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Abstract

Background: Recent evidence suggests that the aberrant activation of Hedgehog (Hh) signaling by Gli
transcription factors is characteristic of a variety of aggressive human carcinomas, including colorectal
cancer (CRQ). Forkhead box M1 (FoxM1) controls the expression of a number of cell cycle regulatory
proteins, and FoxM1 expression is elevated in a broad range of human malignancies, which suggests that
it plays a crucial role in tumorigenesis. However, the mechanisms underlying FoxM1 expression are not
fully understood. Here, we aim to further investigate the molecular mechanism by which Gli1 regulates
FoxM1 in CRC.

Methods: Western blotting and immunohistochemistry (IHC) were used to evaluate FoxM1 and Gli1 protein
expression, respectively, in CRC tissues and matched adjacent normal mucosa. BrdU (5-bromo-2'-deoxyuridine) and
clone formation assays were used to clarify the influence of FoxM1 on CRC cell growth and proliferation. Chromatin
immunoprecipitation (ChIP) and luciferase experiments were performed to explore the potential mechanisms by which
Gli1 regulates FoxM1. Additionally, the protein and mRNA expression levels of Gli1 and FoxM1 in six CRC cell lines were
measured using Western blotting and real-time PCR. Finally, the effect of Hh signaling on the expression of FoxM1 was
studied in cell biology experiments, and the effects of Hh signaling activation and FoxM1 inhibition on the distribution
of CRC cells among cell cycle phases was assessed by flow cytometry.

Results: Gli1 and FoxM1 were abnormally elevated in human CRC tissues compared with matched adjacent normal
mucosa samples, and FoxM1 is a downstream target gene of the transcription factor Gli1 in CRC and promoted CRC
cell growth and proliferation. Moreover, the aberrant activation of Hh signaling promoted CRC cell proliferation by
directly binding to the promoter of FoxM1 and transactivating the activity of FoxM1 in CRC cells.

Conclusion: The dysregulation of the Hh-Gli1-FoxM1 axis is essential for the proliferation and growth of human CRC
cells and offers a potent target for therapeutic intervention in CRC.
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Background

Colorectal cancer (CRC), a common malignant tumor of
the digestive tract, is one of the leading causes of cancer
death in both developed and developing nations. This
disease has an estimated annual worldwide incidence of
more than one million new cases, and approximately
one of every three people who develop CRC dies from
the disease [1]. The current treatment for CRC patients
is mainly based on comprehensive surgical treatment
with chemotherapy and/or targeting therapies. Although
the molecular mechanisms of CRC development and
progression have been extensively researched, the prog-
nosis of patients with CRC remains unsatisfactory, espe-
cially for patients with lymph node metastases [2].
Therefore, a better understanding of the molecular
mechanisms of CRC tumorigenesis and the development
of new therapeutic targets based on these mechanisms
are of great significance.

The zinc-finger transcription factor Glil is a key
downstream effector of the Hedgehog (Hh) signaling
pathway, which functions via a membrane-protein com-
plex that consists of Patched-1 (Ptchl) and Smoothened
(Smo) [3]. Physiologically, the activation of Hh signaling
is initiated by the binding of the Hh ligand to the Ptchl
receptor. As a result of this binding, Smo is activated,
which consequently activates transcription factor Glis.
Three Gli proteins are known, and they exert both acti-
vator and repressor functions. Specifically, Glil acts as a
transcriptional activator, Gli2 is a composite of positive
and negative regulatory domains, and Gli3 acts primarily
as a transcriptional repressor [4]. The activated Gli pro-
teins translocate to the nucleus and transactivate many
downstream target genes, such as Glil itself, Ptchl, Cyc-
lin D1, p21 and Snail [5]. The aberrant activation of Hh-
Gli signaling has been implicated in the promotion of
tumorigenesis in several types of carcinoma, including
hepatocellular carcinoma [6], gastric cancer [7, 8], lung
cancer [9] and basal cell carcinomas [10]. Similar results
were also reported in other studies of CRC [11-13].
Although these authors found that the Glil mRNA and
protein expression levels were significantly increased in
CRC tissues, the exact mechanism underlying this
increase remained unclear. Therefore, the molecular
mechanisms by which the aberrant activation of Hh
signaling promotes CRC cell proliferation and tumor
growth need to be further elucidated.

