined as the median of consensus scores across all replicates,
and is then used to identify boundaries.

2.9. Gene Enrichment Testing
All gene enrichment testing was performed using the GREAT
method (McLean et al., 2010) implemented in the rGREAT
(Version 2.0) R package. Briefly, we detect genes within 5 kb
upstream and 1 kb downstream of each type of boundary change,
similar to the work of others (Chen et al., 2018). For each Gene
Ontology (GO) and pathways, a hypergeometric test is then
performed to determine the over-representation of boundary-
associated genes. For all figures, we report results for GO
Biological Processes. Results for GO Molecular Function, GO
Cellular Component, MSigDB, and PANTHER pathways are
reported in tables.
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2.10. Colocalization Enrichment Testing
A permutation test was used to quantify the enrichment
of colocalization of boundaries of interest with genomic
annotations. Briefly, we flank each type of boundary change
(differential or time course) by 50 kb on each side and calculate
the mean number of genomic annotations across those regions
(observed enrichment). Next, we generate two sets of bins, one
the size of the boundaries which we are testing (considering the
flanking) and another the size of all other bins. The difference
in the mean number of genomic annotations colocalized with
boundaries of interest was calculated for each set (expected
enrichment). We repeat this procedure 10,000 times. We
calculate the permutation p-value by taking the number of
times the expected enrichment was greater than the observed
enrichment, and dividing by 10000. α = 0.05 was set to assess
statistical significance.

2.11. Data and Code Availability
All simulated data were downloaded from theHiCToolsCompare
repository (Forcato et al., 2017). In total, we used 25
simulated matrices with varying levels of noise. For sparsity
and downsampling analysis matrices were manually created
based on matrices from HiCToolsCompare matrices with the
minimum noise level (see Cresswell et al., 2019 for methods
description). Data for comparisons across cell lines, replicates,
and tissues were taken from (Schmitt et al., 2016), generated
at 40 kb resolution (Supplementary Table 1). Time course data
was taken from (Rao et al., 2017), HCT-116 human colon
cancer cell-line at four time points after auxin-treatment
withdrawal (20, 40, 60, 180min). Contact matrices were
generated at 25, 50, and 100 kb using the straw tool from Juicer
(Durand et al., 2016). Chromatin state data were taken from
chromHMM (Ernst and Kellis, 2010). Histone modifications
and transcription factor binding sites were downloaded from
the Encyclopedia of DNA Elements (ENCODE) (Davis et al.,
2018) (Supplementary Table 2). Scripts to recreate the results
presented in the paper are available at https://github.com/
cresswellkg/TADCompare_Paper. The TADCompare R package
is freely available on GitHub (https://github.com/dozmorovlab/
TADCompare) and on Bioconductor (submitted).

3. RESULTS

3.1. A Modified Spectral Clustering
Approach Is Better Suited for Boundary
Detection Than Other Approaches
Our previous work on TAD detection using spectral clustering,
implemented as a SpectralTAD R package (Cresswell et al., 2019),
introduced the concept of the boundary score statistic, adapted
here for differential boundary detection. Briefly, the boundary
score is calculated for each bin by sliding a window across the
diagonal of the contact matrix, calculating the eigenvectors of
the Laplacian matrix, finding the distance between consecutive
eigenvectors (eigenvector gap) and converting them into Z-
scores (boundary score, see Methods). The boundary score is a

continuous measure of the likelihood of a given region being a
boundary between interacting domains.

In contrast to other metrics for boundary identification that
rely on finding inflection points of monotonic functions, such
as directionality index (Dixon et al., 2012), insulation score
(Crane et al., 2015), RobusTAD score (Dali and Blanchette,
2017) (Supplementary Material), our boundary score spikes
at the boundary (Figure 1). This unique behavior enables
easy distinction between boundaries and non-boundaries. An
additional advantage of the boundary score is that its magnitude
is directly interpretable as a “boundary strength.” This is in
contrast to other methods which are only interpretable relative
to neighboring points. We can use this interpretability for
parametric modeling of boundary behavior. Our previous work
has shown that the boundary score is robust to noise, sparsity,
and changes in sequencing depth of Hi-C data (Cresswell et al.,
2019). Thus, the boundary score is well-suited for finding
differences in boundaries between interacting domains.

3.2. Differential Boundary Scores Translate
to Five Types of Boundary Changes
Differential boundary score is a measure of the difference
between boundaries between two samples. This score
follows a standard normal centered at 0 (see Methods,
Supplementary Figure 1). Differential boundaries are detected
by finding regions with the absolute differential boundary score
is >2 (Supplementary Figure 2), which intuitively corresponds
to differences with a p-value smaller than 0.05.

