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Generation of realistic synthetic data using Multimodal Neural
Ordinary Differential Equations
Philipp Wendland 1,2,4, Colin Birkenbihl1,3,4, Marc Gomez-Freixa3, Meemansa Sood 1,3, Maik Kschischo 2 and Holger Fröhlich1,3✉

Individual organizations, such as hospitals, pharmaceutical companies, and health insurance providers, are currently limited in their
ability to collect data that are fully representative of a disease population. This can, in turn, negatively impact the generalization
ability of statistical models and scientific insights. However, sharing data across different organizations is highly restricted by legal
regulations. While federated data access concepts exist, they are technically and organizationally difficult to realize. An alternative
approach would be to exchange synthetic patient data instead. In this work, we introduce the Multimodal Neural Ordinary
Differential Equations (MultiNODEs), a hybrid, multimodal AI approach, which allows for generating highly realistic synthetic patient
trajectories on a continuous time scale, hence enabling smooth interpolation and extrapolation of clinical studies. Our proposed
method can integrate both static and longitudinal data, and implicitly handles missing values. We demonstrate the capabilities of
MultiNODEs by applying them to real patient-level data from two independent clinical studies and simulated epidemiological data
of an infectious disease.
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INTRODUCTION
Patient-level data build the foundation for a plethora of healthcare
research endeavors such as drug discovery, clinical trials,
biomarker discovery, and precision medicine1. Collecting such
data is extremely time-consuming and cost-intensive, and
additionally access-restricted by ethical and legal regulations in
most countries. Individual organizations, such as hospitals,
pharmaceutical companies, and health insurance providers are
currently limited in their ability to collect data that are fully
representative of a disease population. This issue is especially
pronounced in clinical studies, where patients are usually recruited
based on predefined inclusion and exclusion criteria that
introduce cohort-specific statistical biases2. These biases, in turn,
can negatively impact the generalization ability of machine
learning models, since the usual i.i.d. assumption is violated3. A
naive idea to counteract this issue might be to build up large data
repositories pooling diverse clinical studies from several organiza-
tions. However, here, a major obstacle is that sharing patient-level
data across different organizations is exceedingly difficult due to
legal restrictions, as formulated, for example, in the General Data
Protection Rule of the European Union.
The idea we propagate in this paper is to learn a continuous-

time generative machine learning model from clinical study data.
Given the distribution of the real training data was appropriately
learned by such a model, the generated synthetic datasets
maintain the real data signals, such as variable interdependencies
and time-dependent trajectories. Furthermore, these synthetic
datasets can overcome crucial limitations of their real counterparts
like missing values or irregular assessment intervals, hence
opening the opportunity to make at least subsets of variables
from different studies statistically comparable. A further strong
motivation for generating synthetic datasets is the aim to use the
generated data as an anonymized version of its real-world
counterpart and thereby mitigate the increased restrictions for

sharing human data4–6. However, synthetic patient-level datasets
open opportunities that reach far beyond data sharing. For
example, trained generative models could be used for synthesiz-
ing control arms for clinical trials based on data from previously
conducted trials, or from real-world clinical routine data7. This
helps addressing major ethical concerns in disease areas, such as
cancer, where it is impossible to leave patients untreated. Both,
the American Food and Drug Administration and the European
Medicines Agency have recognized this issue and taken initiatives
to allow for synthetic control arms7.
Over the last years, generative models (mostly generative

adversarial networks [GANs]) have found notable success, mostly
in the medical imaging domain8–13. However, GANs are often
found to show a collapse in the statistical mode of a distribution,
which raises concerns regarding coverage of the real patient
distribution by synthetic data. Moreover, these methods are not
necessarily suited to cope with the complex nature of clinical data
collected in observational, longitudinal cohort studies, which is the
main focus of our work: In addition to the previously mentioned
issue of irregular measurement frequencies and missing values
not at random (e.g., due to participant drop-out), clinical studies
often comprise several modalities combining time-dependent
variables (e.g., measures of disease severity) and static information
(e.g., biological sex). One approach specifically designed for the
joint modeling and generation of multimodal, time-dependent,
and static patient-level data containing missing values is the
recently introduced Variational Autoencoder Modular Bayesian
Networks (VAMBN)4. However, VAMBN only operates on a discrete
time scale while relevant clinical indicators such as, for example,
disease progression expressed through a cognitive decline or
rising inflammatory markers, are intrinsically time continuous.
Recently, Neural Ordinary Differential Equations (NODEs) have
been introduced as a hybrid approach fusing neural networks and
Ordinary Differential Equations (ODEs)14. While NODEs are time
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continuous and thus enable smooth interpolation between
observed data points and extrapolation beyond the observations
in the data, they are not able to integrate static variables.
In this work, we present the Multimodal Neural Ordinary

Differential Equations (MultiNODEs) as an extension of the NODEs.
MultiNODEs allow learning a generative model from multimodal
longitudinal and static data that may contain missing values not at
random. To demonstrate MultiNODEs’ generative capabilities, we
applied the model to clinical, patient-level data from an
observational Parkinson’s disease (PD) cohort study (the Parkin-
son’s Progression Markers Initiative [PPMI]15) and, additionally, a
longitudinal Alzheimer’s disease (AD) data collection (National
Alzheimer’s Coordination Center [NACC]16). We compared the
generated trajectories and correlation structure with the real
counterpart. In this context, we additionally evaluated Multi-
NODEs’ performance against the previously published VAMBN
approach. Furthermore, we assessed MultiNODEs’ interpolation
and extrapolation performance. Finally, we investigated the
influence of sample size, noisiness of the data, and longitudinal
assessment density on the training of MultiNODEs in a systematic
benchmark on data simulated from a mathematical model well-
known in the epidemiology field.