Forkhead box M1 (FoxM1) is a transcription factor of
the forkhead family, which consists of more than 50
transcription factors that share a conserved forkhead or
winged-helix DNA-binding domain [14]. FoxM1 is
expressed in embryonic tissues and dividing cells of epi-
thelial and mesenchymal origin, but not in terminally
differentiated, non-dividing cells [15]. FoxM1 plays a
critical role in cell cycle progression. Specifically, the
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expression of FoxM1 increases at the Gl to S phase
transition and reaches a maximal level during the G2 to
M phase transition, thereby promoting M phase entry
[16, 17]. FoxM1 controls the expression of a number of
cell cycle regulatory proteins, including cyclin B1 [17],
and genes that are essential for faithful chromosome
segregation and mitosis, such as Cdc25B, Aurora B kin-
ase, Survivin, PLK1, centromere protein A (CENPA),
and CENPB [16, 18]. Moreover, FoxM1 has been de-
scribed to be involved in a broad range of human malig-
nancies [19-22]. Recently, Zhang et al. found that the
overexpression of FOXM1 contributed to the progres-
sion of CRC [23]. Furthermore, another study indicated
that FoxM1D promoted epithelial-mesenchymal transi-
tion and metastasis by interacting with ROCK2 in CRC
[24]. However, the molecular mechanisms by which
FoxM1 promotes CRC cell proliferation have not been
fully elucidated.

In our previous gene expression profile analysis
(GSE54936 and GSE53464) [25, 26], FoxM1 was down-
regulated in human glioma and ovarian cancer cells after
treatment with the Hh-Gli signaling pathway inhibitor
GANT61 [27, 28]. Thus, we speculate that Glil pro-
motes CRC cell proliferation by regulating FoxM1 ex-
pression. To further explore the mechanisms by which
Glil regulates FoxM1, we constructed ChIP and lucifer-
ase reporter assays in this study and identified FoxM1 as
a downstream target gene of Glil in CRC. Our results
provide evidence that Glil transcriptionally activates
FoxM1 expression by directly binding to the promotor
of FoxM1. We also show that Glil promotes the prolif-
eration of CRC cells by transactivating FoxM1 and
upregulating the expression of FoxM1.

Methods

Cell culture, small molecular reagents and constructs
HEK?293T and six CRC cell lines (HT-29, HCT116, LoVo,
Caco-2, SW620 and SW480) were obtained from the
American Type Culture Collection (ATCC, Manassas,
VA). HEK293T cells were cultured in basal Dulbecco’s
Modified Eagle Medium. The basal medium for the HT-
29 and HCT116 cell lines was ATCC-formulated Modified
McCoy’s 5a Medium; the basal media for LoVo and Caco-
2 cells were ATCC-formulated F-12 K Medium and
Eagle’s Minimum Essential Medium, respectively; and
Leibovitz’s L-15 Medium was used for SW620 and SW480
cells. Each basal medium was supplemented with 10%
fetal bovine serum (Gibco-Life Technologies, Grand
Island, NY). The cell lines were maintained at 37 °C in a
humidified atmosphere containing 5% CO,. The small
molecular regents were obtained from the following
sources: purmorphamine (Selleck Chemicals, Houston,
TX), GANT61 (Sigma-Aldrich, St. Louis, MO), thiostrep-
ton (Sigma-Aldrich, St. Louis, MO), and cyclopamine
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(Sigma-Aldrich, St. Louis, MO); DMSO was used as the
solvent for these regents and the vehicle control.

The human full-length FoxM1 (NM_202002) con-
struct was subcloned into pcDNA3.1-Myc/His (Invitro-
gen, Carlsbad, CA). The human full-length Glil
(NM_005269) construct was subcloned into pUB6-V5/
hisB (Invitrogen, Carlsbad, CA). The miRNAi-FoxM1
expression vectors that suppress FoxM1 expression and
the miRNAi-Glil expression vector were generated
using the BLOCK-iT"Pol II miR-RNAi Expression
Vector System (K4936-00, Invitrogen, Carlsbad, CA) as
discribed earlier [29, 30]. Briefly, based on an analysis of
the human FoxM1 and Glil sequences using a program
provided by Invitrogen, three regions were cloned into
the pcDNA™6.2-GW/EmGFP-miR expression vectors to
yield miRNAi-FoxM1 or miRNAi-Glil. They were co-
transfected with FoxM1/Glil expression construct into
HEK293T cells to identify effective clones based on their
ability to suppress FoxM1/Glil expression by Western
blotting analysis. The following oligonucleotide
sequences were used to generate the miRNAi constructs:
for miRNAi-FoxM1-1692 (targeting nucleotides 1692 to
1712 of FoxM1), 5' -CTC TTT CTT CTG CAG GAC
CAG -3’, and for miRNAi-Glil-2855 (targeting nucleo-
tides 2855 to 2875 of Glil, 5'-AGA GTC CCA AGT
TTC TGG GGG-3'. The authenticity of all constructs
was verified by DNA sequencing.