We divide boundary changes into five categories
(complex, split, merge, shifted, strength change; Figure 2,
Supplementary Figure 3). A similar strategy was used in Ke
et al. (2017). An interacting domain can be split between
the datasets, meaning it exists as a continuous domain in
one and is split into two or more domains in another. In
practice, this situation requires two shared boundaries and a
differential domain between them. Merging is the opposite of
splitting and arises when a boundary surrounded by two non-
differential boundaries disappears in one of the contact matrices.
Classification of boundary change as merged and split depends
on the reference contact matrix being compared to. Finally,
domains can be split in a complex way, meaning they are neither
split or merged but instead taking on an entirely new structure.
Merged and split boundaries represent the structural change
of the same domain as opposed to complex boundaries, which
we consider to be part of a completely different domain. The
“complex,” “merge,” and “split” boundaries are considered to be
the most disruptive changes in the 3D structure of the genome.

A shifted boundary is defined as the non-overlapping
boundary that lies within five bins (or another user-defined
threshold) of a boundary in the contact matrix in which it is
being compared to. A strength change occurs when a boundary
is present in both contact matrices, but its differential boundary
score magnitude is greater than the differential threshold of 2.
The other cases are considered to be non-differential boundaries.
This framework allows us to systematically compare and classify
boundary changes.
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FIGURE 2 | Five types of boundary changes. Complex, split, and merge

boundary changes are considered as the major differences, while shifted and

strength changes are considered as the minor differences.

3.3. Boundaries Are Highly Consistent in
Both Technical and Biological Replicates
Previous studies have shown that the overlap between TAD
boundaries in replicate data ranges from around 60 to 70%
(Dixon et al., 2012; Rao et al., 2014; Sauerwald et al., 2020).
Additionally, technical replicates have been shown to have a
slightly higher proportion of shared TAD boundaries (∼65%)
than biological replicates (∼60%) (Sauerwald et al., 2020).
We have tested and confirmed these observations by showing
that significantly more boundaries were non-differential in
technical replicates than in biological replicates (73 vs. 65.7%).
Similarly, 9.3/8.1% of boundaries showed significant strength
change, while 7.8/6.1% were shifted in the biological/technical
replicates, respectively. A similar trend was observed for complex
and merge-split boundaries. In summary, only 17.2/12.8% of
boundaries were differential in biological/technical replicates,
respectively (Figure 3A), confirming the higher stability of the
3D structures in technical replicates.

3.4. Boundaries Are More Similar Within
Cells Than Tissues
Previous research showed that TADs are largely invariant across
cell lines and, to a lesser extent, tissue types (Pope et al., 2014; Rao
et al., 2014; Schmitt et al., 2016). However, the types of boundary
changes remained undefined. We compared Hi-C matrices of
seven different cell-lines and 18 different tissue types (Schmitt
et al., 2016) (Supplementary Table 3). In total, the average
percentage of differential boundaries was significantly less in

cell lines (22.5%) than tissue samples (39.7%, Figure 3B). As
expected, these percentages were higher than those for biological
(17.2%) and technical replicates (12.8%). These results suggest
that the variability of boundaries mirrors the homogeneity of
data types (technical replicates, biological replicates, cell lines,
and tissues, in that order).

3.5. Each Type of Differential Boundaries Is
Associated With Different Levels of
Epigenomic Enrichment
To understand the biological relevance of the types of boundary
changes, we identified changes between the GM12878 and IMR90
cell lines [chr 1–22, 40 kb resolution (Schmitt et al., 2016)] and
categorized them according to the type of change. For each
change type, we assessed the number of overlapping peaks and
calculated the enrichment of four genome annotation marks
known to co-locate with TAD boundaries—CTCF, RAD21,
insulators, and heterochromatin states.

We found that non-differential boundaries had a higher
average number of overlapping peaks for all four marks,
followed by “strength change” boundaries (Figure 4A). Similarly,
enrichment of non-differential boundaries was the most
significant (Figure 4B). Notably, the number of peaks for each
mark was highly variable on “strength change” boundaries
(Figure 4A), suggesting their biological relevance is less certain.
Similarly, “shifted” boundaries had the lowest average number
of peaks, suggesting that they may be detected due to noise
and, consequently, be less biologically significant. In contrast,
“complex” and “merge-split” boundaries had a moderate number
of overlapping peaks and were moderately enriched in them
(Figure 4). These results highlight the varied biological relevance
of different types of boundary changes and suggests “complex”
and “merge-split” changes are biologically important alterations
of the 3D structure.

