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Abstract

The phenol equivalence assay is the current industry-adopted test used to quantify the anti-

bacterial activity of honeys in Australia and New Zealand. Activity is measured based on the

diffusion of honey through agar and resulting zone of growth inhibition. Due to differences in

the aqueous solubilities of antibacterial compounds found in honeys, this method may not

be optimal for quantifying activity. Therefore, a new method was developed based on the

existing broth microdilution assay that is widely used for determining minimum inhibitory

concentrations (MICs). It utilises the four organisms Staphylococcus aureus ATCC 29213,

Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeru-

ginosa ATCC 27853, and an optical density endpoint to quantify bacterial growth.

Decreases in bacterial growth in the presence of honey, relative to the positive growth con-

trol, are then used to derive a single value to represent the overall antibacterial activity of

each honey. Antibacterial activity was quantified for a total of 77 honeys using the new

method, the phenol equivalence assay and the standard broth microdilution assay. This

included 69 honeys with undisclosed floral sources and the comparators Manuka, Jarrah

(Eucalyptus marginata), Marri (Corymbia calophylla), artificial and multifloral honey. For the

69 honey samples, phenol equivalence values ranged from 0–48.5 with a mean of 34 (% w/

v phenol). Mean MICs, determined as the average of the MICs obtained for each of the four

organisms for each honey ranged from 7–24% (w/v honey). Using the new assay, values for

the 69 honeys ranged from 368 to 669 activity units, with a mean of 596. These new antibac-

terial activity values correlated closely with mean MICs (R2 = 0.949) whereas the relation-

ship with phenol equivalence values was weaker (R2 = 0.649). Limit of detection, limit of

quantitation, measuring interval, limit of reporting, sensitivity, selectivity, repeatability, repro-

ducibility, and ruggedness were also investigated and showed that the new assay was both

robust and reproducible.
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Introduction

Honey produced by the European honeybee Apis mellifera is well known to have antimicrobial

activity. This activity is attributed to a range of factors including high osmolarity, the relatively

low pH, the production of hydrogen peroxide by the enzyme glucose oxidase and the action of

plant-derived compounds such as flavonoids and phenolic acids [1–3]. Whilst high osmolarity

and low pH are factors that are common to almost all honeys, other factors differ according to

each floral source. Levels of hydrogen peroxide, and the quantities and types of phenolic com-

pounds present in honeys derived from different floral sources can vary widely, and this

directly impacts the characteristics of each honey, including taste and colour, and the level of

antibacterial activity [2, 4].

Honey has a range of properties that make it a potentially useful therapeutic agent, health

supplement or functional food [5]. Whilst several of these potential benefits require additional

rigorous research to validate their usefulness, it is important to be able to accurately quantify a

range of characteristics within honeys in vitro, including prebiotic activity [6, 7], anti-oxidant

activity [8, 9] and antimicrobial activity [10]. In Australia and New Zealand the current indus-

try-adopted commercial test for quantifying the antibacterial activity of honey is known as the

phenol equivalence assay, and has also been referred to as the Unique Manuka Factor (UMF)

assay [1, 11]. This assay is used by both commercial testing facilities and researchers [10, 12,

13] to quantify antibacterial activity. It was first described in the early 1990s [14] and was

adapted from a method published by the New Zealand Dairy industry in 1982 used for detect-

ing inhibitory substances in dairy products. The assay quantifies antibacterial activity using an

agar diffusion type of assay. In brief, solutions of 25% honey and a series of phenol solutions

are added to wells cut into nutrient agar that has been seeded with the test organism Staphylo-
coccus aureus ATCC 25923 [14]. After incubation, the resulting zones of bacterial growth inhi-

bition are compared to zones obtained for the series of phenol standard solutions that have

been plotted to generate a standard curve, resulting in a phenol equivalence (PE) value for

each honey. The assay can be used to quantify “total activity” (TA) by testing honey alone, or

to quantify “non-peroxide activity” (NPA) after the addition of catalase to each honey solution

to remove hydrogen peroxide activity. This residual, or non-peroxide activity, is most com-

monly found in honeys derived from Leptospermum species, and as such has also been referred

to as the Unique Manuka Factor or UMF [10, 15, 16]. This trademarked measurement has

been used extensively in the marketing of Manuka honeys.

Whilst antimicrobial activity methods that are based on agar diffusion, including the PE

assay, have clear benefits in terms of being relatively quick, easy and inexpensive, they are not

without significant drawbacks. For example, the validity and appropriateness of agar diffusion

methods for quantifying antimicrobial activity has been questioned [17, 18]. A commonly-

raised criticism is that because agar is a water-based matrix, non-polar antimicrobial com-

pounds (such as those commonly found in many natural products) or antimicrobial com-

pounds with higher molecular weights may not diffuse readily through the agar [1, 18–20]. For

example, the phenolic compounds sinapic acid and hesperitin, which have been identified in

Jarrah honey (from Eucalyptus marginata) [21], are only sparingly soluble in aqueous solvents

[22, 23]. This means that the zone sizes obtained for different compounds are not always

directly comparable, and that a smaller zone size does not necessarily equate to a less active

compound. A further consideration is that agar diffusion methods are widely regarded as gen-

erating qualitative data only [18, 20, 24], and that quantitative data can only be produced using

dilution type methods, such as broth dilution assays.

In addition to these broader methodological issues, there are a number of limitations and

issues that are specific to the PE assay. Firstly, the assay has a relatively high detection threshold

PLOS ONE Microplate optical density assay to quantify the antibacterial activity of honey

PLOS ONE | https://doi.org/10.1371/journal.pone.0243246 December 9, 2020 2 / 25

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist

https://doi.org/10.1371/journal.pone.0243246


and is not particularly sensitive, as illustrated in several previous studies that reported unde-

tectable activity for considerable numbers of honeys. Examples include a large study examin-

ing 477 honeys where activity was undetectable in 40% of samples [10], a study of 345 honeys

where activity was not detected in 36% of samples [14] and a smaller study investigating 17

honeys where activity was undetectable in 65% of samples [12]. Ideally, an antimicrobial assay

should have the capacity to detect activity in all honey samples, given that all honeys when

tested at high enough concentrations exert antibacterial activity due to high osmolarity [25].

Secondly, the PE assay assesses activity against only one test organism (S. aureus), and as such

may not provide a full picture of the antibacterial activity profile of a honey. These issues, in

addition to others mentioned in the discussion, provided the impetus for the development of a

new assay for quantifying the antibacterial activity of honey.

Consultation of published literature shows that a range of methods other than agar diffu-

sion have been used for quantifying the antimicrobial activity of honey. These include those

developed for the testing of disinfectant and antiseptics, such as suspension tests [26] and car-

rier tests [27], and those utilised for the in vitro testing of antibiotics such as agar dilution [28],

broth dilution to determine MICs [16] and spectrophotometric methods to characterise bacte-

rial growth inhibition [29, 30]. In particular, broth microdilution methods have been used

extensively for testing a broad range of antimicrobial agents, including both conventional anti-

biotics [31] and novel agents [18]. The output of this assay is the MIC, which is typically

defined as the lowest concentration of the agent that completely inhibits or prevents the

growth of the test organism [31]. The broth microdilution method has also been used previ-

ously for quantifying the antimicrobial activity of honey [32–34]. It is relatively easy to perform

and provides quantitative results. However, a limitation of the assay is that a typical doubling

dilutions series (e.g. 32, 16, 8, 4, 2%) is unlikely to be sufficient for discriminating between dif-

fering levels of activity amongst honeys. In addition, the assay can be both laborious and time

consuming to set up, which may not be appropriate for use in a commercial testing laboratory.