Western blotting and antibodies

Cells were harvested by trypsinization, lysed in 1x so-
dium dodecyl sulfate lysis buffer, and denatured for
10 min at 100 °C. After immunoblotting, the membranes
were blocked with 5% nonfat dry milk in TBS/0.1%
Tween-20 and then incubated with the primary anti-
bodies in 1% nonfat dry milk in TBS/0.1% Tween-20.
Subsequently, the blots were incubated with goat anti-
rabbit or anti-mouse secondary antibody (Invitrogen,
Carlsbad, CA) and visualized with enhanced chemilu-
minescence (Invitrogen, Carlsbad, CA).

The immunoreagents used for Western blotting were
rabbit polyclonal antibody against Glil (Abcam,
ab92611, diluted 1:500) and rabbit polyclonal anti-
FoxM1 (Abcam, ab137647, diluted 1:500). Mouse mono-
clonal antibody against CCNB1 was purchased from Cell
Signaling Technology (CST, 4135, diluted 1:2000), and
anti-B-actin antibody (Anbo, E0012, diluted 1:5000) or
anti-GAPDH antibody (Millipore, MAB374, diluted
1:2000) was used as a loading control.

Immunohistochemistry

First, 3-um-thick CRC tissue sections were deparaffi-
nized, rehydrated, and treated with 3% H,O, to block
endogenous peroxidase activity. After the sections were
pretreated for antigen retrieval by microwaving them in
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ethylenediamine tetraacetic acid (EDTA) (pH 9.0) for
25 min, they were rinsed in phosphate-buffered saline
(PBS) and incubated with various primary antibodies
overnight at 4 °C in a humidified chamber. The next
morning, the slides were rinsed with PBS and then incu-
bated for 40 min at 37 °C with the appropriate biotinyl-
ated immunoglobulins (Zhongshan Biotechnology,
China) before visualizing the immunoreactivity using a
Polink-2 HRP DAB Detection kit (Zhongshan Biotech-
nology, China) following the manufacturer’s protocol.
Negative controls were performed in each case by
replacing the primary antibody with normal IgG. The
following primary antibodies were used: anti-Glil
(Abcam, ab92611, diluted 1:100) and anti-FoxM1 (Santa
Cruz, SC-502, diluted 1:300). An FSX100 microscope
equipped with a digital camera system (Olympus, Japan)
was used to obtain the immunohistochemistry images.

Real-time PCR

Total RNA was harvested from CRC cells using TRIzol
Reagent (Invitrogen, Carlsbad, CA) and evaluated by
real-time PCR. Briefly, 1 pug of RNA was reverse-
transcribed to cDNA using the PrimeScript RT reagent
Kit (Takara, Japan). To quantify the mRNA levels, cDNA
was amplified by real-time PCR with the SYBR Premix
Ex Taq RT-PCR kit (Takara, Japan) on an ABI StepOne-
Plus™ Real-Time PCR System, and GAPDH was used as
the internal control. The sequences of primers used for
real-time PCR are shown in Additional file 1: Table S1.

Transient transfections and luciferase assays

The human FoxM1 promoter was amplified from a
human genomic DNA template and inserted into the
pGL4.20 basic vector (Promega, Madison, WI). A
mutant Glil binding motif was generated using a PCR
mutagenesis kit (ToYoBo, Japan) with the forward pri-
mer (mutation sites underlined) 5'- ACA CAC CCA
CGC GGC GGG GAC CCC T-3" and a reverse comple-
ment primer. Transient transfections were performed
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA)
according to the manufacturer’s protocol. For the lucif-
erase reporter assays, cells were seeded in 24-well plates
and transfected with the indicated plasmids. The lucifer-
ase activities were measured 48 h after transfection using
a Dual Luciferase Reporter Assay System Kit (Promega,
Madison, WI).

Chromatin Immunoprecipitation (ChIP) Assay

HT?29 cells were cross-linked with 1% formaldehyde, and
the reaction was terminated by adding 0.125 M glycine.
Chromatin was collected in 1 ml of IP buffer and
sheared using a sonicator with a 4-mm tip probe using
10 3-s pulses (80 W, 90-s intervals) in an ice box.
Soluble chromatin was immunoprecipitated with 4 pg of
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anti-Glil goat polyclonal antibody (Santa Cruz, sc-
6152) or anti-Gli2 goat polyclonal antibody (Santa
Cruz, sc-20290), and 4 pg of goat normal IgG (Santa
Cruz, sc-2028) was added as a random control. DNA-
protein immune complexes were eluted and reverse cross-
linked by adding 0.2 M NaCl overnight at 65 °C, and
DNA was extracted with phenol/chloroform and precipi-
tated. The FoxM1 promoter domain containing the
predicted Glil binding motifs was identified in immuno-
precipitated DNA by PCR using four pairs of primers,
whose sequences are shown in Additional file 2: Table S2.

