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Traumatic brain injury (TBI) is an important health concern and effective

treatment strategies remain elusive. Understanding the complex multicellu-

lar response to TBI may provide new avenues for intervention. In the con-

text of TBI, cell–cell communication is critical. One relatively unexplored

form of cell–cell communication in TBI is extracellular vesicles (EVs).

These membrane-bound vesicles can carry many different types of cargo

between cells. Recently, miRNA in EVs have been shown to mediate neu-

roinflammation and neuronal injury. To explore the role of EV-associated

miRNA in TBI, we isolated EVs from the brain of injured mice and con-

trols, purified RNA from brain EVs, and performed miRNA sequencing.

We found that the expression of miR-212 decreased, while miR-21, miR-

146, miR-7a, and miR-7b were significantly increased with injury, with

miR-21 showing the largest change between conditions. The expression of

miR-21 in the brain was primarily localized to neurons near the lesion site.

Interestingly, adjacent to these miR-21-expressing neurons were activated

microglia. The concurrent increase in miR-21 in EVs with the elevation of

miR-21 in neurons, suggests that miR-21 is secreted from neurons as

potential EV cargo. Thus, this study reveals a new potential mechanism of

cell–cell communication not previously described in TBI.

Traumatic brain injury (TBI) is a leading cause of

death and disability worldwide and current treatment

strategies are limited [1–3]. The damage caused by a

TBI can be divided into the instantaneous primary

mechanical injury and delayed secondary injury, which

includes inflammation, neurochemical changes, and

mitochondrial dysfunction [4]. A robust inflammatory

response is seen post-TBI, including migration and acti-

vation of resident glia and recruitment of peripheral

immune cells to the injury site [5]. As in other types of

injury, cell–cell communication is critical for regulating

the immune response in TBI. Although there is a wide

body of research examining the roles of cell–cell media-

tors such as cytokines and chemokines in TBI [6], the

short duration of action, along with the complex and

pleiotropic nature of these molecules make them diffi-

cult drug targets [4]. In recent years, several important

studies have found that extracellular vesicles (EVs) can

influence cell–cell communication significantly [7–9].
EVs are membrane-derived vesicles that include vesicles

that originate from the plasma membrane, exosomes

derived from multivesicular bodies, and apoptotic
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bodies. These EVs serve as shuttles for cellular compo-

nents between cells, carrying proteins, metabolites,

lipids, mRNA, and miRNA [10]. EV mRNA and

miRNA can function within the recipient cell to alter

protein expression [8,11]. Recent studies also show that

miRNA carried within extracellular vesicles can trigger

inflammatory responses and neuronal damage through

pattern-recognition receptors (PRRs) [9]. While several

experiments have shown effects of EV-associated miR-

NAs (EV-miRNA) on cells in culture, less is known

about how the miRNA content of EVs is altered in dis-

ease conditions and whether or not EV-miRNA has

important pathophysiological roles. No studies so far

have characterized EVs in the TBI brain. The goal of

this study was to investigate changes in EV miRNA

after a TBI. To accomplish this, we quantified levels of

miRNA in EVs from mice 7 days after a TBI using

next-generation sequencing. Furthermore, in situ

hybridization was performed to analyze the expression

of miRNA in the brain.

Methods

Animals

Male C57BL/6 mice were obtained from Charles River

Laboratories Inc. (Wilmington, MA, USA) and group

housed in a 12 h light-dark cycle and fed ad libitum. All

procedures and protocols were approved by the Institu-

tional Animal Care and Use Committee of the University

of Nebraska Medical Center and conducted in accordance

with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals.

Controlled cortical impact

For all experiments, surgery was performed on mice 7–
9 weeks old. Before surgery, mice were anesthetized using

isoflurane and injected with 0.5 mg bupivacaine s.c. under

the scalp, followed by an incision to access the skull. A 4-

mm craniotomy was performed midway between lambda

and bregma on the left side. A Precision Systems and

Instrumentation TBI-0310 (Fairfax Station, VA, USA) was

used to impact the exposed dura at a speed of 3.5 m�s�1

with a 200 ms dwell time and a depth of 1.0 mm. This CCI

procedure was similar to that reported by others [12,13].