RESULTS
Conceptual introduction of the MultiNODEs
MultiNODEs represent an extension of the original NODEs
framework14 that overcomes the limitations of its predecessor
such that an application to incomplete datasets consisting of both
static and time-dependent variables becomes feasible. Concep-
tually, MultiNODEs build on three key components (Fig. 1): (1)
latent NODEs, (2) a variational autoencoder (more specifically a
Heterogenous Incomplete Variational Autoencoder [HI-VAE],
designed to handle multimodal data with missing values17), and
(3) an implicit imputation layer18. The latent NODEs enable the
learning and subsequent generation of continuous longitudinal
variable trajectories. The longitudinal properties of the initial
condition (i.e., the starting point for the ODE system solver of the
latent NODEs) are defined by the output of a recurrent variational
encoder that embeds the longitudinal input data into a latent
space (Fig. 1, orange box). To allow for an additional influence of
static variables on the estimation of the longitudinal variable
trajectories, the second component, a HI-VAE, is introduced (Fig. 1,
blue box). This component transforms the static information into a
distinct latent space and the resulting embedding is used to
augment the latent starting condition of the NODEs by
concatenating the static variable embedding and the latent
representation of the longitudinal variables (Fig. 1, “augmenta-
tion”). The HI-VAE component itself holds generative properties
and conducts the synthesis of the static variables when

MultiNODEs are applied in a generative setting. Conclusively,
MultiNODEs integrate static variables (e.g., biological sex or
genotype information) both to inform the learning of longitudinal
trajectories, and in the generative process. Finally, to mitigate the
original NODEs’ incapability of dealing with missing values, we
introduced the imputation layer which implicitly replaces missing
values during model training with learned estimates (Fig. 1, green
box). For further details on the model architecture, training, and
hyperparameter optimization, we refer to the Method section and
Supplementary material, respectively.

Synthetic data generation using MultiNODEs
Generating synthetic data using MultiNODEs starts by randomly
sampling a latent representation for both the static and long-
itudinal variables, respectively. The longitudinal variables in data
space are then generated by first constructing the initial
conditions of the latent ODE system (i.e., concatenating the static
latent representation to the longitudinal one), followed by solving
the ODE system given these initial conditions, and finally by
decoding the result into data space. The static variables are
generated by directly transforming their sampled latent repre-
sentation into data space using the HI-VAE decoder.
MultiNODEs support two different approaches for the initial

sampling of the latent representations, namely sampling from the
prior distribution employed during model training and sampling
from the learned posterior distribution of the input data.
During the posterior sampling procedure, the reparameteriza-

tion trick19 is applied to draw a latent representation from the
posterior distribution learned from the training data. The amount
of noise added in this process can be tuned, whereas greater noise
will lead to a wider spread of the generated marginal distributions
of the synthetic data. Alternatively, the latent representations can
be sampled from the prior distributions imposed on the latent
space during variational model training. We ensure statistical
dependence between static and longitudinal variables by drawing
their values from a Bayesian network that connects both latent
representations such that the longitudinal variables are con-
ditionally dependent on the static variables. More detailed
descriptions of both generation procedures are provided in the
Method section.

Application cases: Parkinson’s disease and Alzheimer’s
disease
We applied MultiNODEs to longitudinal, multimodal data from two
independent clinical datasets with the goal of generating realistic
synthetic datasets that maintain the real data properties. Details
about the data preprocessing steps are described in the
Supplementary material.

Fig. 1 Conceptual framework of MultiNODEs. Blue box: HI-VAE for the encoding and generation of static variables. Orange box: NODEs that
learn and generate longitudinal trajectories. Green box: the imputation layer that can handle missing data implicitly during model training.
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The first dataset was the PPMI, an observational clinical study
containing 354 de-novo PD patients who participated in a range
of clinical, neurological, and demographic assessments which
form the variables of the dataset. In total, a set of 25 longitudinal
and 43 static variables was investigated.
Furthermore, as a second example, we applied MultiNODEs to

longitudinal, multimodal data from the NACC. NACC is a database
storing patient-level AD data collected across multiple memory
clinics. After preprocessing, the dataset used in this study
contained 2284 patients, and a set of three longitudinal and four
static variables was investigated.
In the following sections, we will focus on the results achieved

on the PPMI data and refer to the equivalent experiments based
on the NACC data that are presented in the Supplementary
material.