Cell viability, cell cycle and colony formation assays

Cell viability was measured using a modified MTT (3-(4,
5-dimethylthiazol-z-yl)-2, 5-diphenyltetrazolium brom-
ide) assay. Briefly, 1 x 10* cells were seeded in a 96-well
plate, 0.5 mg/ml MTT (Sigma-Aldrich, St. Louis, MO)
was added to each well, and the absorbance of the re-
sultant formazan blue crystals was detected at 490 nm
using a microplate ELISA reader (Bio-Rad, Hercules,
CA). Moreover, a cell cycle analysis was performed by
flow cytometry. After trypsinization, the cells were fixed
in 70% ethanol overnight at 4 °C and stained with propi-
dium iodide (PI). For the colony formation assay,
HCT116 and Caco?2 cells were seeded at the same dens-
ity in 6-well dishes (2 x 10® cells/well). After 20 h, the
cells were treated with a different inhibitor or activator
or were transiently transfected with myc-FoxM1, miR-
FoxM1 or control vector. Transfectants were selected
using blasticidin (4 pg/ml) for 2 weeks and stained with
crystal violet. The total number of colonies in each well
from three independent treatments was counted.

Cell proliferation assay

Cell proliferation was assessed using a BrdU assay.
Briefly, CRC cells were seeded in 6-well plates (2 x 10°
cells/well) and transfected with the miR-FoxM1, myc-
FoxM1 or control vector plasmid for 24 to 48 h. After
being labeled with BrdU (Sigma-Aldrich, St. Louis, MO)
for 48 h, the cells were fixed and incubated with 0.5%
Triton X-100 to permeabilize them. After antigen
retrieval, the endogenous peroxidase activity was
blocked with 3% H,O,, and the cells were then incu-
bated with anti-BrdU antibody (Abcam, ab6326,
diluted 1:40) at 4 °C overnight, followed by incuba-
tion with the appropriate biotinylated secondary anti-
body. Immunoreactivity was visualized using a Polink-
2 HRP DAB Detection kit (Zhongshan Biotechnology,
China) according the manufacturer’s protocol. Cells
from the same population that were not labeled with
BrdU were used as a negative cell-staining control.
The relative proliferation rates are presented as
percentages of the control.
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Statistical analysis

Densitometric analyses of protein bands were conducted
using the Image] software. All data are expressed as the
mean + SD for experiments performed at least three
times. Differences between 2 groups were analyzed using
a two-sided paired or unpaired Student’s t-test. A p-
value less than 0.05 was considered significant.

Results

Gli1 and FoxM1 are aberrantly elevated in human CRC
tumor tissues

To validate the role of FoxM1 and Glil in the progres-
sion of CRC, we first tested the protein levels of FoxM1
and Glil in primary human CRC samples and their
matched adjacent normal colorectal tissues using
Western blotting and immunohistochemistry analyses.
Eight pairs of fresh samples were randomly collected
and assessed using Western blotting, which showed that
the expression levels of both FoxMland Glil protein
were significantly higher in the CRC tumor tissues than
in their matched adjacent normal colorectal tissues
(Fig. 1a and b). In line with this finding, the immunohis-
tochemistry analysis revealed that FoxM1 and Glil were
upregulated in carcinoma tissues compared with adja-
cent normal tissues (Fig. 1c). We also analyzed the
mRNA expression level of FoxM1 reported in published
CRC expression profiling studies using the R2 platform
(http://r2.amc.nl). Supporting our results, the expression
of FoxM1 was dramatically increased in CRC tumor tis-
sues compared to normal colorectal tissues (Fig. 1d-f).
Taken together, our studies demonstrate that FoxM1
and Glil are aberrantly elevated in CRC tumor tissues.