3.6. Each Type of Differential Boundaries Is
Associated With Distinct Biological
Functionality
To test the biological significance of different types of boundary
changes, we compared neural progenitor cells (NPC) against
mesenchymal stem cells (MSC) (Schmitt et al., 2016) (Figure 5A,
Supplementary Figure 3C). Altogether, we found that the vast
majority of boundaries are either complex (38.6%) or non-
differential (32.6%). Shifted (17.5%), merge-split (7.7%) and
strength change (3.5%) were less common (Figure 5B). Under
the hypothesis that differential boundaries may be enriched
in genes driving relevant biological processes (Chen et al.,
2018), we investigated enrichment of genes in proximity of
each type of differential TAD boundary in biological processes
and other gene ontology- and pathway types using GREAT
(McLean et al., 2010) (see Methods). As NPCs are more
advanced on differentiation path than MSCs, we expected that
boundaries changed between them would be associated with
genes responsible for neural development-related processes.
Indeed, genes around “merge” and “complex” boundary changes,
as well as the “non-differential” boundaries were enriched in a
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FIGURE 3 | Biological replicates and cell lines have more differential boundaries than technical replicates and tissues, respectively. Differential boundaries were

calculated between Hi-C datasets of biological and technical replicates [A, HCT-116 cell line, 50 kb resolution, chr 1–22 (Rao et al., 2017)] and between cell lines and

tissues [B, various cell lines, 40 kb resolution, chr 1–22 (Schmitt et al., 2016)]. Types of boundary changes were recorded, and the proportions of boundary differences

for each type were summarized across chromosomes.

FIGURE 4 | Non-differential boundaries are more enriched for selected genome annotation marks than other types of differential boundaries. Differential boundaries

were called between GM12878 and IMR90 cell lines and categorized based on differential boundary type. (A) The number of peaks at boundaries and (B)

permutation p-values (−log10) are shown. Data from Schmitt et al. (2016), 40 kb resolution, chr 1–22.

variety of developmental processes (e.g., “cellular developmental
process,” etc.), including neural-specific (“nervous system
development,” Figure 5B). Notably, “split” boundary changes
were not enriched in these processes, indicating the importance
of the directionality of boundary changes. Genes around
“merge” and “non-differential,” but not “complex,” boundaries
were enriched in differentiation-related processes (e.g., “positive
regulation of cell differentiation”), while “forebrain radial glial
cell differentiation” and “neural tube development” processes
were exclusively enriched in genes around “merged” boundaries
(Figure 5B). In this case, “merge” indicates boundaries enriched
in the NPC cell-line, causing a separation of interacting domains
in MSC and “split” indicates a split in NPC caused by a boundary
enriched in MSC. As expected, genes around “noisy” boundary

changes (“shifted” and “strength change”) lacked enrichment
in any biological processes (Figure 5B, Supplementary Table 4).
These results emphasize the importance of classifying boundary
changes into distinct patterns that tend to be associated with
distinct biological functionality.

To further test whether different types of boundary changes
reflect biology of an experimental system, we used post-
auxin treatment time course experiment from Rao et al.
(2017) study (HCT-116 cell line, 40 kb resolution, 20, 40,
60, and 180min following auxin withdrawal, 4 replicates
at each time point) (Rao et al., 2017). Auxin treatment
eliminates CTCF binding genome-wide; consequently, the
majority of boundaries should be absent and gradually re-appear
following auxin withdrawal. To identify biological processes
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FIGURE 5 | Differential boundaries and their gene enrichment analysis. (A) An example of differential boundaries called between neural progenitor cell (NPC) and

mesenchymal stem cells (MSC) (Schmitt et al., 2016) (chr4:10500000–18600000 region, 40 kb resolution); outlined TADs were called using SpectralTAD (Cresswell

et al., 2019). (B,C) The top 30 gene ontologies most enriched (B) in NPC vs. MSC boundary comparison, and (C) across the time-course of boundary changes in

auxin-treated cells from the HCT-116 cell-line (Rao et al., 2017) (chr 1–22, 40 kb resolution). For each type of boundary change, enrichment p-values (rGREAT, see

Methods) are shown as heatmaps.

associated with re-appearing of boundaries, we compared
first and last time points (20 and 180min) following auxin
withdrawal. As boundaries were reported to be enriched in
housekeeping genes (Jin et al., 2013), we expected genes
around appearing boundaries to be enriched in general cellular
processes. Indeed, the vast majority of boundaries were complex
(41.4%) and non-differential (34.7%) (Supplementary Figure 4).
We found that only genes around “non-differential” and
“complex” TAD boundary changes showed some level of
enrichment (Supplementary Figure 4, Supplementary Table 5).
As expected, “metabolic processes” and various developmental
and housekeeping processes were specifically enriched in
genes around complex boundary changes, while cyclic AMP
synthesis and metabolic processes were enriched in genes

around “non-differential” boundaries. From these results, we
show that TADCompare can correctly classify less-essential
boundary changes (“shifted,” “strength change”) and detect
distinct boundary changes associated with shared and unique
biological processes.