Lastly, difficulties may be encountered when visually interpreting the MIC, as indistinct or

“trailing” endpoints for honeys can occur due to partial growth inhibition [21, 29, 35].

Given the issues and limitations associated with both the existing PE method, and the broth

method for determining MICs, the purpose of this research was to develop, assess and validate

a new assay for quantifying the antibacterial activity of honey. The assay was developed so that

the output or endpoint is a single numerical value to represent to activity of each honey, based

on activity shown against four different bacterial test organisms. The new assay is a modifica-

tion of the broth microdilution assay, and utilises a spectrophotometric optical density end-

point rather than relying on a subjective, visually determined endpoint. The optical density

values are then used to calculate a single antibacterial activity value. This new assay offers a

potential replacement for the currently used phenol equivalence method, and it may be suit-

able for adoption as the new industry standard antibacterial activity quantification method.

Methods

Honey samples

A total of 77 honeys were examined in this study. Sixty-nine honeys obtained from Western

Australian apiary sites were provided as intentionally blinded sampled by ChemCentre, Bent-

ley, Western Australia as part of its Bee Industry Council of Western Australia (BICWA)

research program. An additional eight comparator honeys were examined including one of

each of the following; Jarrah from Eucalyptus marginata (Jarrah 1), Marri from Corymbia calo-
phylla (Marri 1) (both provided by ChemCentre), a multifloral honey with no specific floral

source (Capilano, Richlands, Queensland), one Manuka (Leptospermum) honey labelled TA 5
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+ and one labelled TA 10+ (Barnes Naturals, Maryborough, Victoria), Activon Manuka honey

(Advancis Medical, UK) and artificial honey prepared as described previously [36]. Levels of

methylglyoxal for the Manuka honeys were not stated. An additional Marri honey (Marri 2)

was used in some of the validation experiments as it was shown previously in our laboratory to

have an “intermediate” level of activity. All honeys were stored protected from light at room

temperature (~ 22˚C) for the duration of the study. All honeys were stirred thoroughly prior

to weighing out portions for each test. For antibacterial activity tests, honey solutions were pre-

pared as weight/volume solutions in sterile distilled water and honey was dissolved completely

with the aid of a vortex mixer. Honey solutions were used in assays within 1 h of preparation.

Microorganisms

Reference strains were obtained from culture collections of The University of Western Austra-

lia and PathWest Laboratory Medicine WA. Staphylococcus aureus ATCC 25923 was used in

the phenol equivalence assay as it is the standard, recommended strain [14]. The four reference

strains Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli
ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used for determining MICs by

the broth microdilution assay and for the new antibacterial activity test. These strains were

selected as they are the recommended quality control strains for broth antibacterial susceptibil-

ity testing according to both the Clinical and Laboratory Standards Institute (CLSI) [37] and

the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [38]. All organ-

isms were stored at -80˚C in Brain heart infusion broth/glycerol stocks. Working cultures were

cultured on blood agar then stored at 4˚C, and were refreshed from frozen stocks every four

weeks.

Antibacterial activity measurements

Phenol equivalence assay. The PE assay was performed as described previously [10, 12,

14]. An overnight culture was prepared by inoculating 1–2 colonies of S. aureus ATCC 25923

into approximately 10 ml of Trypticase Soy broth (Becton Dickinson BBL™) and incubating at

37˚C with shaking at 125 rpm for 18 h. Following incubation, cells were collected by centrifu-

gation and the cell pellet was then resuspended in sterile 0.85% saline. The density of the cell

suspension was adjusted to an absorbance of 0.5 at 540nm. A 100 μl volume of the adjusted

inoculum was added to 150 ml of sterile, molten Nutrient agar (Oxoid, Hampshire UK) that

had been cooled to approximately 50˚C. The agar was swirled gently to mix, then poured into

a sterile square bioassay dish measuring 245 mm × 245 mm (ThermoScientific Nunc™
NUN240835). A spirit level was used to ensure that the bench area was level prior to pouring

the agar. The agar was left to cool completely at room temperature and was then stored over-

night at 4˚C in an airtight container. The following day, the agar dish was removed from 4˚C

storage and allowed to equilibrate to room temperature. A sterile stainless steel cork borer was

used to cut 63 equally spaced wells of 8 mm diameter into the agar. Wells were cut 2.5 cm

apart in an 8 × 8 grid, leaving one grid space uncut for the placement of an antibiotic control

disc. Wells were numbered using a quasi-Latin square to ensure that samples and controls (in

duplicate) were placed randomly in the dish. Solutions of honey were prepared at a final con-

centration of 25% (w/v) in sterile distilled water ensuring complete dissolution with the aid of

a vortex mixer. Honey solutions were not routinely filter sterilised prior to testing. If inhibition

zones were not readable due to the growth of endemic honey microorganisms, the assay was

repeated using a filter sterilised solution of honey. A stock solution of 10% (w/v) phenol (Prod-

uct #366, Ajax Finechem, ThermoFisher) was prepared in sterile distilled water and from this,

further solutions with final concentrations of 2%, 3%, 4%, 5%, 6%, and 7% were prepared in
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sterile distilled water. Phenol solutions were stored at 4˚C and were used for no more than

four weeks, after which fresh solutions were prepared. Volumes of 100 μL of each honey solu-

tion or phenol standard were pipetted into the allocated wells of the assay dish in duplicate. A

trimethoprim antibiotic disc (5 μg; Oxoid, Hampshire UK) was placed in the appropriate posi-

tion on the assay dish as a positive control. The use of an antibiotic disc is not included in the

originally described method, but has been included here as an additional quality control mea-

sure. A well with 100 μl of sterile distilled water was included as a solvent control. The assay

dish was then incubated for 18 h at 37˚C. After incubation, all zones of inhibition were mea-

sured by eye and using a ruler to the nearest millimetre. Each zone was measured at least twice

in different directions (preferably at right angles) to ensure that well diameter measurements

were representative. The mean of the duplicate zone measurements was determined and these

values were squared. A linear standard curve was then generated from the mean squared diam-

eter of zone sizes for phenol solutions. The r2 value for standard curves was always >0.95. The

“phenol equivalence” or “total activity” value for each honey sample was then determined

using the equation derived from the phenol standard curve. To correct for both the honey dilu-

tion factor of 1 in 4 and the mean density of honey (assumed to be 1.35g/mL), values derived

from the standard curve were multiplied by 4.69 [14]. The assay was repeated in entirety on at

least two separate occasions and the mean PE value was determined from replicate values.

Broth microdilution assay. MICs were determined for all honeys against S. aureus ATCC

29213, E. faecalis ATCC 29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853, using the

standard broth microdilution method described by the Clinical and Laboratory Standards

Institute [31], with minor modifications. Briefly, inocula were prepared by culturing organ-

isms for 18–24 h at 37˚C on blood agar, then suspending colonies in 0.85% saline. The density

of the cell suspension was adjusted to 0.5 McFarland for S. aureus, E. coli and P. aeruginosa
and to 1.0 McFarland for E. faecalis, all corresponding to approximately 1 to 2 × 108 colony

forming units (CFU) per ml. Each standardised suspension was then further diluted in

4 × Mueller Hinton broth for use in the assay. This concentration of Mueller Hinton broth was

required to compensate for subsequent dilution with the volume of honey contained in the

microtitre plate wells.