After the impact, Surgicel (Johnson & Johnson, Arlington,

TX, USA) was used as a hemostatic agent, the skull placed

over the brain and adhered with dental cement. The skin

was secured with tissue clips. Sham surgery animals were

anesthetized and placed in a stereotactic frame, injected s.c.

with bupivacaine and an incision was made in the scalp.

The skin was closed with tissue clips. Animals for each con-

dition were chosen at random. Mice were sacrificed at

indicated times after injury by isoflurane overdose followed

by decapitation.

Rotarod

Fifteen mice from each group were used for accelerating

rotarod testing. Prior to injury all mice were trained for

3 days on the rotarod apparatus then mice were tested for

6 days, beginning 1 day after injury. On the first day, mice

were acclimated to the rotarod for 5 min without move-

ment. Mice were then tested three times a day with a mini-

mum of a 30-min interval between tests. The rotarod was

set to accelerate from 0 to 35 rpm over a 2-min interval

and weight-based sensors were used to detect latency to

fall. For these experiments, a 7 cm diameter rotarod was

used. This protocol was adapted from O’Connor et al. [14]

The average latency to fall from the three trials of the last

day of training are reported as day 0 and the average of

three trials from each subsequent day was reported. Signifi-

cance was determined using a two-way ANOVA followed

by Bonferroni post hoc tests.

Tissue preparation for histology

Mice were anesthetized with isoflurane and sacrificed

7 days after injury by decapitation. Brains were removed

and fixed in 4% paraformaldehyde overnight, paraffin

embedded, and cut into 5-lm coronal sections using a

microtome. Staining was performed on sections between

Bregma �1.3 and Bregma �2.5 mm, which included the

lesion. Before staining, slides were warmed to 60 °C for 1 h

and then allowed to cool. Slides were cleared with xylene

then dehydrated through graded ethanol washes.

Luxol fast blue staining

After hydration with 95% ethanol, slides were stained with

filtered 0.1% luxol fast blue in a solution of 0.5% acetic

acid at 60 °C overnight. On the next day, slides were rinsed

in 95% ethanol followed by distilled water then differenti-

ated in 0.05% lithium carbonate for one min and 70%

ethanol for 1 min. Slides were counterstained with 0.5%

cresyl violet for 30 min at 60 °C, rinsed in distilled H2O,

and differentiated in 95% ethanol for 5 min. Coverslips

were mounted using cytoseal (Thermo, Waltham, MA,

USA). Immunostaining was performed on three biological

replicates. Slide scanning was performed by the UNMC tis-

sue sciences facility using a Ventana’s Coreo Au Slide

Scanner at 409 magnification.

Immunohistochemistry

Staining was performed as described in Yelamanchili et al.

[15]. After hydration with a graded alcohol series, tissue was
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subjected to citrate antigen retrieval and washed with TBS.

After blocking in a solution of 1% BSA and 3% NGS in

PBS, tissue was incubated with primary antibody at a dilu-

tion of 1:500 for overnight at 4 °C. Antibodies used were

anti-GFAP (Dako Z0334, Carpinteria, CA, USA) and anti-

Iba-1 (Wako 019-19741, Richmond, VA, USA). On the

following day, tissue was washed with TBS and incubated

with 3% H202 in PBS for 10 min. After thorough washing,

tissue was incubated with anti-Rabbit secondary labeled

with a peroxidase enzyme (ImmPRESS; Vector labs, Burlin-

game, CA, USA) for 1 h, rinsed, and developed with DAB

Plus substrate system (Thermo) for 10 min. Tissue was then

washed with TBS, stained with hematoxylin, and dehy-

drated. Coverslips were mounted with cytoseal (Thermo).

Immunostaining was performed on three biological

replicates.