FoxM1 promotes CRC cell proliferation

As a proliferation-associated transcription factor, FoxM1
plays pivotal roles in the development of various types
of human malignancies, such as glioma, lung cancer,
hepatocellular carcinoma, breast cancer, and pancreatic
cancer [31-35]. To assess the role of FoxM1 in the pro-
gression of CRC, we examined the FoxM1 protein level
in six CRC cell lines and found that his expression was
lower in Caco2 cells and higher in HCT116 cells
(Fig. 3a). Thus, we conducted cell colony and survival
assays using the FoxMI-overexpression plasmid myc-
FoxM1 in Caco2 cells (Additional file 3: Figure S1A) and
an engineered miRNAi construct that efficiently reduced
the expression of FoxM1 in HCT116 cells (Additional
file 3: Figure S1B). As shown in Additional file 3: Figure
S1C and S1D, FoxM1 overexpression increased the
colony formation and growth rate of Caco2 cells, whereas
knocking down FoxM1 reduced the colony formation and
growth rate of HCT116 cells (Additional file 3: Figure S1E
and S1F). In addition, we assessed the proliferation rate of
CRC cells using a BrdU assay following treatment with the
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Fig. 1 FoxM1 and Gli1 are highly expressed in CRC tissues. a The FoxM1 and Gli1 protein expression levels were analyzed in eight pairs of

randomly selected human CRC tissues and matched adjacent non-tumor tissues by Western blotting. b Quantification of the Western blot (a).
Significance was assessed using a paired samples t-test. ¢ Immunohistochemistry staining of FoxM1 and Gli1 protein expression in a representative
human CRC sample and the matched adjacent normal tissue sample in the same section. The areas of carcinoma and adjacent tissues are marked.
The subcellular locations of Gli1 and FoxM1 are indicated by red arrows. d, e and f The mRNA expression level of FoxM1 analyzed in three published

human CRC sample expression profiling studies using the R2 data sheet (http://r2.amcnl). p < 0.05 was considered significant

same constructs. In line with the colony formation assay,
the proliferation rate of Caco2 cells increased after trans-
fection with the myc-FoxM1 plasmid (Additional file 3:
Figure S1G and S1H), and the knockdown of FoxM1 inhib-
ited HCT116 cell proliferation (Additional file 3: Figure S11
and S1J). Taken together, these findings indicate that
FoxM1 plays an important role in promoting the prolifera-
tion of CRC cells.

Gli1 binds to the FoxM1 promoter
As in our previous gene expression profile analyses
(GSE54936 and GSE53464) [25, 26], FoxM1l was

downregulated after the Hh-Gli signaling pathway was
inhibited. In this study, we also found that FoxM1 pro-
moted CRC cell proliferation. Thus, we hypothesized
that FoxM1 is a target gene of the Hh-Glil signaling
pathway in CRC. To determine whether Glil regulates
FoxM1 expression by directly binding to the promoter of
FoxM1, we identified four potential Glil binding sites
(Gli1 binding motif, 5'-GACCACCCA-3") in the gene
promoter of FoxM1 using MatInspector professional ver-
sion 7.2 [36]. These putative Glil binding sites (BS1:
-1992 ~ —-1980, BS2: -1755 ~ 1743, BS3: —1647 ~ -1635
and BS4: -216~-204) are located upstream of the
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transcriptional start site of the FoxMI1 gene from
-1992 bp to —204 bp (Fig. 2a). Among these four binding
sites, BS1, BS2 and BS3 contained two nucleic acids that
differed from the consensus sequence and shared a 78%
homology with this consensus sequence, whereas BS4 ex-
hibited only one differing base pair and shared an 89%
homology with the consensus sequence. We performed
ChIP studies in HT29 cells using Glil and Gli2, a homolog
of Glil, specific antibodies and an IgG control antibody.
Although the Glil antibody immunoprecipitated the
FoxM1 promoter containing the BS4 region, the Glil
homolog Gli2 did not, which demonstrated that Glil dir-
ectly bound to the FoxM1 promoter (Fig. 2b). To further
confirm the role of Glil in the regulation of FoxM1 tran-
scription, we generated five luciferase reporter vectors
driven by the potential Glil binding site-containing
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pFoxM1-BS4-Mut (-2621 ~ +1-Mut), Frag-pFoxM1-2BS4
(-2621 ~ -465), Frag-pFoxM1-BS4 (-512 ~ +1) and Frag-
pFoxM1-BS4-Mut (-512 ~ +1-Mut) (Fig. 2c) and per-
formed luciferase reporter assays using LoVo cells. As
expected, the overexpression of Glil significantly in-
creased the luciferase activity driven by the full-length
(Full-pFoxM1) or the short BS4-containing FoxM1
promoter (Frag-pFoxM1-BS4), but not the Frag-
pFoxM1-2BS4 promoter, in which the Glil effective
binding site region BS4 was deleted, or the BS4-
mutated full-length FoxM1 (Full-pFoxM1-BS4-Mut)
promoter (Fig. 2d). In addition, the mutated short
BS4-containing promoter (Frag-pFoxM1-BS4-Mut)
significantly decreased the luciferase activity compared
with the Frag-pFoxM1-BS4 promoter (Fig. 2d). These
results suggest that FoxM1 is a target gene of the Hh