MultiNODEs generate realistic synthetic patient-level datasets
We applied prior as well as posterior sampling for comparison
purposes. With each method, we generated the same number of
synthetic patients as encountered in the real dataset to allow for a
fair comparison. To assess whether the generated data followed
the real data characteristics, we conducted thorough comparisons
of the marginal distributions using qualitative and visual assess-
ments and further, quantitatively compared the Jensen–Shannon
divergence (JS-divergence) between the generated data and real
distributions. The JS-divergence is bound between 0 and 1 with 0
indicating equal distributions. In addition, we investigated the
underlying correlation structure of the measured variables. Finally,
we trained a machine learning classifier (Random Forest) that
evaluated whether real and synthetic patients showed similar
clinical characteristics when compared to real healthy control
individuals from their respective studies. Across all these aspects,
we evaluated MultiNODEs’ performance in comparison to the
previously published VAMBN approach4.
The synthetic data generated using MultiNODE generally

exhibited marginal distributions that bore high similarity to their
corresponding real counterparts (Fig. 2, Supplementary Table 1,
and Supplementary Fig. 1; equivalent figures for the NACC data

are presented in Supplementary Fig. 4). The average JS-
divergences between the real and synthetic distributions calcu-
lated across all variables and timepoints amounted to
0.018 ± 0.015 and 0.011 ± 0.009 for the PPMI data generated from
the prior and posterior, respectively. For NACC the average JS-
divergence was 0.071 ± 0.055 and 0.029 ± 0.031 for prior and
posterior sampling, respectively. With respect to PPMI, data
generation from the posterior distribution resulted in synthetic
data that resembled the real data significantly closer than those
generated from the prior distribution (Mann–Whitney U test,
p < 0.02).
Compared to VAMBN, the prior sampling method seemed to be

inferior with respect to the average JS-divergence when using
NACC (U test, p= 0.038). However, no statistically significant
difference in the performance of VAMBN compared to Multi-
NODE’s posterior sampling could be observed (U test, p= 0.80).
For PPMI, no significant differences were found between VAMBN
and any of MultiNODEs’ generation approaches (U test, p= 0.31
for the prior approach; U test, p= 0.24 for the posterior).
In order to evaluate whether MultiNODEs learned not only to

reproduce univariate distributions but actually captured their
interdependencies accurately, we compared the correlation
structure of the generated data to that of the real variables.
Visualizations of the Spearman rank correlation coefficients
showed that both the prior and posterior sampling generated
synthetic data which successfully reproduced the real variables’
interdependencies (Fig. 3). Comparing the results against VAMBN-
generated data revealed that both generation procedures of
MultiNODEs were significantly better at reproducing the real data
characteristics: the Frobenius norm of real data correlation matrix
resulted in 45.3, and with a Frobenius norm of 25.66 the VAMBN-
generated data placed substantially further from the real data
than the MultiNODEs approaches with 62.63 and 56.47 for the
prior and posterior sampling, respectively. This shows that
MultiNODEs slightly overestimated the present correlations, while
VAMBN underestimated them. Concordantly, the relative error (i.e.,
the deviation of the respective synthetic dataset’s correlation
matrix from the real one normalized by the norm of the real
correlation matrix), was 0.81, 0.62, and 0.46, respectively, for

Fig. 2 Marginal distributions of real and synthesized data for multiple variables. Mean, standard deviation, and KL-divergence for the
displayed variables can be found in Supplementary Table 1. Equivalent results for the NACC data are presented in Supplementary Fig. 5.
a Time-dependent variable “SCOPA” at month 12. b Time-dependent variable “UPDRS2” at month 24. c Static variable “Aβ.42”. d Categorical
static variable “Handedness”.
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VAMBN and MultiNODEs’ prior and posterior sampling, leaving
MultiNODEs with a substantially lower error than the VAMBN
approach.

Assessment of the utility of generated synthetic patients for
machine learning
To evaluate whether the generated synthetic patients could be
reliably used in a machine learning context, we built a Random
Forest classifier that aimed to distinguish between healthy
individuals and diseased patients. The classifier was trained within
a five-fold cross-validation scheme once using real and once using
synthetic diseased patients. In addition, we trained a classifier on
each respective synthetic dataset (comprising synthetically
generated diseased and healthy subjects) and evaluated their
performance on the real data (Table 1). As predictors, we used
clinical symptoms and genetic markers that are characteristic of
the disease in question. For PD (PPMI), these were the UPDRS
scores that describe a series of motor and non-motor symptoms
commonly encountered in PD patients, for AD (NACC), we

predominantly used cognitive assessments and a genetic risk
factor. Technical details about the classifiers can be found in the
Supplementary material. Distinguishing real patients from healthy
control subjects was possible with a 10 times repeated five-fold
cross-validated performance of 0.97 ± 0.02 area under the receiver
operator curve (AUC) and 0.90 ± 0.01 AUC for PPMI and NACC,
respectively. On PPMI, all evaluated generative methods achieved
almost equal performance, indicating that clinical characteristics
of synthetic patients followed the same patterns as in real
patients. In addition, the most relevant features were the same
across the real and all synthetic data-trained classifiers (Supple-
mentary Fig. 13).
For NACC, some deviations were found between a classifier’s

cross-validated performance on real data and the synthetic-data-
based performances. Here, MultiNODEs’ posterior and VAMBN
showed similar deviations in opposite directions, with the
posterior slightly overperforming and VAMBN slightly under-
performing. The performance on the data generated via Multi-
NODE’s prior sampling method deviated the most (Table 1). When
trained on synthetic data and evaluated on real data, all trained