In situ hybridization

In situ hybridization was performed ,as described previ-

ously [16], with the addition of a 10 min peroxidase

quenching step after the SSC washes using 3% H2O2 in

PBS followed by TBS washes. In brief, after hydration and

antigen retrieval, tissue was incubated with double DIG-

labeled LNA probes (Exiqon, Vedbaek, Denmark) over-

night at 37 °C followed by SSC washes. Tissue was then

incubated with antidigoxigenin-POD, Fab fragments

(Roche, Basel, Switzerland), 1:100, and primary antibodies

at a concentration of 1:500 overnight at 4 °C. Antibodies

used were anti-GFAP (Dako Z0334) and anti-Iba-1 (Wako

019-19741). Tissue was washed and incubated with sec-

ondary antibodies (Life Technologies, Carlsbad, CA,

USA). TSA plus cyanine 5 (PerkinElmer, Waltham, MA,

USA) was used for developing and 0.0001% DAPI was

used as a nuclear counterstain. For mounting, coverslips

proLong Gold Antifade Mountant (Life Technologies) was

used. A Zeiss Observer.Z1 fluorescent microsope was used

for imaging (Carl Zeiss, NY, USA).

Extracellular vesicle isolation

Extracellular vesicles were isolated from brains, as

described previously [17], using a method adapted from

Perez-Gonzalez et al. [18] Seven days after injury, animals

were anesthetized with isoflurane and decapitated. Brains

were extracted, cerebellum and brain stem were removed

and the two hemispheres were separated. For each sample,

four ipsilateral or four contralateral hemispheres were

pooled. In total, 12 mice for each condition were utilized.

This resulted in three pooled samples of each hemisphere

from TBI mice and three pooled samples of each hemi-

sphere from sham surgery controls, for a total of 12 sam-

ples altogether. After removal, tissue was snap frozen in

liquid nitrogen and stored at �80 °C. Samples were thawed

and digested in 20 units�mL�1 of papain in Hibernate A

(Life Technologies), enzymatic digestion was stopped by the

addition of cold Hibernate A, and the solution was further

homogenized by trituration. Tissue fragments were removed

by centrifugation and the supernatant passed through a ser-

ies of successively finer filters (40, 5, and 0.2 lm). Remain-

ing cell fragments were removed by centrifugation and the

EV containing supernatant was submitted to several PBS

washes followed by ultracentrifugation. A sucrose gradient

was established using five concentrations of sucrose ranging

from 0.25 to 2 M. The extracellular vesicle pellet was resus-

pended in the middle concentration (0.95 M), inserted into

the gradient, and centrifuged at 200 000 g for 16 h at 4 °C.
The extracellular vesicle containing central sections of the

sucrose gradient were removed and resuspended to a total

volume of 30 mL with PBS.

RNA isolation and sequencing

The suspensions from the EV isolation were subjected to

ultracentrifugation to pellet the EV. The pellets were then

subjected to miRNA extraction using the mirVana miRNA

Isolation Kit (Life Technologies) following the manufac-

turer’s instructions. RNA samples were then sent to LC

Sciences (Houston, TX, USA) for miRNA sequencing.

Venny (http://bioinfogp.cnb.csic.es/tools/venny/) was used

to create Venn diagrams.

Electron microscopy

To validate the purity of EV isolation three hemispheres

from three mice were pooled and snap frozen in liquid

nitrogen and stored at �80 °C. EV isolation was performed

as described above and the sample was submitted to the

University of Nebraska Medical Center Electron Micro-

scopy Core Facility to undergo microscopy by a FEI Tec-

nai G2 Spirit transmission electron microscope.

Results

Characterization of CCI

While the CCI model is commonly used in TBI

research, the histopathology and behavioral deficits

can vary dramatically with injury depth, species,

strain, and age, as well as choice of controls. We chose

a 1.0-mm depth to model severe injury. While cran-

iotomy only is a common control in the TBI field, it is

associated with inflammation [19,20]. To avoid neu-

roinflammation caused by craniotomy, and to better

control for peripheral injury and inflammation we used

a peripheral injury control where an animals were

given anesthesia, analgesia, and a scalp incision.

Rotorod testing was then used to examine motor

and vestibular function, as abnormalities are found
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after CCI [21]. Before surgery, animals were trained on

the accelerating rotarod apparatus for three trials a

day for 3 days. On the last day of training, there was

no difference in latency to fall between the groups ran-

domly selected for CCI and sham surgery (Fig. 1A).

Animals were tested daily, beginning 1 day after sur-

gery. CCI impaired motor function 1, 2, and 3 days

after injury, by day 4 post injury motor function

recovered to the level of control. Peripheral injury con-

trols did not show a decrease in motor function after

sham surgery. Since rotorod deficits were resolved in

7 days after CCI, subsequent studies were performed

at this time point.