FoxM1 promoter: Full-pFoxM1 (-2621~+1), Full- signaling pathway and that Glil transcriptionally
a b
FoxM1 promoter FoxM1 gene DM Input 1gG Gli1 Gli2
BS1 BS2 BS3 B4 —> 250 <2119 ~ -1917 (203 bp)
- — 2 100
2621 +1
Gli1BS1  -1992 GGGACCCCCTACA -1980
Gli1BS2  -1755 CTGACAACCCCCC -1743 250
I o . 100 _ 7176471548 17 b0)
Gli1 BS3  -1647 TCTACCTCCCATC -1635
Gli1BS4  -216 TCGCCCACCCACG -204 250_ « 356 ~ 156 (201 bp)
Gli1 binding sequence  GACCACCCA 100
c d Relative FoxM1 Luciferase activity (fold)
S o = = NN W
o [9,] o [3,] o (9,1 o o
BS1 BS2 BS3 BS4 1
Full-pFoxM1 (
~ | Luc Full-pFoxM1 *x
(2621 ~ +1) Pyww s 1
BS1BS2BS3 BS4-Mut -
Full-pFoxM1
Full-pFoxM1-BS4-Mut "B A Mt B
(-2621 ~ +1) -2621 +1
BS1BS2BS3 W Vector
Frag-pFox\1-/ABS4 Luc FragproxM1 W VE-Giit
(-2621 ~ -465) -2621 -465
BS4
Frag-pFoxM1-BS4 | Tic] gagProMt Jex
(-512 ~ +1) -512 V.o o+ )
BS4-Mut Frag-pFoxM1
Frag-pFoxM1-BS4-Mut Luc| -BS4-Mut
(-512 ~ +1) 512 +1
BS4 —0— GCCCACCCA
BS4-Mut + ACACACCCA
Fig. 2 Gli1 transactivates the FoxM1 promoter. a Schematic diagram of four potential Gli1 binding sites (BS1, BS2, BS3, and BS4) in the FoxM1
promoter. The 9-base pair sequence of the Gli1 binding site and the sequences of four Gli1 binding sites identified in the FxoM1 promoter are
shown. b Chromatin was isolated from HT29 cells, and ChIP assays were performed with goat IgG control, Gli1-specific and Gli2-specific anti-
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activates FoxM1 by directly binding to the promoter
of FoxM1 at BS4.

Hh signaling pathway regulates the expression of FoxM1

Next, we explored the role of the Hh-Glil signaling
pathway in the regulation of FoxM1 gene expression. To
this end, we detected the expression of Glil, FoxM1 and
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CCNBI1 (a downstream target gene of FoxM1) [17] in
several CRC cell lines by Western blotting (Fig. 3a) and
real-time PCR (Fig. 3b). Although the expression levels
of Glil, FoxM1 and CCNB1 were imbalanced, both the
protein levels and mRNA expression of FoxM1 and
CCNBI1 were consistent with Glil expression, indicating
that the Hh-Glil signaling pathway likely regulated the
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expression of FoxM1. For further confirmation, we
ectopically activated the Hh-Glil signaling pathway
using the canonical Smo agonist purmorphamine [37].
Treating Caco2 cells with 1 pM or 2 uM purmorpha-
mine for 48 h resulted in gradual increases in FoxMIl,
CCNBI1 and Glil protein expression (Fig. 3c). We also
examined the expression of FoxM1 when depleting or
decreasing Glil expression in HCT116 cells using a Glil
miRNAIi construct or treatment with GANT61 or cyclo-
pamine (a Smo inhibitor) [38]. The FoxM1 protein level
was significantly reduced upon the depletion of Glil by
miRNAi-Glil compared with the control miRNAi
(Fig. 3d). Moreover, both GANT61 (10 uM or 20 uM for
48 h) and cyclopamine (30 uM for 36 h or 60 h) dramat-
ically decreased the expression of FoxM1 (Fig. 3e and f).
In line with this finding, the protein level of CCNB1 was
also markedly decreased (Fig. 3d-f). Consistently, con-
comitant decreases in the Glil, FoxM1 and CCNBI1
mRNA levels in HCT116 cells were observed after treat-
ment with GANT61 or cyclopamine (Fig. 3g). Overall,
these data confirm that the Hh-Glil signaling pathway
regulates the expression of FoxM1.