Solutions of honey were prepared at 40% (w/v) in sterile distilled water then filter sterilised

by passing through a 0.7 μM glass fibre syringe pre-filter to remove larger particles and debris,

followed by a 0.2 μm syringe filter to sterilise the solution. Appropriate volumes of each sterile

honey solution, ranging from 10 μl to 150 μl were dispensed into wells of a 96-well microtitre

plate (Nunc MicroWell NUN260860), and then corresponding volumes of sterile distilled water

ranging from 140 μl to 0 μl were added to each well to result in total volumes of 150 μl per well.

After the addition of 50 μl volumes of inocula to each well, final inocula concentrations were

approximately 5 × 105 CFU/ml, and wells contained final concentrations of honey ranging in

2% increments from 2% to 30% in total well volumes of 200 μl. The positive growth control well

contained 150 μl of sterile distilled water and 50 μl of inocula only. Microtitre plates were incu-

bated for 20 h (± 2 h) at 36˚C (± 1˚C), after which MICs were determined visually as the lowest

concentration of honey completely inhibiting growth. MICs were determined for all honeys

against all organisms on at least two separate occasions. To enable calculations and statistical

analyses, any results that were below the minimum test concentration of 2% honey were given a

value of 1%, and any values greater than the maximum test concentration (30%) were given a

value of 32%. Where possible, the mode was selected from the two replicate values as the final

MIC. If replicate values were not identical, and they differed by�4% honey the arithmetic

mean was calculated as the final MIC. Where replicate MICs differed by�6% honey, the assay

was repeated to generate a third value, after which the mode was selected as the final value. If all

three values differed, the arithmetic mean was determined as the final MIC.
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New method for quantification of activity. The new antibacterial activity test was

adapted from the CLSI broth microdilution assay [31] and was performed as described for the

modified broth microdilution assay above, with minor modifications. Honey solutions, corre-

sponding volumes of sterile distilled water and inocula were dispensed into wells of a 96-well

microtitre plate as described above, with the exception that after inoculation the final concen-

trations of honey in each well were 30%, 25%, 20%, 15%, 10% and 5% (w/v), in final well vol-

umes of 200 μl. The positive growth control well was prepared as described above. The

antibiotic tetracycline was tested in parallel on each test occasion as a control. Tetracycline was

selected because quality control reference MIC ranges are available for all four organisms [37].

Immediately after inoculation, the optical density of all microtitre plate wells was determined

at 600nm using a spectrophotometer microplate reader. These optical density values served as

blanks for each well. The plate was then incubated for 20 h (± 2 h) at 36˚C (± 1˚C) after which

the optical density of all microtitre plate wells was determined again at 600nm. This incubation

period was selected because preliminary tests indicated that incubation beyond 22 h could

result in inconsistent changes in the optical density of some wells containing honey, where

some optical density measurements would increase whilst others would decrease. Optical den-

sity values determined at time zero were subtracted from values obtained from corresponding

wells at 22 h to generate net optical density values. For the antibiotic control, the MIC was

determined visually as the lowest concentration resulting in an optically clear well. If the tetra-

cycline MICs were within acceptable quality control ranges this indicated that inoculum den-

sity, growth medium, and incubation conditions were optimal for test performance. If the

tetracycline MICs were outside acceptable quality control ranges the test was repeated. The

entire assay was repeated at least twice per honey.

Calculation of antibacterial activity values. The assay generated 24 net optical density values

for each honey, obtained from the six different honey concentrations tested against the four

different test organisms. Growth relative to the positive control was then calculated by dividing

the net optical density value for each honey concentration by the untreated positive growth

control for each organism and concentration of honey, and multiplying by 100 to generate a

percentage. Any resulting negative values were ascribed a value of zero and any values greater

than 100 were ascribed a value of 100. The use of these relative growth values to generate a sin-

gle measure to represent antibacterial activity was then determined after a series of trial and

error calculations. The final approach taken was to assign “antibacterial activity units” to the

degree or extent of growth inhibition, whereby more activity units were allocated to higher

growth inhibition and fewer activity units were allocated to lower inhibition of growth. The

activity units assigned to relative percentage growth values were as follows: relative growth of

<10% was assigned 32 activity units;�10% to<30% was assigned 16,�30% to<50% was

assigned 8,�50% to<70% was assigned 4,�70% to<90% was assigned 2 and�90% was

assigned 1. The sum of activity units assigned to all 24 conditions (4 organisms × 6 honey con-

centrations) was then determined, which became the final antibacterial activity value for the

honey. A series of variations to this formula was investigated to determine whether any organ-

ism or honey concentration could be eliminated to make the assay more efficient without

compromising its discriminatory power.

Assay validation and verification. Parameters including limit of detection, limit of quantita-

tion, measuring interval, limit of reporting, sensitivity, selectivity and repeatability [39–41]

were investigated as described below. Several additional validation parameters such as trueness

and linearity of calibration were not relevant to the current method as they relate specifically

to the quantification of levels of a particular analyte or compound present within a matrix,

rather than biological activity. Sources of variation within the assay were initially identified

and optimised as part of the protocol optimisation and pre-validation, some of which are
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described below under robustness. Unless stated otherwise, the antibacterial activity protocol

was performed exactly as described above for each of the validation studies below.

Limit of detection. The limit of detection is defined as the mean of the lowest detectable

value or smallest detectable concentration of an analyte, plus three times the standard devia-

tion. Since limit of detection testing is usually applied to a specific, detectable analyte, rather

than antibacterial activity, it is not straightforward as to which substance should be used to

indicate the limit of detection of antibacterial activity. Therefore, a substance with the lowest

possible level of antibacterial activity (in fact, no detectable activity under the test conditions),

sterile distilled water, was used as a surrogate substance. The sterile distilled water was used in

place of honey in the antibacterial activity assay, while all other aspects of the method were

unchanged. The final antibacterial activity value was generated for nine replicates, and the

mean and standard deviation was calculated.

Limit of quantitation (instrumental). The instrumental limit of quantitation was investi-

gated to determine the extent to which the microplate reader could discriminate between dif-

ferent optical densities and by extension, differences in bacterial growth. This was determined

by diluting overnight broth cultures of each test organism in sterile distilled water and dispens-

ing into a 96 well plate at different concentrations to create a known concentration gradient.

The highest concentration was 100% broth culture and each successive dilution decreased by

10% to a final concentration of 0% broth culture, which consisted of sterile distilled water

only. Four replicate wells were used per culture concentration per organism. The optical den-

sity of all wells was measured immediately using a microplate reader at 600nm. After subtrac-

tion of the optical density measurements for blanks, the concentration of culture relative to the

100% broth culture was calculated for each replicate, and a mean was generated.

Measuring interval. The maximum value was determined by calculating the theoretical anti-

bacterial activity value that would be derived if growth was inhibited by�90% in all 24 wells

containing honey, and the optical density was <10% relative to the control. The minimum of

the measuring interval is defined as greater than, or equal to the limit of detection.

Sensitivity. The capacity for the assay to differentiate between two very similar samples was

investigated by comparing two groups of honeys with very similar, but not identical activity as

defined by MICs. Group A consisted of seven different honeys and group B consisted of nine

different honeys. Antibacterial activity values for the two groups were analysed using Student’s

t-test (two-tailed, assuming equal variance; P = 0.05).