Luxol fast blue staining was then performed to char-

acterize the lesion site morphology and white matter

damage 7 days after CCI or sham surgery (Fig. 1B).

Sham animals showed no evident neuropathology;

however, CCI-induced cortical and hippocampal tissue

loss on the injured side and enlargement of the lateral

ventricle. Disruption of white matter tracts was clearly

observable. The corpus callosum was disrupted and

the fimbria was deformed.

Glial activation is a well-recognized component of

TBI pathophysiology [22]. To examine the extent of

glial activation 7 days after CCI, tissues were stained

for GFAP and Iba1, markers of astrocytes and

Fig. 1. Characterization of CCI model.

(A) Motor function in the week after CCI

measured by rotarod. Sham controls and

CCI mice were tested three times per day

and trained for 3 days prior to injury. The

average time to fall of three trials for each

day is shown. Day 0 corresponds to the

final day of training and Day 1 corresponds

to the first day after CCI. The mean �
SEM from 15 animals are shown. A two-

way ANOVA was used to determine

statistical significance. *P < 0.001. (B)

Histology performed on mice 7 days after

injury or sham surgery. Shown are

representative images of three replicates.

Luxol fast blue and cresyl violet staining of

myelin (blue) and Nissl substance (purple)

showing gross histology of the lesion,

indicated by an asterisk, after CCI

compared with the normal anatomy of the

sham surgery control. (C) Iba-1 and GFAP

immunohisochemisty (IHC) staining for

microglia and astrocytes, respectively, in

the left cortex of sham controls (SHAM),

and the ipsilateral (IPSI) and contralateral

(CONTRA) cortices of animals after CCI

(TBI). Images of the ipsilateral cortex

show cortical tissue adjacent to the lesion

site, lesion cavity indicated by an asterisk.

Shown are representative images of three

replicates. Original magnification 109

(bars = 100 lM), and 409 (bars = 25 lM).
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microglia, respectively (Fig. 1C). Levels of GFAP and

Iba1 are both upregulated when glial activation occurs.

As expected, staining for GFAP and Iba1 increased

after TBI. In addition, microglial morphology shifted

from ramified, resting microglia to a bushy, activated

state in the injured hemisphere compared with sham

controls. Activated microglia were also observed in the

contralateral cortex after CCI, but to a lesser extent.

Overall, both motor impairment and neuropathol-

ogy are consistent with descriptions of CCI by other

groups. No changes in motor function or glial activa-

tion were seen in peripheral injury sham controls.

Importantly, while motor deficits are resolved, glial

activation is prominent 7 days after injury, we chose

this time point to examine the role of EV miRNA in

TBI-induced neuroinflammation.

Isolation and characterization of EV after CCI

EVs were isolated from pooled brain tissue using dif-

ferential centrifugation on a sucrose gradient. Trans-

mission electron microscopy [23] was used to

characterize vesicle size (Fig. 2). EVs isolated from

mouse brain showed a heterogeneous-sized population

of EVs. Intact vesicles were present indicated by the

characteristic “cup shape” created by the pooling of

negative stain on top of the intact vesicle [10]. These

data indicate that intact, heterogeneous EVs were iso-

lated from mouse brain.

Sequencing of EV miRNA after CCI

Recent evidence has shown that EV miRNA can

induce inflammation and neuronal damage

[9,17,24,25]. Therefore, understanding changes in EV

miRNA after CCI is relevant to TBI pathology. To

quantify EV miRNA, EVs were isolated from the left

and right hemispheres of animals 7 days after CCI or

sham surgery. Then miRNA were purified from the

EVs and sequenced. Brains from four conditions were

used for this purpose: TBI ipsilateral (left) hemisphere,

TBI contralateral (right) hemisphere, sham left hemi-

sphere and sham right hemisphere. A heat map of all

differentially expressed miRNA genes (P < 0.05 by

ANOVA) is shown in Fig. 3A. Generally, miRNA

clustered into those that increased or decreased in both

the ipsilateral and contralateral hemispheres and those

that increased only in the ipsilateral hemisphere. The

largest number of differentially expressed miRNA (59)