FoxM1 expression is required for Gli1-mediated CRC cell
proliferation

To further examine the necessity of FoxM1 expression
for the Glil-mediated proliferation of CRC cells, we per-
formed complementary experiments by separately and
simultaneously treating LoVo cells, which moderately
expressed both endogenous FoxM1 and Glil proteins,
with the Hh-Glil activator purmorphamine and the
FoxM1 inhibitor thiostrepton [39]. As shown in Fig. 4a,
purmorphamine upregulated the protein levels of Glil,
FoxM1 and CCNBI, whereas thiostrepton inhibited
FoxM1 and CCNB1 expression in LoVo cells. Thiostrep-
ton counteracted the activation effect of purmorphamine
and led to the decreased expression of FoxM1 and
CCNB1, but not of Glil, when treating LoVo cells simul-
taneously. The results from the MTT assay showed that
purmorphamine promoted LoVo cell viability compared
to the control treatment, but thiostrepton inhibited cell
viability, even when the cells were concurrently activated
with purmorphamine (Fig. 4b). We next performed
colony formation assays and a cell cycle analysis and
found that thiostrepton also impeded the LoVo cell
proliferation caused by purmorphamine, as evidenced
by a significant reduction in colony number (Fig. 4c
and d) and slower cell cycle progression, which was
indicated by a higher fraction of cells in the G1 phase
and a lower proportion of cells in the G2/M phase
(Fig. 4e and f). Taken together, the results of these
Glil activation and FoxM1 inhibition studies demon-
strate that FoxM1 is required for Glil-mediated CRC
cell proliferation.
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Discussion

Previous studies have linked the Hh-Glil signaling path-
way to numerous human cancers, including CRC [40].
However, the molecular mechanisms underlying the Hh-
Glil signaling-mediated maintenance of CRC remain
largely unclear. Here, we identified Hh-Glil-FoxM1 as a
new signaling axis in the proliferation of CRC and clari-
fied this signaling axis pathway as a potential target for
the future development of anti-CRC therapy.

Glil, a transcriptional factor of the Hh signaling path-
way, is upregulated in most digestive tumors, including
pancreatic cancer, hepatocellular carcinoma and gastric
cancer [41-44]. Similar results were also reported in
other studies of CRC [12, 13, 45]. Although these studies
found that the Glil mRNA and protein expression levels
were significantly increased in CRC tissues, the exact
mechanism underlying this increase remained unclear.
The present study reports that FoxM1 activity is re-
quired for the Glil-mediated promotion of CRC cell
proliferation. Specifically, Glil ectopic overexpression
using the Hh signaling pathway activator purmorpha-
mine promoted CRC cell proliferation, whereas the sim-
ultaneous inhibition of FoxM1 with the FoxM1 inhibitor
thiostrepton inhibited CRC cell proliferation. A very re-
cent study indicates that Glil promotes CRC metastasis
in a FoxM1-dependent manner by activating EMT and
PI3K-AKT signaling [46], which is consistent with our
results. However, we demonstrate that Glil promotes
cell proliferation by directly binding to the promoter of
FoxM1 and transactivating FoxM1 in CRC cells. The in-
hibition of Glil also slowed the progression from the G1
to the S phase, as evidenced by a cell cycle assay (Fig. 4e
and f). In addition to promoting the proliferation of
CRC cells, Glil mediated multiple aspects of cellular
processes, including cell survival, invasion and metasta-
sis [11, 45, 47, 48].

FoxM1 is a member of the forkhead box family of
transcription factors and is involved in the control of cell
proliferation, chromosomal stability, angiogenesis, and
invasion. Increasing evidence has shown that FoxM1 ex-
pression is upregulated in many types of tumors [19, 21,
22, 49]. In this study, we found that FoxM1 expression
was also elevated in CRC tumor tissues compared with
the matched normal colorectal mucosa. Teh et al. sug-
gested that FoxM1 is a downstream target of Glil in
basal cell carcinomas [50], but their study lacked direct
evidence. In the present study, we demonstrated that
FoxML is a direct target of Glil using ChIP and lucifer-
ase reporter assays. Specifically, we identified one poten-
tial Glil-binding site (GCCCACCCA) in the FoxM1
promoter, and the mutation of this site significantly at-
tenuated the Glil-mediated transactivation of FoxM1
promoters (Fig. 2b-d). Moreover, we found that the Hh-
Glil signaling pathway regulated the expression of