Repeatability. Repeatability tests were conducted to determine whether the assay produced

similar results when all experimental and technical factors were identical. Repeatability was

investigated by testing a single honey sample eight times at the same time by the same opera-

tor. Three different honey samples were investigated to cover a range of antibacterial activity

and to determine repeatability across the entire measuring range. Jarrah 1 was used to assess

the high activity range, “artificial honey” was used to assess the low activity range, and Marri 2

was used as an intermediate level honey. Results were analysed by calculating the coefficient of

variation (CV) for each stage of the assay and for the final antibacterial activity values.

Reproducibility. Inter-operator variability was investigated by having two operators perform

the test in different laboratories with different equipment. Each operator tested Jarrah 1, Marri

2 and artificial honeys three times each. Results for each operator and honey were analysed by

Student’s t-test (two-tailed, assuming equal variance; P = 0.05).

Ruggedness. Unless stated otherwise, all ruggedness studies were performed using Jarrah 1,

Marri 2 and artificial honeys, and results obtained using variant assay conditions were then

compared to results obtained using standard assay conditions. The effect of inoculum growth

phase was investigated by comparing standard inocula preparation (direct suspension from an

overnight culture on Blood agar) to exponential phase inocula prepared by growing organisms
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in Trypticase Soy broth for approximately 3 h at 37˚C with shaking. The effect of inoculum

density was investigated by conducting the assay with a light inoculum (1 log less dense than

standard inoculum) and a heavy inoculum (1 log more dense than standard inoculum). The

effect of assay incubation time was investigated by using standard assay conditions, then deter-

mining the optical density of each well at 600nm at 18, 20, 22 and 24 h. The effect of time

elapsed between preparing the honey solution by dissolving in sterile distilled water, and inocu-

lating the test with bacteria was also investigated. This was examined because it is known that

the addition of water to honey enables the enzyme glucose oxidase to catalyse the reaction that

produces hydrogen peroxide, which is an antibacterial component of honey. To examine this,

solutions of Jarrah 1 and Marri 1 were prepared at 40% (w/v) in sterile distilled water and incu-

bated at room temperature (~22˚C) for 24 h. Aliquots were removed after 1, 2, 4 and 24 h and

tested using standard antibacterial activity assay conditions. Evaluation of whether different

microplate readers would produce different results was investigated by obtaining optical density

measurements for the same assay in a 96-well plate on two different instruments, which were

the SpectraMax1 190 Microplate reader (Molecular Devices) and the xMark™ Microplate

Absorbance Spectrophotometer (Bio-Rad), then comparing optical density values. Similarly,

plate manufacturer was investigated by conducting the standard assay in four different types of

96-well microtitre plates (NUN260860, NUN167008, Falcon and CellStar). Antibacterial activity

values obtained in the different plates were analysed by one-way ANOVA (P = 0.05).

Data analyses. Unless stated otherwise, each assay was repeated at least twice on separate

occasions and mean values determined. The mean MIC for each honey was determined as the

arithmetic mean of the four MICs obtained for each organism, for the purposes of comparing

antibacterial activity measures. The relationship between values obtained using each of the

three antibacterial activity tests was analysed using Pearson’s correlation (two-tailed, level of

significance 0.05).

Results

Phenol equivalence values

PE values for the 69 blinded samples ranged from 0 to 48 (% w/v phenol), derived from zones

of inhibition ranging from 0 to 22 mm. No zones of inhibition were observed for seven honeys,

including the artificial and multifloral honeys, and three (4.3%) of the 69 blinded samples. For

the three Leptospermum honeys the PE values were zero for both the Activon and the Leptos-
permum TA 5+ samples, and was 11 for the Leptospermum TA 10+. PE values for the remain-

ing comparator honeys were 36 for Jarrah 1 and 27 for Marri 1. Marri 2 was not tested using

this assay. The distribution of PE values obtained is shown in Fig 1, and shows that over half of

the samples (54%) had PE values ranging from 31–40.

Zones of inhibition obtained for trimethoprim (5 μg disc) ranged from 19–24 mm, with a

mean of 21 mm, standard deviation of 1.8 and %RSD of 8.8 (Fig 2). The mean and standard

deviation of zones of inhibition obtained for phenol solutions from all experimental repeats,

and the average phenol standard curve is shown in Fig 2. The %RSD values for the phenol

standards were 6.5, 3.9, 3.4, 3.3, 8.0 and 8.4 for the 2, 3, 4, 5, 6 and 7% phenol solutions, respec-

tively. The limit of detection of antibacterial activity for the PE assay, based on the smallest

zone size theoretically measurable of 9 mm for a solution of 25% honey, and using the standard

curve shown in Fig 2B, is 6.8 (% w/v phenol).

Minimum inhibitory concentrations

The mean of the MICs obtained for all four organisms for each honey was determined to

enable comparison of overall activity between honeys. For the 69 blinded samples, mean MICs
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Fig 1. Distribution of antibacterial activity values obtained for 77 honeys using three testing methods. (A) Mean

minimum inhibitory concentrations (% w/v) obtained by broth microdilution using Staphylococcus aureus ATCC

29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853.

(B) PE values determined using Staphylococcus aureus ATCC 25923. (C) New assay activity units, determined from

relative growth of S. aureus ATCC 29213, E. faecalis ATCC 29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853

cultured with six different concentrations of honey. Each measurand was grouped into categories for the purpose of

plotting the histograms.

https://doi.org/10.1371/journal.pone.0243246.g001
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ranged from 6.5 to 23.5 (% w/v honey) and the distribution of mean MIC values is shown in

Fig 1B. MICs for S. aureus ATCC 29213 across all 69 blinded honey samples ranged from <2%

to 25%, with a mean of 5% and a mode of 4% (Fig 3). Four of the honeys showed MICs of less

than 2% against S. aureus and a value of 1% was ascribed to these for the purposes of data anal-

yses. For E. faecalis ATCC 29212, MICs for the 69 honeys ranged from 10% to>30%, with a

mean of 17% and a mode of 14%. For E. coli ATCC 25922, MICs ranged from 8% to 27%, with

a mean of 12% and a mode of 10%. Lastly, MICs for P. aeruginosa ATCC 27853 ranged from

6% to 20%, with a mean of 10% and a mode of 8%. Overall, MICs were the lowest for S. aureus.
MICs were generally highest for E. faecalis, whereas E. coli and P. aeruginosa were largely simi-

lar. MICs for artificial honey were>30% for all organisms except P. aeruginosa for which the

MIC was 28%, and for multifloral honey the MICs were >30% for both Gram positive organ-

isms and were 29% for E. coli and 26% for P. aeruginosa. As a generalisation, all honeys showed

the same broad trends in antibacterial activity across the four test organisms, whereby S.

aureus was always the most susceptible, followed in order by P. aeruginosa, E. coli and E.

faecalis.

New method for quantification of antibacterial activity

Optical density measurements. Bacterial cell density was quantified by determining the

optical density of all cultures at 600nm. Analysis of optical density data obtained for all experi-

mental repeats (n = 154; obtained from two experimental repeats for 77 test honeys) showed

the following mean (± standard deviation) OD values for the positive growth control wells: S.

aureus 0.57 (± 0.17); E. coli 0.81 (± 0.09); E. faecalis 0.34 (± 0.15) and P. aeruginosa 1.02 (±
0.11). The organism showing the most variation in optical density measurements for the posi-

tive growth control was E. faecalis, followed by S. aureus. Optical density measurements

obtained after growth in the presence of each honey concentration varied considerably,

Fig 2. Mean zone sizes for phenol standards and antibiotic disc (A) and phenol standard curve (B) plotted from mean phenol zone sizes. Bars represent standard

deviation.

https://doi.org/10.1371/journal.pone.0243246.g002
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depending on the concentration of honey tested, the level of activity of each honey, and the

intrinsic susceptibility of each test organism. As a generalisation, all four test organisms were

capable of growth at almost all honey concentrations for those honeys with relatively low activ-

ity (Fig 3A). For honeys with relatively high activity, test bacteria were only able to grow in the

presence of 5% and occasionally 10% honey, with the exception of S. aureus which was gener-

ally not able to grow in these conditions (Fig 3).