was found in the ipsilateral hemisphere from TBI rela-

tive to the corresponding sham hemisphere, followed

by the TBI ipsilateral versus contralateral hemisphere

(46). Only seven differentially expressed genes were

common between the ipsilateral and contralateral hip-

pocampi (Fig. 3B). Together this indicates that the

ipsilateral hemisphere shows the most distinct set of

differentially expressed EV miRNA, as would be

expected considering the unilateral nature of the injury

and glial activation seen by immunohistochemistry. To

focus further examination, we calculated log2 values

for differentially expressed miRNA and set a threshold

of log2 = 0.5. On the basis of these criteria, we identi-

fied five differentially expressed genes, four upregu-

lated and one downregulated in the ipsilateral

hemisphere (Fig. 3C). Levels of miR-212 were

decreased in the ipsilateral hemisphere relative to cor-

responding sham and contralateral hemispheres. In

contrast, miR-7b, miR-7a, and miR-21 levels were all

increased in the ipsilateral hemisphere compared with

the corresponding sham hemisphere. Uniquely, miR-

146 was increased bilaterally in both the ipsilateral and

contralateral hemispheres compared with sham. Of all

Fig. 2. Characterization of EVs from brain

tissue. Transmission electron microscopy

of brain derived EVs showing a

heterogeneous population of vesicles.
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Fig. 3. Sequencing of EV miRNA after CCI. (A) Heat map and hierarchical clustering depicting all differentially expressed miRNA (P < 0.05

by ANOVA). (B) Venn diagram showing differentially expressed miRNA in ipsilateral (IPSI) versus sham left and contralateral (CONTRA)

versus sham right. Significance was determined by T-test P < 0.05 (B). (C) miRNA that increase or decrease in the ipsilateral hemisphere

(IPSI) relative to controls (log2 > 0.5) (C). Log2 values for the contralateral hemisphere (CONTRA) are also shown. The mean � SEM from

three replicates are shown. A one-way ANOVA was used to determine statistical significance. *P < 0.05; **P < 0.01; ***P < 0.001.
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the differentially expressed EV-miRNA, miR-21

showed the largest increase after CCI. Average counts

for differentially expressed miRNA are shown in

Table 1. The sequences in Table 2 show differentially

expressed miRNA. Three of the five miRNA have

GU-rich sequences that are known to mediate TLR7/8

responses [26]. In summary, CCI induced changes in

miRNA associated with EVs, particularly in the ipsi-

lateral hemisphere.

Localization of miR-21 expression after CCI

Injury significantly increased EV miR-21 in brain tis-

sue. To investigate the cell-type specific expression of

miR-21 after CCI, we performed combined

immunofluorescence and in situ hybridization. Images

were taken in the parietal cortex adjacent to the lesion,

or lesion boundary. Expression of miR-21 was higher

in CCI animals than in the sham control (Fig. 4),

which is in agreement with other reports [27–29].
Costaining with MAP2, a cell-type specific marker for

neurons, showed colocalization with miR-21, indicat-

ing that miR-21 is highly expressed in neuronal cell

bodies. In contrast, miR-21 expression did not colocal-

ize with microglial marker Iba-1, suggesting that

microglia are not the primary source of EV miR-21.

Intriguingly, activated microglia were found in imme-

diate proximity to the miR-21 positive neurons in the

lesion boundary. While the colocalization does not

prove that the origin of EV miR-21 is strictly

neuronal, since the majority of the staining is localized

to neurons, we believe that neurons are primarily the

source of EV miR-21.

Discussion

The major finding of this study is that TBI induces

changes in EV-associated miRNA in a rodent CCI

model. Through miRNA sequencing, we found that

miR-21, miR-146, miR-7a, and miR-7b all increased in

the injured hemisphere relative to sham surgery con-

trol, while miR-212 expression decreased. Of all the

miRNAs tested, miR-21 showed the largest fold

change. Localization of miR-21 expression through

in situ hybridization was found overwhelmingly in

MAP2 expressing neurons in the lesion boundary, sug-

gesting that EV-miR-21 could be neuronal in origin

and might mediate neuron-glia signaling.