Fig. 3 Correlation structure of real and synthetic data expressed as Spearman rank correlation coefficients. Equivalent results for the
NACC data are shown in Supplementary Fig. 6. a Real data. b Posterior sampling from MultiNODEs. c Prior sampling from MultiNODEs.
d VAMBN-generated data.

Table 1. Performance (AUC) of machine learning classifiers differentiating between real healthy control subjects and real as well as synthetic
patients, respectively.

PPMI Trained on synthetic
PPMI tested on real

NACC Trained on synthetic
NACC tested on real

Real patients 0.97 ± 0.02 0.90 ± 0.01

Synthetic (prior sampling) 0.97 ± 0.02 0.97 ± 0.002 0.96 ± 0.01 0.85 ± 0.002

Synthetic (posterior sampling) 0.97 ± 0.01 0.98 ± 0.002 0.93 ± 0.01 0.87 ± 0.002

Synthetic (VAMBN) 0.96 ± 0.01 0.98 ± 0.004 0.88 ± 0.01 0.89 ± 0.001

Values represent the average and standard deviation across a 10-time repeated 5-fold cross-validation.
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classifiers underperformed compared to classifiers trained on real
data. The feature importances of predictors were highly similar
between the real data-trained and the respective synthetic data-
trained classifiers.

Generating data in continuous time through smooth
interpolation and extrapolation
One particular strength of MultiNODEs, that sets it apart from
alternative approaches such as VAMBN, is its ability to model
variable trajectories in continuous time. The latent ODE system
allows for the estimation of variable trajectories at any arbitrary
timepoint and thereby opens possibilities for (1) the generation of
smooth trajectories, (2) overcoming panel-data limitations
through interpolation, and finally, (3) extrapolation beyond the
time span covered in training data themselves. Again, we
evaluated these capabilities based on the PPMI and NACC
datasets (for brevity, NACC results are presented in the
Supplementary material). For the following, we only focused on
the MultiNODE posterior sampling approach to generate synthetic
subjects.
Comparing the median trajectories of variables from the real

data to those generated using MultiNODEs revealed that Multi-
NODEs accurately learned and reproduced the longitudinal
dynamics exhibited in the real data (Fig. 4). Generation from both
the prior and posterior distribution led to synthesized median
trajectories that closely resembled the real median trajectories.
Equivalently, also the 97.5% and 2.5% quantiles of the synthetic
data approximated the corresponding real quantiles closely,
indicating a realistic distribution of the synthetic data across the
observed timepoints. This observation held true for most of the
time-dependent variables (plots for all variables are linked in the
Supplementary material).
We further assessed the interpolation and extrapolation

capabilities of MultiNODEs. For interpolation, one timepoint was
excluded from model training and subsequently, data were
generated for all timepoints including the one left-out. Contrast-
ing the interpolated/imputed values against the corresponding
real values showed that MultiNODEs accurately reproduced the
longitudinal dynamics of a variable, even for unobserved

timepoints (Fig. 5a, c). In this context, we further compared the
interpolated values against synthetic data that was generated
based on the complete real data trajectory. We observed that the
mean JS-divergence calculated across all variables between the
interpolated data and the real data was slightly higher
(0.025 ± 0.011) than that of the real data and the synthetic data
generated after training MultiNODEs on the complete trajectory
(0.016 ± 0.011). Similarly, the relative error between the inter-
polated correlation matrix and the real data was again only
marginally higher than between the complete data and the real
data (0.48 and 0.46, respectively; Supplementary Fig. 4).
In order to test MultiNODEs’ extrapolation capabilities, only the

first 24 months of assessment follow-up and the static variables
were used during model training. The trained model was then
applied to generate data for the remaining, left-out timepoints of
the longitudinal variables. In this course, 77 values were
extrapolated while not every variable had the same number of
follow-up assessments after month 24. Comparing the extra-
polated synthetic data to the left-out real data demonstrated
reliable extrapolation beyond the training data (Fig. 5b, d). As in
the interpolation setting, we also compared the average JS-
divergence between the extrapolated data and the real data with
that between the real data and synthetic data that were
generated after training MultiNODEs on the complete trajectory.
As expected, we could see a larger difference between the JS-
divergences compared to the interpolation setting with
0.037 ± 0.024 for the extrapolated data and 0.016 ± 0.009 for the
synthetic data based on the complete trajectory. The correlation
structure in the extrapolation culminated in a relative error of 0.64
compared to 0.46 when using the complete trajectory for training
MultiNODEs (Supplementary Fig. 4).
In addition, the marginal distributions at both the interpolated

and extrapolated timepoints also followed those of the real data
(Fig. 5c, d).