3.7. Time Course Analysis Framework
Time course analysis of boundaries refers to the analysis of
boundary dynamics over time. The quantitative nature of
boundary score allows us to monitor its changes at boundaries
across any number of time points.We recommend taking a union
of boundaries detected at each time point and monitor boundary
score changes for each boundary. Monitoring boundary scores
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TABLE 1 | Six patterns of temporal boundary changes.

Temporal

boundary type

Time

point 1

Time

point 2

Time

point 3

Time

point 4

Total

(%

occurrence)

Highly common 1 1 1 1 326 (17.35%)

1 0 1 1

Early appearing 0 1 1 1 184 (9.79%)

Early disappearing 1 0 0 0 133 (7.08%)

Late appearing 0 0 1 1 1,047 (55.72%)

0 0 0 1

Late disappearing 1 1 0 0 79 (4.20%)

1 1 1 0

Dynamic 1 0 1 0 110 (5.86%)

1 0 0 1

Each column corresponds to a point in time.

“1” refers to the presence of a boundary, and “0” refers to the absence of a boundary. The

“Total” column shows the percentage of occurrences in the CTCF degradation-recovery

time course, HCT-116 cell line, chr 1–22 (Rao et al., 2017).

across time points provides an opportunity to quantify patterns
of boundary changes.

Using the boundary score cutoff of 3 for boundary definition,
we define six patterns of temporal boundary changes (adapted
from Zhou et al., 2019, Table 1, Figure 6). Highly common
boundaries refer to boundaries present across all time points or in
three out of four time points. Early appearing boundaries switch
from non-boundary to boundary at second time points and stay
as boundaries for the rest of the time points. Conversely, early
disappearing boundaries switch from boundary to non-boundary
at the second time point and stay as non-boundaries. Late
appearing boundaries switch from non-boundaries to boundaries
at the last or the second to last time point. Conversely, late
disappearing switch from boundaries to non-boundaries at the
last of the second to last time point. Finally, dynamic boundaries
are those which have inconsistent boundary status and do not
follow any of the aforementioned patterns (Figure 6). These six
patterns of temporal changes can be easily adapted for a larger
number of time points.

3.8. Temporal Boundary Types Are
Associated With Different Levels of
Epigenomic Enrichment
To evaluate the biological relevance of temporal patterns
of boundaries, we used post-auxin treatment time course
experiment introduced above. Briefly, HCT-116 cells were treated
with auxin to eliminate boundaries, and Hi-C measures were
obtained at 20, 40, 60, and 180min following auxin withdrawal
and subsequent boundary reappearance (Rao et al., 2017).
Accordingly, we expected to detect some number of highly
common boundaries (already existing at 20min) and boundaries
appearing at different stages of post-auxin withdrawal (early/late
appearing). Conversely, dynamic and early/late disappearing
boundaries should be rare and may potentially constitute noise
in TAD boundary detection.

FIGURE 6 | Six patterns of boundary score change across time. Average

trajectories for each pattern of boundary score change are shown. The red

horizontal line indicates the cutoff for boundary detection. HCT-116 cell line,

40 kb resolution, chr 1–22.

TABLE 2 | Consensus (aka median) boundary score is supported by high

boundary scores from multiple replicates.

Boundary

score 1

Boundary

score 2

Boundary

score 3

Consensus

boundary

score

Union

boundary?

Consensus

boundary?

1 2 1 1 No No

3 2 1 2 Yes No

5 5 4 5 Yes Yes

3 3 3 3 Yes Yes

6 0 0 0 Yes No

Examples of boundary scores across five regions in three replicates, and the

corresponding consensus boundary score. Both union and consensus boundaries are

calculated using a cutoff of 3.