This is the first study to profile changes in brain EV

miRNA after TBI. Several previous studies have identi-

fied changes in miRNA expression in brains from TBI

models [27,30–34]. Of these studies, three reported a

significant increase in miR-21 relative to controls

[27,30,34]. Importantly, Meissner et al. [34] also

showed that animals given a craniotomy alone without

TBI did not show an increase in miR-21 up to 12 h

after injury. Furthermore, Sandhir et al. [29] showed

increased miR-21 expression as long as 7 days after

TBI. The small quantity of EVs and EV-associated

RNA isolated from a single mouse brain hemisphere

necessitates pooling of samples and limits sample size.

However, the identification of changes in miR-21

expression in EVs after TBI agrees with increases in

whole brain tissue observed by others [27,30,34]. Other

than TBI, increased expression of miR-21 has also been

observed in many models of neuroinflammation and

neuronal injury [35–41].
Generally, literature on miR-21 in TBI supports a

neuroprotective role for miR-21. Treatment with a

miR-21 mimic improved disease outcomes in rats after

CCI [28]. Also, overexpression of miR-21 reduces neu-

rotoxicity in an in vitro, stretch model of TBI through

Table 1. Sequencing counts of miRNA significantly increased in the ipsilateral hemisphere (P < 0.05 with |log2 IPSA/Sham L)| > 0.5),

average counts � SD for three replicates, each pooled from three animals.

miRNA IPSI CONTRA SHAM L SHAM R IPSI/SHAM L log2

miR-21a-5p 9283 � 3860 6610 � 2736 3275 � 295 4179 � 618 2.8 1.5

miR-146a-5p 3648 � 413 3707 � 1067 2042 � 318 2163 � 444 1.8 0.84

miR-7a-5p 11 393 � 1411 9631 � 1313 7057 � 1115 8330 � 910 1.6 0.69

miR-7b-5p 8582 � 1411 8067 � 932 5764 � 642 6827 � 1176 1.5 0.57

miR-212-5 2988 � 666 4745 � 594 4229 � 115 4380 � 931 0.71 �0.50

Table 2. Sequences of miRNA significantly increased in the

ipsilateral hemisphere (P < 0.05 with |log2| > 0.5). GU-rich

sequences are shown in bold.

miRNA Sequence

miR-21a-5p UAGCUUAUCAGACUGAUGUUGA

miR-146a-5p UGAGAACUGAAUUCCAUGGGUU

miR-7a-5p UGGAAGACUAGUGAUUUUGUUGU

miR-7b-5p UGGAAGACUUGUGAUUUUGUUGU

miR-212-5p ACCUUGGCUCUAGACUGCUUACU
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miR-21 targeting of PTEN [42]. Increasingly, miR-21

is recognized as an important molecule in neuronal

injury [43]. The neuroprotective and regenerative

effects of miR-21 have been observed in models of

stroke [44], axotomy [38], and neurodegeneration [45].

Additionally, miR-21 has roles in glial responses to

injury. In spinal chord injury, miR-21 reduces hyper-

trophy of astrocytes, reducing glial scar formation [39],

whereas in experimental stroke, miR-21 targets FasL

in microglia reducing microglia-mediated neuronal

death [46]. Despite the potential benefits of miR-21

expression in neuronal injury, there are also draw-

backs. For example, in HIV-associated neurocognitive

disorders, elevated expression of miR-21 contributes to

neuronal dysfunction by increasing the potassium

channel activity and targeting MEF2C, an important

neuronal transcription factor [40]. Elevated miR-21

also contributes to neuropathic pain in nerve injury

[37]. Nevertheless, this yin-yang role of miR-21 makes

it an interesting target of study in neuronal injury and

inflammation. Here, for the first time, we have identi-

fied that miR-21 can also be associated with EVs in

TBI.

This study particularly profiled EV-miRNA from

the brain tissues of CCI injured mice. Previously,

Patz et al. [47] also characterized EV-miRNA after

TBI, but in the cerebrospinal fluid (CSF) of patients.