The percentage growth relative to the untreated positive growth control was determined for

each organism at each concentration of honey. These relative growth percentages were used to

calculate the new antibacterial activity value as described below and shown in Figs 3 and 4. In

addition, and to provide an overview of broad trends in bacterial growth inhibition, the aver-

age of these relative growth percentages was determined for each organism and for all honeys

excluding the artificial and multifloral honeys as these two honeys only moderately inhibited

bacterial growth. Comparison of test organisms showed that S. aureus was the most susceptible

to honey, producing essentially no growth in the presence of 25% or 30% honey (Table 1),

with the exceptions of the artificial and multifloral honeys. Similarly, growth was largely absent

in the presence of 15 and 20% honeys. The mean relative growth of S. aureus was <2% in the

presence of�15% honey (Table 1). Mean relative growth of S. aureus in the presence of 5%

honey was 20.2%, and was 6.7% in the presence of 10% honey. In contrast, the least susceptible

organism was E. faecalis, with mean relative growth of 0.76%, 4.23%, 11.70%, 50.61%, 104.85%

and 127.28% in the presence of 5, 10, 15, 20, 25 and 30% honey, respectively. Examination of

standard deviation values showed that the highest variation occurred at 5% for S. aureus, 10%

for E. coli and P. aeruginosa and 15% for E. faecalis, indicating that these are the most highly

discriminatory concentrations for each test organism. Stimulation of growth occurred at 5%

honey, and most commonly occurred in P. aeruginosa, with growth stimulated (>100% rela-

tive to the untreated control) in 147 of the 154 (95%) tests conducted. Similarly, E. faecalis
growth was also stimulated at 5%, occurring in 128 of the 154 (83%) tests. Growth stimulation

also occurred at 10% honey although to a much lesser extent, and occasionally also occurred at

15% honey.

Development of the calculation for the antibacterial activity value. Each honey test

generated 24 relative growth values (6 honey concentrations × 4 organisms) which were then

used to generate a single antibacterial activity value, as shown in Fig 4. Using the new assay,

values obtained using the calculation formula for the 69 blinded honey samples ranged from

368 to 669 activity units. The mean and standard deviation was 596 and 57, respectively, and

the distribution of values is shown in Fig 1. The majority of honeys (71%) had values in the

range of 551–600 activity units, with relatively few (9%) having values higher than this. Values

for comparator honeys were 181 for artificial honey, 148 for multifloral honey, 372 for Leptos-
permum NPA 5+, 538 for Leptospermum NPA 10+, 517 for Activon honey, 572 for Jarrah 1

and 511 for Marri 1. Representative examples of relative growth in the presence of several hon-

eys, with corresponding antibacterial activity values are shown in Fig 3.

A number of variations to the calculation were investigated to determine whether a similar

level of discrimination between levels of antibacterial activity could still be achieved by using

fewer organisms or fewer concentrations of honey. If so, the method could potentially be sim-

plified thereby saving on resources, time or both. However, results showed that removal of any

Fig 3. Representative honeys showing varying levels of antibacterial activity. Bars show the growth of test

organisms relative to the positive growth control. Numbers above bars show the values ascribed to the level of growth

inhibition, which when added together give the new antibacterial activity value. (A) Relatively low activity honey (174

activity units). (B) Moderately low activity honey (359 activity units). (C) Moderate activity honey (514 activity units).

(D) Relatively high activity honey (647 activity units).

https://doi.org/10.1371/journal.pone.0243246.g003
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one parameter was detrimental to the final antibacterial activity values as the change typically

led to a loss of power to be able to discriminate between different levels of antibacterial activity.

As such, all experimental parameters were retained. Several examples are described below to

illustrate the effect of removing one or more parameter. For example, it was considered that

results for E. coli may not be critical in the calculation given that the pattern of growth inhibi-

tion was somewhat similar to that of P. aeruginosa. However, removal of E. coli values resulted

in loss of discrimination, meaning that all antibacterial activity values were then clustered

closely together and activity between honeys could not be distinguished. A similar result

occurred when P. aeruginosa values were removed from the calculation instead of E. coli. Next,

since E. faecalis showed the least amount of growth inhibition by honey (especially when com-

pared to S. aureus) it was considered that the E. faecalis values may not make a useful contribu-

tion to the assay. However, removal of E. faecalis values also resulted in a loss of

discrimination and this also highlighted that E. faecalis is actually a very discriminatory organ-

ism and provides a wide spread of useful information for the assay. Similarly, because S. aureus
can be inhibited at particularly low concentrations, it is an ideal organism for demonstrating

very high antibacterial activity in this assay. Lastly, it was common for there to be no bacterial

growth in wells containing 30% and 25% honey. As such, it was conceivable that these concen-

trations may not make a useful contribution to calculating final antibacterial activity value.

However, results showed that these concentrations were important for discriminating between

honeys with moderate and low activity. Since the assay must be able to quantify activity for a

broad range of honeys, all organisms and all six honey concentrations were retained in the

final calculation formula.

Assay validation. Results of method validation are described below and shown in Table 2.

The limit of detection for the new assay was determined to be 53 activity units (Table 2). This

value was generated by determining the mean antibacterial activity value for sterile distilled

water (no antibacterial activity), which was 37.9 with a standard deviation of 4.95. Therefore,

the calculated limit of detection for this assay was 37.9 + (3 × 4.95), which is equal to 52.75.

Fig 4. Representative example of the calculation required for the new antibacterial activity value. Step 1 is to determine the net

optical density values; step 2 is to calculate the percentage growth relative to the positive control; step 3 is to assign the activity units to

each relative percentage growth value and the final step is to add the 24 values together. Data for this honey is also illustrated in Fig 3B.

https://doi.org/10.1371/journal.pone.0243246.g004

Table 1. Relative percentage growth of each organism at each concentration of honey, for all honeys excluding artificial and pasture.

Honey concentration Mean relative percentage growth

(w/v) S. aureus E. coli E. faecalis P. aeruginosa
ATCC 29213 ATCC 10418 ATCC 29213 ATCC 27853

5% Mean (± S.D.) 20.2 ± 41.0 66.6 ± 15.8 127.3 ± 37.1 134.4 ± 24.8

Range -2.9–221.3 0.0–131.9 0.0–245.3 45.1–208.2

10% Mean (± S.D.) 6.7 ± 27.1 28.5 ± 23.8 104.8 ± 39.8 33.8 ± 55.3

Range -2.0–261.2 0.0–93.5 0.0–280.5 0.0–201.5

15% Mean (± S.D.) 1.9 ± 12.4 5.1 ± 13.6 50.6 ± 49.4 5.6 ± 20.6

Range -1.9–124.8 0.0–78.8 0.0–228.6 0.0 = 116.5

20% Mean (± S.D.) 0.7 ± 4.4 1.6 ± 7.1 11.7 ± 26.2 0.4 ± 2.7

Range -0.6–43.2 0.0–58.6 0.0–122.6 -0.2–78.0

25% Mean (± S.D.) 0.2 ± 1.4 0.4 ± 2.2 4.2 ± 14.1 0.0 ± 0.1

Range -1.2–15.8 0.0–47.9 0.0–71.8 0.0–16.4

30% Mean (± S.D.) 0.0 ± 0.3 0.1 ± 0.3 0.8 ± 3.6 0.0 ± 0.1

Range -2.6–1.3 0.0–15.4 0.0–83.4 0.0–0.9

https://doi.org/10.1371/journal.pone.0243246.t001
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Limit of instrument quantitation studies showed that optical density values measured by

the spectrophotometric microplate reader were higher than, or equal to, the calculated theoret-

ical cell density concentrations by an average of 1.32% to 8.63%, and followed a linear trend

(S1 Appendix). Results showed that the instrument is capable of determining a difference of at

least 10% between known concentrations of bacterial culture, which is a sufficient level of dis-

crimination for the assay.