Systematic model benchmarking on simulated data
To explore the learning properties of MultiNODEs more system-
atically, we investigated how alternating training conditions with

Fig. 4 Comparison of median trajectories including the 2.5%/97.5% quantiles of longitudinal variables from synthetic and real PPMI
data. Additional examples are provided in Supplementary Fig. 2. A corresponding example for the NACC dataset is shown in Supplementary
Fig. 7. a–d depict different longitudinal variables from the PPMI dataset.
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respect to measurement frequency, sample size, and noisiness of
the data influence MultiNODEs’ generative performance.
The benchmarking data was simulated via the well-established

Susceptible-Infected-Removed (SIR) model that is often used to
describe the spread of infectious diseases and follows a highly
nonlinear structure: Let S(t) be the number of susceptible
individuals at a timepoint t, I(t) be the number of infectious
individuals at a timepoint t and R(t) be the number of removed or
recovered individuals at a timepoint t. With β as transmission rate,
γ as mean recovery/death rate, and N= S(t)+ I(t)+ R(t) as fixed
population size the SIR model can be defined by the ODE system
presented in Eq. (1):

dS
dt ¼ �βSI

N

dI
dt ¼ βSI

N � γI
dR
dt ¼ γI

(1)

Details about the SIR parameter settings are described in the
Supplementary material.
As baseline settings for each investigation, we simulated 1000

data points with 10 equidistant assessment timepoints each,
distributed over a span of 40 time intervals, and added 5%
Gaussian noise to each measurement. That means we added a
normally distributed variable with the standard deviation set to
5% of the theoretical range of each of the variables S(t), I(t), and
R(t). During the benchmarking, we individually alternated the
sample size, timepoints, and noise level. For the timepoint
investigation, we compared MultiNODEs trained on 5, 10, and
100 equidistant assessments; for the sample size we considered
100, 1000, and 5000 samples; and for the noise level, we tested
50%, 75%, and 100% of the maximum encountered value added
as noise.
Alternating the amount of equidistant, longitudinal timepoints

exposed a strong dependency of MultiNODEs on the longitudinal
coverage of the time-dependent process (Fig. 6a). While the
general trends in the data were appropriately learned for all
explored assessment frequencies, the position of the observations
in time influenced how close the learned function approximated

the true data-underlying process. Especially the peak of the
“Infected”-function represented a challenge for MultiNODEs if no
data point was located close to it (Fig. 6a, “Infected”). Similarly, the
start of the decline in the “Susceptible”-function and the incline in
the “Removed”-function were shifted, depending on the position-
ing of measurements. In conclusion, and as expected, a higher
observation frequency of the data-underlying the time-dependent
process significantly increased the fit of MultiNODEs to the
process, although, general trends could already be approximated
for lower assessment frequencies.
Investigating the effect of the sample size on training

MultiNODEs, we observed that an increase of the sample size
led to an expected improvement of the model fit to the SIR
dynamics (Fig. 6b). While the general trends could again be
learned from limited data (n= 100), sample sizes of 1000 or
5000 substantially reduced the model’s deviation from the true SIR
model. With 1000 samples, the learned dynamic is less stable than
when trained on 5000 samples, where a smooth dynamic was
learned that closely resembled the true underlying process. In
conclusion, MultiNODEs can already learn longitudinal dynamics
based on only a few data points, however, they tend to underfit
under these circumstances and benefit from larger sample sizes.
Adding an increasing noise level to the SIR training data

revealed that MultiNODEs remain very robust (Fig. 6c). Only when
introducing 100% of the maximal encountered value as additional
noise, a clear deviation from the underlying true model could be
observed.

DISCUSSION
In this work, we presented MultiNODEs, a hybrid AI approach to
generate synthetic patient-level datasets. MultiNODEs are speci-
fically designed to consider the characteristics of clinical studies,
extend its predecessor, the Neural ODEs, and enable the
application of the latent ODE system to multimodal datasets
comprising both time-dependent and static variables with values
missing not at random. MultiNODEs learn a latent, continuous
time trajectory from observed data. This concept fits well with
processes like disease progression, where relevant observations