Wang et al. Journal of Experimental & Clinical Cancer Research (2017) 36:23

Page 9 of 11

Thios - - + + 3 -+ Control
1 =P
Pum -+ -+ z %] ahum
s 24
2 11
Q
[ o -] ¢-actn "o
1 2 3 4 5 6(days)
c d .
| —— |
25 —=
S e
o L —
< 2.0
c
>
8 1.5
()
5
5 1.0
o
2
g 0.5
&
0.0+ N ry o o
SEEPRPE IR
Q Q QD
® 4 < @x&
$
e <
4007 Control 4007 Purm 400 Thios 400 Purm + Thios
] G1:65.8 ] G1:63.5 ] G1:72.3 ] G1:68.2
300 S:13.2 300 S:13.2 3007 S:125 3007] Si11.8
- ] G2M:14.2 G2/M: 17.4 - ] G2/M: 11.9 ] G2/M: 12.1
c 4 c c 4
3 2004 3 200 3 200
o ] ) o ]
100 100 100
0 04 0 0
0 200400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
FL-3 FL-3 FL-3 FL-3
— 3 Control
d * = Purm
80 O Thios
— 70 I Purm + Thios
£ 60
S 50
8
& 401 .
g 304 L
o 204 |
04 T T
G1 S G2/M
Fig. 4 Gli1 regulates CRC cell proliferation depending on FoxM1. a-d) LoVo cells were separately or simultaneously treated with 1 uM
purmorphamine and 1 uM thiostrepton for the indicated time. a The Gli1, FoxM1, and CCNB1 protein expression levels were examined by
immunoblotting after drug treatment for 48 h. b Cell viability was detected after 6 days using an MTT assay. ¢ LoVo cells treated with indicated
drugs were cultured for 2 weeks, and outgrowth colonies were stained with crystal violet. d The matched colony count of (c). Error bars
represent the mean and S.D. of three independent experiments. **, p < 0.01. e and f The cell cycle profile of LoVo cells was examined by
fluorescence-activated cell sorting (FACS) with propidium iodine (Pl) staining after 48 h of drug treatment (e), and the percentages of multinucle-
ate cells were quantified and are shown as a histogram (f). Purm: purmorphamine; Thios: thiostrepton. Error bars represent the mean and S.D. of
three independent experiments. *, p < 0.05

FoxM1 in CRC cells and that the inhibition of FoxM1
impeded Glil-mediated CRC cell proliferation. FoxM1
expression was also recently reported to be modulated
by many other transcription factors, and Her2 reportedly
upregulated FoxM1 expression in gastric cancer [51].
FoxM1 was also shown to be transactivated by HSFI,

which promoted the survival of glioma cells under heat
shock stress [52]. An increasing number of studies have
reported that FoxM1 mediates drug resistance in many
types of cancers, including gastric cancer [53], breast
cancer [54, 55] and glioblastoma [56], by regulating the
expression of downstream targets. Together with these
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findings, our results suggest that the Hh-Glil-FoxM1
axis can serve as a novel target for cancer therapy. Thus,
further screening and validation of drugs that target Hh-
Glil-FoxM1 signaling would be interesting and
significant.

Conclusions

We reported herein that the Glil and FoxM1 expression
levels are consistently elevated in human CRC tissues.
Moreover, Glil regulates the transcription of FoxM1 by
directly binding to the promoter of FoxM1 at BS4
(GCCCACCCA), which contributes to the proliferation
of CRC cells. These observations uncover a novel
molecular mechanism by which the Hh-Glil-FoxM1 axis
mediates CRC cell proliferation and provide a potential
valid therapeutic target for the treatment of CRC in the
future.
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Additional file 3: Figure S1. FoxM1 promotes the proliferation of CRC
cells. (A and B) The validation of the FoxM1 overexpression plasmid in
Caco? cells (A) and interference plasmid in HCT116 cells (B), performance
as indicated. (C and D) Overexpression of FoxM1 increased the colony
formation and growth rate of Caco2 cells. (C) Caco2 cells transfected
with the indicated plasmids were subjected to clonogenic assays.

(D) Quantitative analysis of (C). (E and F) Knocking down FoxM1 reduced
the colony formation and growth rate of HCT116 cells. (E) HCT116 cells
transfected with the indicated plasmids were subjected to clonogenic
assays. (F) Quantitative analysis of (E). (G and H) Overexpression of FoxM1
increased the proliferation rate of CaCo2 cells. (G) BrdU assay of the
proliferation rate of CaCo2 cells transfected with the indicated plasmids
for 48 h. (H) Quantitative analysis of (G). (I and J) Down-regulation of
FoxM1 decreased the proliferation rate of HCT116 cells. () BrdU assay of
the proliferation rate of HCT116 cells transfected with the indicated
plasmids for 48 h. (J) Quantitative analysis of (I). All quantitative analyses
were performed using the ImageJ software, and the error bars represent
the mean and S.D. of three independent experiments. miR-FoxM1:
miRNAi-FoxM1; miR-control: miRNAi-control. **, p < 0.01. (TIF 73489 kb)
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