The measuring interval was determined to be 768 to 53 activity units. The maximum anti-

bacterial activity value of 768 was determined based on a hypothetical honey that resulted in

complete inhibition of bacterial growth at every concentration of honey and for every organ-

ism. This value was obtained by assigning all 24 microplate wells the maximum value of

32 activity units, indicating maximum growth inhibition, and adding these to generate the

value of 768. Any honey samples that exceed this value cannot be differentiated, so this is

therefore determined as the maximum of the measuring interval. The minimum of the mea-

suring interval is defined as greater than or equal to the limit of detection, which was deter-

mined as described previously to be 52.75 activity units. However, the theoretical minimum

value for the assay is 24, obtained by assigning 1 activity unit (corresponding to 100% growth

relative to the control, representing 0% growth inhibition) to each of the 24 relative growth

values.

Table 2. Results of method validation.

Validation Parameter Result

ACCURACY

Limit of Detection 53 activity units

Limit of Quantitation

(instrumental)

The instrument can quantify a difference of at least 10% in bacterial cell density.

Optical densities of dilutions of bacterial cultures showed a linear trend

Sensitivity Two groups of honeys with very similar activity shown to be significantly different

(P = 0.0499)

Selectivity The use of blanks corrects for any interference within the assay and ensures that

only bacterial optical density is measured

PRECISION

Repeatability (% RSD) % RSD calculated for the final antibacterial activity values were 1.8% (Jarrah 1) 3.1%

(Marri 2) and 6.7% (Artificial)

Reproducibility (inter-

laboratory)

Minor inter-operator variability was evident but results did not differ significantly.

P values were 0.479 (Jarrah 1), 0.138 (Marri 2) and 0.183 (Artificial)

RUGGEDNESS/

ROBUSTNESS

Instrument variability Minimal variation whereby two different instruments produced similar results

Inoculum growth phase Results produced using stationary and exponential phase inocula differed

significantly for P. aeruginosa (P = 0.0058) but not for the other organisms

Assay incubation time Optical density values were stable at 18, 20 and 22 h, but unstable thereafter

Honey solution time elapsed Activity of honey solutions increased over time; time between preparing honey and

inoculation recommended as � 1 h

Microtitre plate type Results obtained in different microtitre plates differed significantly for Artificial

honey only. P values were 0.1415 (Jarrah 1), 0.389 (Marri 2) and 0.0356 (Artificial)

OTHER

Measuring Interval 53–768 activity units

Matrix Effects Not applicable: relevant to the quantification of a specific analyte within a matrix,

rather than activity

Trueness/Bias Not applicable: not investigated due to the lack of standard reference material

Linearity Not applicable: not investigated due to the lack of standard reference material

Measurement Uncertainty Not within the scope of this study

https://doi.org/10.1371/journal.pone.0243246.t002
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Several ruggedness parameters were investigated, with varying results. Comparison of inoc-

ulum growth phase on growth inhibition by honey demonstrated no significant differences in

antibacterial activity values for S. aureus, E. faecalis and E. coli, whereas differences for P. aeru-
ginosa were significant (P< 0.05), with the exponential phase inoculum being less susceptible

to honey. For example, for P. aeruginosa the net optical density after 24 incubation with 10%

(w/v) Marri 1 was 1.34 for the exponential phase inoculum, compared to 0.75 for the stationary

phase inoculum. Comparison of different inoculum densities showed that the less dense (light)

inoculum did not significantly alter the assay result when compared to standard inoculum

density, whereas the more dense (heavy) inoculum resulted in substantial differences in

growth (determined by optical density) at one or more concentrations of honey. Assessment

of variations in incubation period showed that optical density measurements at 18, 20 and 22

h remained relatively constant, whereas optical density measurements obtained at 24 h either

increased or decreased substantially compared to previous time points (S1 Appendix). The

optimal incubation period was therefore determined to be 20 ± 2 h. Comparison of optical

density measurements for a single 96-well plate obtained on two different spectrophotometric

instruments showed almost identical measurements, indicating that the instrument did not

represent a significant source of variation. Comparison of the effect of time elapsed between

preparing the solution of honey and testing for antibacterial activity showed little effect for

Marri 1 but for Jarrah 1 antibacterial activity was increased at 2, 4 and 24 h compared to 1 h,

for one or more organism. Activity at 4 h was particularly high (S1 Appendix). Based on this, it

was concluded that honey solutions should be dispensed into microtitre plates and inoculated

within 1 h of preparation to minimise the potential for hydrogen peroxide to accumulate and

unduly influence the assay outcome. We have shown in previous research that honeys may dif-

fer in both their capacity to generate hydrogen peroxide, and rate of hydrogen peroxide accu-

mulation [42], which may impact results of antibacterial activity assays.

Relationship between activity measurements. Analysis of antibacterial activity measures

obtained for all 77 honeys (69 blinded and eight comparators) by Pearson correlation (2-tailed)

showed correlation between values (Fig 5). The weakest correlation was between PE values

and the new antibacterial activity values (r = 0.787, p< 0.0001). There was a stronger relation-

ship between PE values and mean MIC values (r = -0.806, p< 0.0001), whereas the strongest

relationship was between new antibacterial activity values and mean MIC values (r = -0.974,

p< 0.0001). Using the equation from the trend line shown in Fig 5B, new antibacterial activity

values can be extrapolated for existing PE values. For example, a PE value of 10 corresponds to

an antibacterial activity value of 449, a PE of 20 corresponds to 509, a PE of 30 corresponds to

569, a PE of 40 corresponds to 628 and a PE of 50 corresponds to 688.

Examination of results obtained for individual honeys demonstrated that in general, levels

of activity quantified by all three methods were in agreement. That is, if results of one assay

indicated relatively high activity, this was likely to be seen across all three assays and likewise if

a honey showed relatively low activity by one method, this was likely to be reflected across the

remaining two assays. Two notable exceptions were the Activon Manuka honey, which gave a

PE value of zero and an antibacterial activity value of 517, and one of the blinded samples

which also gave a PE value of zero and an antibacterial activity value of 518.