Fig. 5 Time-continuous interpolation and extrapolation of exemplary PPMI variables. The black box indicates the interpolated and
extrapolated sections. Plots for additional variables are presented in Supplementary Fig. 3. A corresponding example for the NACC dataset is
shown in Supplementary Fig. 8. a Interpolation of the UPDRS1 variable at month 24. b Extrapolation of the last five assessments of the
UPDRS1 variable. c Distribution of the interpolated values for UPDRS1 at visit 24. d Distribution of the extrapolated values for UPDRS1 at
month 42.
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(e.g., biomarkers and disease symptoms) only indirectly mimic the
true, underlying disease mechanism. Consequently, MultiNODEs
are well suited for an application to heterogeneous datasets
holding complex signals as encountered, for example, in
biomedical research.
Our evaluations showed that MultiNODEs successfully gener-

ated complex, synthetic medical datasets that accurately repro-
duced the characteristics of their real-world counterparts. In a
direct comparison MultiNODEs’ outperformed the state-of-the-art
VAMBN approach, most notably with respect to the integrity of
the correlation structure. This finding implies that the single data
instances generated using MultiNODEs exhibit more realistic
properties and that the real data characteristics are not only
reproduced at the population level. Out of MultiNODEs two
generative methods, the posterior sampling expectedly led to
more realistic synthetic patients; however, generating from the
prior distribution comes with the benefit that the model itself can
be shared and used for data generation without needing any real
data points in the process.
Machine learning classifiers that discriminated between real

healthy controls and diseased subjects showed almost equal
performance when trained on data from synthetic and real
diseased subjects, respectively. Here, we only observed small
deviations from the performance on real data for the NACC
dataset, where classifiers trained and tested on synthetic patients

and real healthy controls within a cross-validation setting showed
a slightly increased performance to those trained on real data.
Interestingly, at the same time, we found a lower prediction
performance compared to real data when we trained on synthetic
subjects and evaluated on the real data. A possible explanation is
that synthetic data can contain noise that is introduced during the
generation of synthetic data points (e.g., through overestimated
correlations between variables). Therefore, synthetically generated
diseased patients are better discriminated against real healthy
controls than real diseased patients. At the same time, this
situation leads to the fact that a classifier trained on synthetic data
(synthetic patients as well as healthy controls) shows a slightly
lower prediction performance on real data compared to a classifier
trained entirely on real data. Altogether our results demonstrate
that synthetically generated subjects share patterns of real
patients, but they are not completely identical.
Besides the reproduction of marginal distributions and synth-

esis of realistic data instances, MultiNODEs most prominent
strength lies in the generation of smooth longitudinal data. The
latent ODE system allows MultiNODEs to learn dynamics that are
continuous in time and cover the unobserved time intervals of
real-world data. Here, both the prior and posterior sampling
approach resulted in synthetic trajectories that obey real variables’
dynamics.

Fig. 6 Model benchmarking on simulated data from the SIR model. Each panel (a–c) represents the evaluation of another parameter
(assessment frequency, sample size, and noise level, respectively).
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Furthermore, the time-continuous generative capabilities of
MultiNODEs create opportunities to fill gaps in the real data through
interpolation and go beyond the observation time by extrapolating
the longitudinal dynamics. Hence, MultiNODEs could be used to
support the design of longitudinal clinical studies, in which the
maximum observation period, as well as visit frequency, is always a
crucial decision to make. Here, the question of how patients might
develop between two visits or after the last one determines the
optimal follow-up time, to demonstrate, for example, the most
significant treatment effect. Furthermore, synthetic disease trajec-
tories generated based on data from one clinical study can be
compared to those generated based on other studies, even if the
visit intervals employed in the real studies were not identical.
Our benchmark experiments on the simulated SIR model data

demonstrated that MultiNODEs are applicable under a variety of
different data settings. While the general trends of a data-underlying
process could already be learned from a relatively limited dataset,
similar to any machine learning task, the accuracy and trustworthi-
ness of the model critically depends on the available data. Especially
for complex, nonlinear processes, a sufficiently high observation
frequency should be considered. Here, the position of the
observation timepoints relative to the true underlying process is
crucial for MultiNODEs to accurately learn nonlinear dynamics. The
sample size of the training data mainly impacts how well
MultiNODEs fitted the data dynamics and we observed that lower
sample sizes can lead to underfitting and rather rigid ODE systems.
On the other hand, only severe noise levels led to a model deviation
from the true data-underlying process, and thus, with respect to
noise, MultiNODEs proved to be highly robust. In conclusion,
MultiNODEs’ requirements toward the training data ultimately
depend on the complexity of the data-underlying process, whereas
the learning of more complex processes requires more frequent
observations and larger sample size, while more linear systems can
already be learned from rather limited datasets.
One limitation of MultiNODEs in their current form only allows

static categorical variables. This is because the variational encoder
for longitudinal data maps trajectories to a latent Gaussian
distribution. Sampling from this distribution (even, if conditioned
on the distribution of the static data) and decoding will result in
real valued features rather than categorical ones. In future work,
we will thus explore whether a recurrent version of the HI-VAE
encoder can be used instead of a recurrent variational long-short
term memory (LSTM) encoder.
In addition, MultiNODEs are sensitive to several hyperpara-

meters that should be optimized for optimal performance. The
training process and all relevant hyperparameters are explained in
the Method section.
Synthetic data generated using models trained on sensitive

personal information can bear a risk of information disclosure (e.g.,
attribute disclosure or dataset membership disclosure), if an
attacker has information about properties of real patients that are
similar to a synthetic subject. Therefore, before synthetic data are
distributed, it must be assured that the probability of private
information disclosure remains within task-appropriate bound-
aries20. Disclosure risk often stands in a direct trade-off with data
utility and a sensible compromise should be taken balancing the
two according to the application in question. Several approaches
are described in the literature that can reduce the risk of
information disclosure21, one of which is based on the concept
of differential privacy4. MultiNODEs themselves provide a way to
tune the deviation from the real data when sampling from the
posterior distribution by changing the amount of noise injected in
the latent space. We would like to mention that a rigorous
quantification of the re-identification risk is a non-trivial and
challenging task for its own requiring several assumptions and is
thus beyond the scope of this paper.