Boundary scores were calculated for auxin-treated cells 20,
40, 60, and 180min after withdrawal. Taking the union of
boundaries (boundaries detected at one or more time points),
we calculated temporal patterns for each boundary. We found
that the vast majority of boundaries were late appearing (55.7%)
(Table 2, Figure 5C). Early appearing (9.8%) and highly common
(17.3%) made up most of the other boundaries present at the
end of the time course. Approximately 20% of boundaries were
highly common, i.e., resistant to auxin treatment, a number
similar to previous works (Nora et al., 2017). Meanwhile, 5.9%
of boundaries were dynamic, 7.1% were early disappearing,
and 4.2% were late disappearing, highlighting potential errors
in boundary detection. In summary, some boundaries can be
detected at 20min post-auxin treatment and remain present
through all time points; however, the timing of boundary
reappearance varies.

To test whether boundaries associated with different temporal
patterns have different functional roles, we investigated their
overlap with and enrichment in the common marks of TAD
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FIGURE 7 | Common and appearing boundaries show stronger enrichment in known epigenomic marks. The number of peaks at boundaries (A), and permutation

p-values (B) within 50 kb of boundaries in each temporal classification are shown. Hi-C data from Rao et al. (2017), 50 kb resolution, HCT-116 cell-line, chr 1–22.

boundaries (CTCF, RAD21, insulators, heterochromatin,
Figure 7A). For highly common, early- and late-appearing
boundaries, we observed more overlaps with CTCF
and RAD21 sites, insulator, and heterochromatin states
(Supplementary Table 6). Similarly, these types of boundaries
were highly enriched in the aforementioned genomic annotations
(Figure 7B). Conversely, dynamic, early, and late disappearing
boundaries showed less overlap with CTCF, RAD21, insulator,
and heterochromatin marks, and were less enriched in them.
These observations suggest that disappearing and dynamic
boundaries are likely detected due to noise in the data, while
boundaries appearing after auxin treatment expectedly represent
the biologically relevant signal.

3.9. Temporal Boundary Types Are
Associated With Distinct Biological
Functionality
Using gene enrichment analysis, we further investigated whether
boundaries associated with different temporal patterns may be
enriched in genes driving relevant biological processes (Chen
et al., 2018) (Supplementary Table 7). We found that, with a
few exceptions, all significant GO Biological pathways were
enriched in late or early appearing boundaries (Figure 5C,
Supplementary Table 7), which make up the majority of
boundaries (Table 2, Figure 5C). Both early and late appearing
boundaries were enriched in metabolism-related processes, such
as “cellular metabolic process,” “oxidation-reduction process.”
Late appearing boundaries, on the other hand, were enriched in
“cellular component organization,” “protein complex biogenesis”
and the like processes (Figure 5C). These results are expected
as cells may be activating metabolic and biogenesis pathways to
recover after destruction of boundaries by auxin. These results
confirm that TADCompare can accurately classify biologically

relevant temporal boundary changes and discern them from
noisy changes.

3.10. Consensus Boundary Score for
Defining Robust Boundaries Across
Multiple Hi-C Datasets
The sizeable proportion of noisy “shifted” and “strength change”
boundary changes across Hi-C datasets (Figure 3) highlights
the need to identify boundaries that are robustly detected. The
consensus boundary score, defined as the median of boundary
scores across replicates, addresses this challenge. Intuitively,
higher consensus boundary scores correspond to boundaries
supported by evidence from multiple replicates (Table 2). This
is in contrast to a union of boundaries, where boundaries
detected in at least one Hi-C dataset are pooled together.
Consensus boundary scores allow us to filter out boundaries with
insufficient support from multiple replicates, thus “denoise” the
detected boundaries. Given the fact that boundary scores
are log-normally distributed (Supplementary Figure 1,
Supplementary Methods), the consensus boundary scores
will also be asymptotically normal. The consensus boundary
score can be used as a proxy for the normal boundary score
for the analysis of replicated Hi-C datasets. Consequently, the
consensus boundary scores may be compared to define boundary
changes between groups of replicated Hi-C datasets.

3.11. Consensus Boundaries Are
Supported by Strong Biological Evidence
To investigate the biological relevance of boundaries defined
using consensus boundary score, we defined consensus
boundaries across seven cell-lines (17 matrices total) (Schmitt
et al., 2016). These boundaries represent cell type-invariant
boundaries supported by evidence from multiple datasets. Bins
of the genome were separated into three categories based on

Frontiers in Genetics | www.frontiersin.org 10 March 2020 | Volume 11 | Article 158

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cresswell and Dozmorov TADCompare: Differential and Temporal Analysis of TADs

FIGURE 8 | Boundaries defined at higher consensus boundary score thresholds show stronger overlap with and enrichment in known epigenomic marks. Boundaries

were classified based on the range of their consensus boundary score. Enrichment of genomic factors known to occur near TAD boundaries was calculated. (A) The

number of peaks within 40 kb of boundaries with the corresponding consensus score range and (B) the −log10-transformed permutation p-values for each score

range are shown. Negative p-values indicate depletion. Data from seven cell lines, chr 1–22, 40 kb resolution (Schmitt et al., 2016).