To further evaluate the extent of agreement between values obtained by the three methods,

honey activity measures were ranked from high to low in numerical order. The 25 honeys with

highest, or lowest activity were then examined to see how rankings compared across all three

assays. For the 25 honeys with the highest activity according to the new assay, 22 (88%) of

these honeys were also ranked within the top 25 determined by mean MIC, whereas only 10

(40%) of these honeys were ranked in the top 25 according to PE values. Examination of the

lowest 25 values according to new assay showed that 21 (84%) honeys were also ranked in the
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lowest 25 according to both mean MIC values and PE values. This indicates that methods are

broadly in agreement for lower activity honeys, but that in the higher activity honeys, PE and

broth results are not necessarily in agreement. When honeys were sorted based on antibacte-

rial activity value and then grouped, the mean antibacterial activity value and mean PE value

for each grouping could be determined and compared (Table 3). This provides an approximate

indication of how values obtained by the new assay correspond with PE values. Median values

were also determined for each activity range but were very similar to mean values and are

therefore not shown. Comparison of the relationship between actual mean values shown in

Table 3 with theoretical antibacterial activity values determined from the scatter plot shown in

Fig 5B shows some similarities. For example, as shown in Table 3, a mean PE of 30.1 corre-

sponds to a mean antibacterial activity value of 560, and from the scatter plot a PE of 30 corre-

sponds to a theoretical antibacterial activity value of 569.

Discussion

The PE assay (or UMF assay) is currently used by the honey industry to quantify the antibacte-

rial activity of honey. As mentioned in the introduction, it is questionable whether this assay is

well suited to measuring the activity of honey, given that it relies on the diffusion of com-

pounds with varying polarities and molecular weights through agar. In addition, variability of

results of the PE assay between laboratories has been identified as an issue [11]. Difficulties

interpreting zone sizes, particularly for honeys producing zones with an indistinct or hazy

edge, or with a halo of faint growth within the zone [11] have also been noted. For agar diffu-

sion assays with antibiotics, reading zone sizes is said to be the hardest aspect of the assay to

standardise [43], indicating that this problem is widespread.

Compounding these issues is the lack of publically available validation studies for the PE

assay, including intra- and inter-laboratory trials, and quality control reference data for the

Fig 5. Correlation of antibacterial activity measurements. Scatter plots show correlation between (A) Phenol

equivalence and mean MIC values; R2 = 0.649, (B) Phenol equivalence and new antibacterial activity values; R2 = 0.620

and (C) mean MIC and new antibacterial activity values; R2 = 0.949. The open circles represent blinded samples and

Jarrah and Marri controls, cross symbol denotes Leptospermum honeys, open square represents the multifloral honey

and the black square represents artificial honey.

https://doi.org/10.1371/journal.pone.0243246.g005

Table 3. Comparison of values from the new antibacterial activity scale to the existing phenol equivalence scale. Numbers are the mean ± standard deviation for all

values within each specified range.

Range of Mean ± Standard deviation

Antibacterial Activity Values n � Antibacterial activity value Phenol equivalence Mean MIC

>650 7 659.5 ± 6.2 37.6 ± 5.8 8.1 ± 1.1

625–649 16 641.0 ± 7.1 37.0 ± 4.4 9.0 ± 0.9

600–624 14 615.0 ± 7.3 38.7 ± 6.6 10.0 ± 0.8

575–599 15 587.6 ± 8.3 36.4 ± 4.3 11.1 ± 1.3

550–574 9 559.9 ± 8.5 30.1 ± 5.1 13.4 ± 1.6

525–549 4 541.3 ± 6.1 25.2 ± 9.7 13.8 ± 0.7

500–524 4 517.4 ± 5.3 12.7 ± 14.8�� 14.2 ± 0.5

400–499 2 482.3 ± 12.4 21.5 ± 7.8 15.8 ± 1.1

300–399 3 377.2 ± 12.6 0.0 ± 0.0 22.5 ± 0.9

<300 2 164.8 ± 23.7 0.0 ± 0.0 30.3 ± 1.1

� A total of 76 honeys are included. Marri 2 is not included.

�� Values for two honeys were zero. Exclusion of the two zero values results in a mean of 25.5.

https://doi.org/10.1371/journal.pone.0243246.t003
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phenol zone sizes. Quality control data are a critical aspect of any type of quantitative or ana-

lytical laboratory testing. In particular, accurate phenol zone sizes are vital as minor changes

will alter the phenol standard curve, which in turn affects the final PE value ascribed to the

honey. Phenol calibration curves have been published in several previous research papers [14,

44, 45], however, each of these curves differs substantially from the others, and also from the

calibration curve in the current study. Variability in phenol zone sizes was observed in the cur-

rent study, with %RSD values for phenol standards ranging from 3.3 to 8.4. These values are

higher than those typically found for chemical analysis methods (1–3% RSD) [46], however,

microbial tests are known to have comparatively higher %RSD values [46]. Also, minor differ-

ences in zone sizes obtained by disc or agar diffusion are to be expected and are deemed

acceptable if they fall within a pre-defined range. Ironically, phenol is not an ideal substance

for use in agar diffusion assays. It is relatively non-polar and has limited solubility in water of

approximately 8.3 g/100ml [47], which is likely to limit its diffusion through agar. The inclu-

sion of additional assay controls, such as antibiotic discs, can potentially assist in assay valida-

tion. In the current study, zone sizes generated for trimethoprim were within the acceptable

range of 19 – 26mm specified by CLSI (for the control strain S. aureus ATCC 25923) [37], but

it should be noted that the methodology for the PE assay and the standard antibiotic disc diffu-

sion test differ considerably, meaning that results are not directly comparable.

Relatively few publications describe antibacterial activity results obtained for honeys using

the PE assay, which limits the comparison of current data to previous results. Less than 20 pub-

lications were identified that utilise the method, and of these, many report a modification to

assay parameters, further limiting the direct comparability of results. Modifications include

using a test microorganism other than S. aureus [48] or an alternative strain of S. aureus [49], a

medium other than Nutrient agar [48], or a different size of bioassay plate [32, 45]. Studies

using PE methodology the same as, or very close to standard methodology used in the current

research have reported total activity measurements (expressed as percent PE) for various hon-

eys (excluding honeys with undetected activity) ranging from 4.2 to 18.8 [49], 12.0–21.2 [12],

7.4–34.3 [10], 7.8–42.6 [50] and ~5–58 [14]. Values from the current study are within the

ranges of those reported previously, however, and as alluded to above, the lack of phenol stan-

dard curve information in previous publications limits meaningful comparisons.

Given the limitations of agar diffusion-based methods for quantifying the antibacterial

activity of honey, a liquid or broth-based assay was considered more appropriate. This

bypasses the issue of diffusion through agar, and also provides a direct measurement of activ-

ity, rather than activity relative to phenol. The broth microdilution assay was originally devel-

oped specifically for assessing the in vitro susceptibility of clinical isolates to antibiotics, with

the aim of determining whether isolates are susceptible, intermediate or resistant, and to there-

fore guide appropriate antibiotic therapy in patients with an infectious disease. Importantly,

this method has already been demonstrated to be robust and reproducible, and both quality

control data and troubleshooting guides are readily available [31, 38]. The broth microdilution

method has also been used to generate antimicrobial data for honey in numerous previous

studies [21, 42, 51, 52]. Results from a selection of recent studies using methodology compara-

ble to the current study, with similar bacterial test strains and examining Australasian honeys

including Manuka honey are described here. For example, a previous study found MICs for

six different monofloral honeys ranging from 3.12–25% against four S. aureus strains, and

6.25–25% for both E. coli and P. aeruginosa [21]. Similarly, MIC ranges for 11 monofloral hon-

eys were 4–32% for S. aureus, 16–32% for both E. coli and P. aeruginosa and 16 ->32% for E.