METHODS
Application case datasets
Both datasets, namely PPMI and NACC, are well-known staples in their
respective fields and can be accessed after successful data access
applications. For PPMI see https://www.ppmi-info.org/. For NACC we refer
to https://naccdata.org/. More details on the investigated variables are
presented in the Supplementary material.
Both studies retrieved informed consent from their participants for data

collection and sharing and followed the declaration of Helsinki to ensure
ethical data collection. Both studies got ethical approval from their
respective review boards. We followed their employed regulations and
thus did not seek further ethical approval, as we did not work with human
participants ourselves.

Neural ODEs (NODEs)
NODEs are a hybrid of neural networks and ODEs14. They can be seen as an
extension of a ResNet22, which does not rely on a discrete sequence of hidden
layers, but on a continuous hidden dynamical system defined by an ODE.
For 0 < t < M and z0 2 RD the dynamics of the hidden layer of a NODE

are given as Eq. (2).
dz tð Þ
dt ¼ f z tð Þ; t; θð Þ

z 0ð Þ ¼ z0
(2)

where z(0) may be interpreted as the first hidden layer and z(T) as the
solution to the initial value problem at timepoint T. Importantly, f is a feed-
forward neural network parameterized by θ.

NODEs as generative latent time series models. As demonstrated by the
authors in their publication, NODEs can be trained as a continuous time
Variational Autoencoder. The basic idea is to learn the initial conditions z0 of the
dynamical system in Eq. (2) from observed time series data using a variational
LSTM recurrent encoder23. Hence, Eq. (2) now describes the dynamics of a
latent system, resulting in a classical state-observation model. Accordingly, a
feed-forward neural network decoder is required to project the solution of Eq.
(2) back to observed data at defined timepoints (Supplementary Fig. 10).
Overall NODEs are trained at once by maximizing the evidence lower

variational bound (ELBO): let the training data be D ¼ fðxnti ; tiÞjn ¼
1; ¼ ;N; i ¼ 1; ¼ ;Mg, where N is the number of patients and ti1 ; ¼ ; tiM
the observed timepoints / patient visits. That means xnti 2 Rp is the p-
dimensional vector of measurements taken for the nth patient at visit ti. The
ELBO for NODEs is then given as Eq. (3).

ELBONODE ¼ 1
N

PN
n¼1

PM
i¼1

�DKL q znt0 j xnti ; ti
n o

i

� �
kp znt0

� �� �
þ E

q znt0 j xnti ;ti
� �

i

� � log p xnti jznti
� �� �� � (3)

where p znt0

� �
¼ N 0; Ið Þ, as usual. For details, we refer to Chen et al.14.

Multimodal Neural ODEs (MultiNODEs)
Handling missing values. To handle missing values (potentially not at
random) in longitudinal clinical data we build on our previously published
work, in which we introduced an imputation layer to implicitly estimate
missing values during neural network training18: let A :¼
xnti ;j jxnti ;j is not missing

n o
, 1A be the indicator function on set A with

cardinality Aj j. The imputation layer can be defined as a data transforma-

tion ~xnti ;j ¼ xnti ;j ´ 1A xnti ;j
� �

þ bti ;j ´ 1� 1A xnti ;j
� �� �

, where parameters bti ;j are

trainable weights. That means missing values in a patient’s data vector xnti ;j
are replaced by bti ;j . The accordingly completed data is subsequently
mapped through a recurrent neural network encoder to a static, lower
dimensional vector, which is interpreted as the initial condition of the
latent ODE system (Supplementary Fig. 11).
To learn parameters bti ;j the NODEs’ loss function needs to be adapted.

More specifically, we use the modified ELBO criterion presented in Eq. (4).

ELBONODE
IMP ¼ 1

N

PN
n¼1

PM
i¼1

�DKL q znt0 j xnti ; ti
n o

i

� �
kp znt0

� �� �

þ DM
A

PN
n¼1

PM
i¼1

PD
j¼1

1A xnti ;j
� �

xnti ;j � x̂nti ;j
� �2

(4)
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where x̂nti ;j denotes the reconstructed data. Note that we only aim for
reconstructing the observed data, but not the imputed one. Due to the
layer-wise architecture of a neural network x̂nti ;j implicitly depends on bti ;j .
In practice, we initialize bti ;j for neural network training as 1

N

PN
n¼1 x

n
ti ;j .