the level of their consensus boundary score (<2, 2–4 and >4).
In total, there were 65,336 bins (40 kb resolution). Expectedly,
the majority (62,791 bins, 96.1% of all bins) were in the <2
category, 2,032 (3.1%) bins were in the 2-4 category, and 513
(0.8%) bins were in the >4 category. We assessed the number
of overlapping peaks and the enrichment of CTCF, RAD21,
insulators, and heterochromatin states in different categories
of bins. Expectedly, we observed increasing average number of
peaks overlapping bins selected at more stringent consensus
boundary score thresholds (Figure 8, Supplementary Table 8).
Similarly, bins with higher consensus boundary scores have
stronger enrichment in genome annotations, while bins with
score <2 were significantly depleted. These results suggest that
bins with higher consensus boundary scores (i.e., supported by
evidence from multiple Hi-C datasets) are more biologically
relevant. Therefore, to define consensus boundaries, we use a
consensus boundary score cutoff of 3.

3.12. The Union of Boundaries Is
Supported by Weaker Biological Evidence
Than Consensus Boundaries
The union of boundaries called in individual Hi-C datasets
represents an alternative method of defining boundaries across
multiple datasets (Table 1). The union method may be useful
for analysis of time course data, where boundaries are expected
to change across individual datasets. We hypothesized that the
union method would select for the less biologically relevant set
of boundaries because many may be detected due to noise in
Hi-C data.

To evaluate the biological relevance of boundaries called
using both methods, we call consensus and union boundaries
on a set of replicates (four cell lines, 40 kb resolution, three
replicates each, data from Schmitt et al., 2016). Consensus
scores were calculated separately for each cell line among the

three replicates. Expectedly, the consensus method filtered out
38% of boundaries (4,906 vs. 3,059, Supplementary Figure 5),
suggesting that many boundaries are detected in single datasets.
We found that boundaries called using consensus boundary
score overlapped significantly more with CTCF sites (P =

0.0006) and RAD21 (P = 0.0002) than those called using
the union method (Figure 9A). While the enrichment results
were similar for consensus- and union-defined boundaries,
consensus boundaries were more significantly enriched in
“heterochromatin” (Figure 9B). Together with previous
observations (Figure 6), these results strengthen our conclusion
that consensus boundary scores are more effective in removing
“noisy” boundaries that otherwise would be captured using the
union method.

3.13. Runtime Performance of
TADCompare
When run on data from (Rao et al., 2014), without parallelization,
both consensus boundary calling and differential boundary
detection were exceptionally fast. In total, for the entire genome,
differential boundary detection took ~6 s on 100 kb data, ~9 s
on 50 kb data, ~17 s on 25 kb data, and ~312 s on 10 kb data.
In the case of consensus boundary calling, TADCompare took
~17 s to run on 50 kb data for 4 matrices, ~32 s for 8 matrices,
and ~45 s for 12 matrices. On 10 kb data, it took ~611 s to
run for 4 matrices, ~1,152 s for 8 matrices, and ~1,680 s for 12
matrices. For a full summary of runtimes across all resolutions
(see Supplementary Figure 6).

4. DISCUSSION

The initial development of Hi-C technologies focused
on investigating individual genomes. While several key
properties have been discovered (chromosome territories, A/B
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FIGURE 9 | Consensus boundaries show stronger overlap with and enrichment in known epigenomic marks than the union of boundaries. (A) Number of peaks at

boundaries and (B) permutation p-values (−log10) are shown. Data from Schmitt et al. (2016), four cell lines, 40 kb resolution, chr 1–22.

compartments, TADs, chromatin loops, collectively referred to
as “interacting domains”), the next steps include investigating
changes in the 3D structure across multiple conditions. We
(Stansfield et al., 2018, 2019) and others (Lun and Smyth, 2015;
Djekidel et al., 2018) started to develop methods for comparative
analysis of the 3D structures. However, to our knowledge, no
methods are available for differential analysis of boundaries
demarcating interacting domains. In this work, we introduce
a method for differential boundary analysis, including a time
course, that supports replicated Hi-C data. The method is based
on a novel boundary score metric that provides a continuous
measure of boundary likelihood (Cresswell et al., 2019). We
introduce unique terminology for classifying differential and
temporal boundary changes. We show that our approach is
robust and effective at identifying distinct biology associated
with different types of boundary changes. Our method is
implemented in the TADCompare R package available on
Bioconductor, filling a vital gap in intuitive R-based software for
boundary detection and comparison.