faecalis [32]. Girma et al (2019) tested multiple bacterial strains against three Manuka honeys

and found the concentrations of honey at which 90% of strains were inhibited ranged from 7

to 15% for S. aureus, 21–27% for P. aeruginosa and was 33% for the Enterobacteriaceae [16].
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MIC ranges from previous studies were similar to the current study, as was the overall trend

whereby S. aureus was generally the most susceptible organism, followed by E. coli and P. aeru-
ginosa which tended to have similar susceptibilities. Advantages of the broth microdilution

assay are that it is robust and reproducible, generates quantitative data and is relatively easy to

perform. Disadvantages are that the doubling dilutions typically employed in a broth microdi-

lution method are usually insufficient for testing honey as the intervals between each sequen-

tial concentration may be relatively large. Alternative dilution series with smaller increments

such as 2% [42] or 1% [53] are required, which increases both the labour intensity and the

time required to perform the assay. Also, off-scale results may be encountered, depending on

the range of honey concentrations tested. Lastly, the MIC endpoint, which is typically defined

as the complete inhibition of growth, may not be easy to determine and does not necessarily

capture all of the activity shown by honey. For example, depending on the concentration of

honey tested, some honeys will show bacteriostatic activity whereby growth is reduced, but not

completely prevented [2, 54]. The extent of this growth inhibition can be quantified by spec-

trophotometric optical density measurements [29], and this was utilised when developing the

modified version of the broth microdilution assay to become the new antibacterial activity

assay.

Spectrophotometric methods to measure optical density have been used previously for

quantifying antibacterial activity [55, 56], including that of honey [57–59]. A highly relevant

example of this is a paper by Patton et al (2006) that describes the development of a 96-well

microtitre plate spectrophotometric assay for determining bacterial sensitivity to honey,

adapted from previously published literature [29]. They found that their assay was simple and

rapid, more sensitive than the standard disc or well diffusion assays and had the advantage of

eliminating a subjective observation as the assay endpoint. They also found their assay to have

good reproducibility and repeatability. Similar to the current study, the authors calculated per-

centage growth inhibition relative to the positive growth control for each organism, honey and

concentration. They then used these data to plot dose-response curves and to determine the

concentrations at which growth was inhibited by 100%, 50% and 0%, and several authors have

since followed their methodology [30, 60]. This method provides valuable information about

the susceptibility of individual organisms to honey, and shows that differences in optical den-

sity are a valid means of quantifying the antibacterial activity of honey. However, it is probably

not easily adaptable to commercial use due to the level of data manipulation required and type

of endpoint generated. The new assay described in the current work is essentially a modified

broth microdilution assay, with an endpoint based on a similar principle to the test described

by Patton et al., (2006) whereby percentage growth inhibition after incubation with honey is

quantified. Advantages of the new assay compared to both the PE and MIC methods are that it

is able to quantify activity over the entire range of honey activity (including those with rela-

tively low activity), and has a non-visual, non-subjective optical density endpoint that does not

rely on human interpretation. It also uses four test organisms, thus provides a broader repre-

sentation of honey activity compared to data obtained using a single test species. Also, the PE

assay is conducted over a four day period, whereas the new assay requires only three days. The

new assay is not as high throughput as the PE assay (where up to 23 honeys can be tested in

duplicate simultaneously), but offers more flexibility as individual honeys can be tested on

demand.

Comparison of results from the new assay with both the PE results and the MIC results

showed a reasonable level of agreement. Antibacterial activity values correlated strongly with

MICs, which is perhaps to be expected given that these two assays have very similar methodol-

ogies. A lower degree of correlation was evident between results of the new assay and the PE

assay, which can similarly be explained by the fundamental differences in methodology. A
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previous study examining the activity of 56 honey and honeydew samples using agar dilution,

broth microdilution and agar diffusion showed that the agar and broth dilution methods gave

similar results, whereas the relationship between agar diffusion and broth dilution results was

not as straightforward [61]. Importantly, the authors noted that those samples with high activ-

ity in the broth assay showed a range of activities by agar diffusion, which they postulated was

due to the presence of high molecular weight compounds with limited mobility in agar [61].

Similarly, a study with six honeys and four test bacteria showed that honeys showing highest

activity by broth microdilution were not the same as those showing the highest activity by agar

diffusion [35]. These previous findings support the conclusion that agar assays are not appro-

priate for quantifying the antibacterial activity of honeys.

A critical component of the development of any new laboratory assay is assay validation

and verification. Guidelines are available to assist in validation studies [39], however, some

parameters described within the guidelines apply to analyte detection assays, but are not appli-

cable to antibacterial activity assays. The validation approach for antibacterial activity assays is

therefore slightly different [62, 63]. Importantly, operator-dependent variables and operator-

independent factors must be assessed and wherever possible, adequately controlled or mini-

mised [64]. Assessment of the methodology described in the current paper showed that it had

appropriate repeatability, reproducibility and robustness. In particular, validation by a second

operator in a separate laboratory demonstrated that the assay had good reproducibility, which

has been noted previously as a critical element of assay validation [65]. Once an assay has been

adopted, ongoing quality control and participation in quality assurance programs are also vital

[63].

Regardless of which antibacterial testing method is used, minor differences in the antibacte-

rial activity of different honeys can be quantified in the laboratory. It remains to be determined

whether these differences are reflected in clinical outcomes when treating disease. In the

absence of this correlation between laboratory findings and clinical outcomes, it is important

to not overstate, or extrapolate from results obtained in the laboratory. The new assay has the

capacity to measure activity to single digits or activity units, however, small differences in

activity of only a few units are unlikely to be statistically significantly different. Therefore,

whilst reporting activity at the single-digit level is important for research purposes, it may lead

to the over-interpretation of minor differences in results by both consumers and honey retail-

ers. As such, it is recommended that a scale be created whereby antibacterial activity values are

rounded to the nearest 50 or 100 units, and that the resulting antibacterial activity scale have a

minimum of 100 to a theoretical maximum of 750. These are important parameters to estab-

lish, as in contrast, there do not appear to be any standard guidelines for how testing laborato-

ries should report PE values, with some laboratories rounding values to the nearest five and

others reporting to single digits. Also, the minimum and maximum values reportable using

the PE assay do not appear to have been clearly established.

This study has developed and validated a new method for quantifying the antibacterial

activity of honey, however, the study is not without limitations. For example, only honeys

from a limited geographical area, and from limited floral sources were tested. If these honey

samples were all relatively similar in antibacterial activity, physicochemical composition or

provenance, then results of antibacterial activity assays may be “skewed” and may not repre-

sent the full spectrum of antibacterial activity found in honeys. Therefore, the examination of

additional honey samples using this methodology is recommended, particularly those with

mid-range activity as few of these were identified in the current study. Also, the assessment of

additional honey samples from commercially important floral sources such as Leptospermum
(Manuka), and of commercially available therapeutic products is recommended. In addition,

the new assay is not as high throughput as the existing PE assay, meaning that the time
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required to set up the assay may be perceived as a limitation. ideally a multi-centre ring test

should be performed where individual samples from a single honey are sent to different testing

facilities to ascertain the degree of inter-laboratory agreement between testing results, and to

obtain feedback on the usability of the new test.

In summary, a new assay has been developed that accurately quantifies the antibacterial

activity of honeys, including those with relatively low activity. Adoption of the new testing pro-

tocol by industry participants, commercial testing laboratories and researchers would have

wide-ranging benefits by providing a unified measurement of the antibacterial activity of all

honeys.
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