Dealing with multimodal data. In addition to implicit missing value
imputation, the second main idea of MultiNODEs is to complement NODEs
with a HI-VAE encoder17 for static variables (Supplementary Fig. 11). A HI-
VAE is an extension of a Variational Autoencoder that can implicitly impute
missing values via an input drop-out model and handle heterogeneous
multimodal data, including categorical data and count data, via an
accordingly factorized generative model. In addition, a HI-VAE uses a
Gaussian Mixture Model (GMM) as a prior distribution rather than a single
Gaussian. We refer to Nazabal et al.17 for details.
The HI-VAE results in a lower dimensional latent representation zstat of

static variables, which can be used to augment the initial conditions zt0
learned from time series data. Consequently, we arrive at the following
formulation of the latent ODE system given in Eq. (5).

d
dt z

aug tð Þ ¼ d
dt

z tð Þ
~z tð Þ

� �
¼ f

z tð Þ
~z tð Þ

� �
; t; θaugf

� 	

zaugt0 ¼ zt0
zstat

� � (5)

This approach resembles the Augmented Neural ODEs by Dupont
et al.24. In contrast to our work, in their work no additional features were
added during the augmentation step, i.e., zstat= 0. According to Dupont
et al. the purpose of Augmented Neural ODEs is to smoothen f, whereas
we focus here on multimodal data integration.
For training MultiNODEs, we have to jointly consider ELBONODE

IMP as well as
ELBOHI�VAE . After bringing both quantities on a comparable numerical
scale, we use a weighted sum as our final training objective (see Eqs. (6)
and (7)):

gELBONODE
IMP ¼ ELBOHI�VAE

ELBOHI�VAEþELBONODE
IMP

ELBONODE
IMP

gELBOHI�VAE ¼ ELBONODE
IMP

ELBOHI�VAEþELBONODE
IMP

ELBOHI�VAE
(6)

ELBOMultiNODE ¼ gELBONODE
IMP þ β gELBOHI�VAE (7)

Where β is a tunable hyperparameter. Details about hyperparameter
optimization are described in the Supplementary material.

Generating synthetic subjects
We tested two methods to generate synthetic subjects with MultiNODEs:

a. The first option is drawing a sample of latent static and
longitudinal representations from the respective prior distribu-
tions zt0 � N 0; Ið Þand zstat � GMM πð Þ. To assure that interdepen-
dencies between static and longitudinal variables are conserved,
we model their joint distribution P zt0; zstatð Þ using a Bayesian
network. This network contains three nodes (random variables)
representing (1) the GMM mixture coefficients π for the static data
used by the HI-VAE, (2) the latent static representations
Zstat ¼ GMM πð Þ, and (3) the latent longitudinal representations
Zt0 ¼ N 0; Ið Þ, respectively. The network is constrained such that
directed edges can only go from si to Zstat and from there to Zt0.
After randomly sampling a mixture component si from a multi-
nomial distribution multinom(π), we can conditionally sample
zstat � Zstatjsi and finally zt0 � Zt0jZstat . Subsequently, we concate-
nate z0 ¼ zt0 ; zstat½ � into a vector forming the initial conditions for
the latent ODE system, solve the ODE system, and decode the
solution. We call this approach “prior sampling”.

b. A second option is to draw zt0qðznt0 jfxnti ; tigiÞ ¼ Nðλðxnti ; tiÞ; σðxnti ; tiÞÞ
for the longitudinal data and zstatq znstatjxnstat ; π


 � ¼ N λ xnstat; s
n


 �
;



σ xnstat ; s

n

 �Þ; snCategorical π xnstat


 �
 �
for the static data. That means

we generate a blurred / noisy version of the original nth patient.
We call this approach “posterior sampling” and recommend this
sampling procedure for data generation. In our experiments, we
doubled the posterior variance during sampling because we
found the synthetic data otherwise to lie too close to the real data.
Tuning the added noise can provide one option to balance
identification risk versus data utility.

c. Synthetic data can not only be generated for observed visits, but
also for definable timepoints in between (interpolation) and after
the end of the study (extrapolation). This is possible because the
latent ODE system is continuous in time.

Data preprocessing
Few steps are required to preprocess the clinical data before MultiNODEs
can be applied. First, the data must be organized into a three-dimensional
tensor of the shape samples × timepoints × variables for the longitudinal
variables, and samples × variables for the static ones. Furthermore, the
longitudinal variables are then transformed into a progression score by
subtracting the baseline value and normalizing them by the standard
deviation of this variable at baseline.

Calculating the relative error for correlation matrices
The relative error between correlation matrices is calculated as the norm of
the matrix describing the difference between the real correlation matrix
and synthetic data correlation matrix divided by the norm of the real
correlation matrix.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The PPMI dataset is available under: https://www.ppmi-info.org/. The NACC data are
available under: https://naccdata.org/. The data are shared by the data owners after
successful application. The data generated for this study cannot be shared by the
authors due to the signed data usage agreements with the data owners of the
corresponding real data (i.e., PPMI and NACC).
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The code for MultiNODEs is available at https://github.com/philippwendland/
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