The boundary score concept developed in our work addresses
three main problems: differential boundary detection, time
course analysis of boundary changes, and consensus boundary
calling. Yet, it has a broader scope of applications. Future
work will expand the utility of boundary score by developing
a similarity/reproducibility score to measure the agreement
between (multiple) Hi-C matrices, in the same vein as
HiCRep (Yang et al., 2017), Selfish (Ardakany et al., 2019),
GenomeDISCO (Ursu et al., 2018), HiC-Spector (Yan et al.,
2017), QuASAR-Rep (Sauria et al., 2015). Furthermore, for
differential boundary detection, our method is still limited to the
comparison of two profiles of (consensus) boundary scores. This
approach will eventually be expanded to include comparisons
of many contact matrices, similar to the concept of comparing
groups of multiple replicates in RNA-seq data. Finally, there is

still room for expansion of time course boundary analysis. The
continuous nature of boundary score allows for adopting time
course analysis methods developed for gene expression studies
(Bar-Joseph et al., 2012). More flexible classification of temporal
trends may be considered, such as 24 temporal patterns proposed
by Zhou et al. (2019), or fuzzy clustering techniques that do not
require a pattern to belong to a specific cluster (Abu-Jamous and
Kelly, 2018). In summary, our work enables further development
of various aspects of 3D genome analysis.

One difficulty in our work is how to accurately quantify the
biological relevance of boundaries (differential, time-varying, and
consensus) that we detect. There is no natural gold standard for
boundaries, but there are known genomic features that form the
building blocks of TADs (CTCF, RAD21). In practice, we can
use colocalization and/or signal enrichment of these marks near
boundaries as a proxy for “true boundaries.” To test whether
enrichment is different than random (non-boundaries), we use
a permutation test and present these p-values. In the current
work, we used colocalization enrichment analysis, and plan to
address changes in signal enrichment associated with changes in
boundaries in future work.

The goal of the TADCompare package is to provide
a practical implementation of our statistical framework for
differential boundary detection. It outputs genomic coordinates
of differential boundaries, type of the differences, and the
associated boundary score measures. The downstream analysis
options may be gene enrichment analysis in the proximity
of (different types of) differential boundaries using rGREAT,
epigenomic enrichment analysis [GenomeRunner (Dozmorov
et al., 2012, 2016), LOLA (Sheffield and Bock, 2016)], and visual
exploration of differential boundaries. Although TADCompare
provides simultaneous visualization of twoHi-Cmatrices and the
associated boundary differences and boundary scores, external
tools for visualizing multiple datasets may be explored (reviewed
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in Yardimci et al., 2019). Tools like the HiCBricks R package
(Pal et al., 2019) and the HiCexplorer Python software (Ramirez
et al., 2018) start enabling the users to visualize two Hi-C
matrices and the associated annotations. We continue exploring
visualization options to improve exploration and interpretation
of boundary differences.

Our results in this manuscript demonstrate the ability of
TADCompare to provide accurate, biologically relevant results.
The methods implemented span differential, time-course, and
consensus analysis. To date, TADCompare is the only actively
maintained and publicly available tool to provide any of this
functionality. We intend for TADCompare to be a one-stop
tool for comparison of HiC datasets, providing simple, easy-
to-interpret results in a timely manner. As a one-of-a-kind
tool, TADCompare will increase the ability of researchers to
extract important biological insights from the structure of
TAD boundaries.
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Supplementary Figure 1 | Log-normal distribution of eigenvector gaps

converted to boundary Z-scores. Eigenvector gaps were calculated for contact

matrices across three resolutions [10, 25, and 50 kb, Hi-C data from Rao et al.

(2014), GM12878 cell line, chr 1–22]. Density plots are shown for the (A) Natural

log of the eigenvector gaps and (B) Boundary scores derived from the same data,

separated by resolution. Regions of non-TADs are highlighted by a yellow bar,

moderate strength boundaries (2 < boundary score cutoff < 3) are highlighted by

a red bar, and strong boundaries (cutoff > 3) are shown using a green bar. We see

a slightly right-skewed distribution due to the filtering of gaps for plotting purposes.

Supplementary Figure 2 | Window size of 15 units of Hi-C data resolution and

boundary score cutoff of 2 yields consistent boundary detection. Differential

boundaries were compared between two simulated data sets with window size

sizes ranging from 10 to 25, and boundary score cutoff ranging from 1.5 to 4.

Youden index (balanced sensitivity and specificity metric) was calculated for each

combination and plotted to show agreement with ground-truth annotations.

Results are shown for noise-injected matrices (A) and sparsity-injected

matrices (B).

Supplementary Figure 3 | Visualization of different types of boundary score

patterns. (A) Patterns of raw boundary scores are shown for five different types of

differential boundaries (Merge, split, complex, shifted, and strength change). The

red horizontal line corresponds to the user-adjustable cutoff for a boundary.

Human neural progenitor cells (NPCs), chr22, most representative examples are

shown. (B) TADCompare::DiffPlot differential boundary visualization between

NPCs and mesenchymal stem cells (MSC), chr4:10500000–18600000. 40 kb

resolution data from Schmitt et al. (2016).

Supplementary Figure 4 | Heatmap of gene ontology enrichment at the first and

last time point in auxin-treated data. Differential boundary identification was

performed on auxin-treated data at the time of application (first time point) and

complete withdrawal (last time point) [HCT-116 cell line, chr 1–22, 40 kb resolution

(Schmitt et al., 2016)]. A barplot of the proportion of each differential boundary

type and FDR-adjusted hypergeometric p-values obtained from gene ontology

enrichment analysis using rGREAT (see Methods) are shown. The top 30

pathways, in terms of average enrichment, are shown and clustered using the

Ward method.

Supplementary Figure 5 | Venn diagram of union and consensus boundary

counts. Consensus and union boundaries were called across four different cell

lines (hesc, mesynchymal, npc, trophectoderm), and the number of union and

consensus boundaries was recorded. The Venn diagram shows the complete

overlap of consensus boundaries within union boundaries (40 kb resolution, data

from Schmitt et al., 2016).

Supplementary Figure 6 | Runtime of TADCompare. Plot containing the runtime

of two-way comparison (A) and consensus boundaries called on 4, 8, 12, and 16

replicates (B). Each point represents the runtime for a specific chromosome.

X-axis—chromosome, Y-axis—runtime in seconds. Hi-C data from Rao et al.

(2014), chr 1–22, 10, 25, 50, and 100 kb resolution.

Supplementary Table 1 | Contact matrix data sources. The source of all contact

matrices, experimental, and simulated, used in this paper are provided.

Experimental data are separated based on the study and cell line.

Supplementary Table 2 | Genomic annotation data sources. The sources, with

download links, for all genomic annotations used in this paper are included.

Supplementary Table 3 | Summary of differential boundary types across tissues

and cell lines. The percentage of each type of differential boundary for all

tissue-tissue and cell line-cell line comparisons is reported. Results are

aggregated over all chromosomes. Hi-C data from Schmitt et al. (2016), 40 kb

resolution, chr 1–22.

Supplementary Table 4 | Gene ontology enrichment for differential boundary

types. Differential boundaries were identified between the neural progenitor cells

(NPC) and mesenchymal stem cells (MSC) (Schmitt et al., 2016). Pathway analysis

was performed using rGREAT (Methods), and results are separated by ontology.

Boundaries with an FDR adjusted p-value of <0.3 are shown. 40 kb resolution,

chr 1–22.

Supplementary Table 5 | Gene ontology enrichment between the first and last

time points in auxin-treated data. Differential boundaries were identified between

the first and last time points of auxin-treated data (Rao et al., 2017). Pathway

analysis was performed using rGREAT (Methods), and results are separated by

ontology. Boundaries with an FDR adjusted p-value of <0.3 are shown. 50 kb

resolution, chr 1–22.

Supplementary Table 6 | Enrichment across different temporal boundary types.

Temporal boundary types were identified across four time points in auxin-treated
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data (Rao et al., 2017). Results are shown for four types of temporal boundaries

(Early Appearing, Late Appearing, Highly Common, Dynamic). Permutation

p-values, along with enrichment or depletion designations, are reported. HCT-116

cell line, 40 kb resolution, chr 1–22.

Supplementary Table 7 | Gene ontology enrichment for different temporal

boundary types. Temporal boundary types were identified across four time points

in auxin-treated data (Rao et al., 2017). For each temporal boundary type,

pathway analysis was performed using rGREAT (Methods), and results are

separated by ontology. Boundaries with an FDR adjusted p-value of <0.3 are

shown. HCT-116 cell line, 50 kb resolution, chr 1–22.

Supplementary Table 8 | Enrichment across different consensus scores.

Consensus scores were called across 17 contact matrices representing seven

different cell lines. Results were dichotomized into three groups (<2, 2–4, >4)

based on consensus boundary scores. Permutation p-values, along with

enrichment or depletion designations, are reported. Hi-C data from Schmitt et al.

(2016), 40 kb resolution, chr 1–22.
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