Our miRNA sequencing did not recapitulate the

miRNA profile found in this previous study. This

difference could be due to several factors, such as

the use of CSF versus brain tissue, and patients

versus a controlled experimental model. Outside of

Fig. 4. Localization of miR-21 expression after CCI. Expression of miR-21 was visualized by combined in situ hybridization and

immunofluorescence. Staining for miR-21 (magenta) and cell-type markers (green), MAP2 (A) and Iba1 (B) were used to study neurons and

microglia, respectively. Nuclei are stained with DAPI (blue). Original magnification 639 (bars = 100 lm), location of insets marked with an

asterisk. Staining was performed in duplicate and representative images are shown.
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the TBI field, profiling of EV-miRNA from neurons

and brain tissue has been performed. Interestingly,

exosomes secreted by prion-infected neurons show

higher levels of miR-21 than exosomes from unin-

fected neurons in vitro [48]. This supports the theory

that neurons increase the release of miR-21 in EV as

a response to stress. Our group and others have stud-

ied the role of miRNA in exosomes or extracellular

vesicles in HIV-associated neurocognitive disorders

(HAND), conditions strongly linked with neuroinflam-

mation [49]. One study indicated that comorbid HIV

infection and opiate abuse can increase miR-29 pack-

aging in brain EV, which in turn downregulates the

important neuroprotective molecule PDGF [50].

Another study showed that in HAND, EV-miR-21 is

increased and mediates neurotoxicity by binding to

TLR7 and causing necroptosis [17]. As more groups

profile miRNA signatures of EVs, a clearer picture

will form of which miRNA are common to neuronal

injury or inflammation and which are specific to dis-

ease state.

The release of miRNA in EVs is thought to have

two possible effects on target cells. The first mecha-

nism occurs when the EV either fuses with the cell

membrane or endosomal membrane to release its con-

tents into the cytosol [11]. Mature miRNA in the cyto-

sol can bind to target mRNA and decrease their

translation [7]. The second mechanism of EV miRNA

action is through binding of pattern-recognition recep-

tors in the endosomal compartment, primarily toll-like

receptor 7/8 (TLR7/8) [9]. TLR7/8 recognizes ssRNA,

and elicits an antiviral response as part of the innate

response to viral pathogens [51]. Several groups have

reported that miRNA with EV can stimulate TLR7/8,

but the outcome of miRNA binding to TLR7/8 is

highly dependent on cell type. In immune cells, such

as macrophage and microglia, TLR7/8 binding elicits a

proinflammatory response, including secretion of

TNFa [9]. Alternatively, TLR7/8 binding in neurons is

toxic and can lead to cell death or synaptic loss

[17,24,25]. The binding of miRNA to TLR7/8 is

dependent on GU-rich sequences [26], as miR-21 has

such a GU-rich sequence it is a strong stimulator of

TLR7/8 [9,17,24]. Recent studies have identified EV-

miR-21 specifically as both proinflammatory [9] and

neurotoxic [25]. Our studies on SIV encephalitis

showed that not only was miR-21 elevated in EV from

encephalitic brains, but also that EV-miR-21 induced

necroptosis in neurons through TLR7 [17]. Therefore,

the increase in EV miR-21 reported in this study has

important pathophysiological implications for TBI.

Whether miR-21 in EV leads to translational regula-

tion or TLR7/8 stimulation in recipient cells after TBI

is not addressed in this study and will be an important

question for future research.

Aside from miR-21, we identified three other

miRNA with increased levels in EVs, miR-146, miR-

7a, and miR-7b. Increased expression of total brain

miR-146a was reported Lei et al. [30] in a CCI model

of TBI. Interestingly, our previous studies in SIV

encephalitis also found increases in EV-miR-146 [17].

It is known that inflammatory stimuli such as

lipopolysaccharide (LPS) induce miR-146 [52]. Inter-

estingly, knockout studies in mice have proven miR-

146 to be an important anti-inflammatory miRNA

[53]. Even more importantly, miR-146 within exosomes

can act functionally to reduce inflammation in recipi-

ent cells [54]. Therefore, it is possible that in TBI miR-

146 within exosomes could reduce neuroinflammation.

Relatively a little is known about miR-7a and b com-

pared with miR-146 and miR-21. However, some

in vitro data suggest that miR-7 can be neuroprotective

[55]. The expression of miR-7 is relatively brain-speci-

fic [56]. Interestingly, miR-7a and b both contain a

GU-rich element identical to that found in miR-21

(UGUUG) indicating that they may also be ligands

for TLR7/8 (Table 2). We found one miRNA, miR-

212, down-regulated in EV after TBI. Downregulation

of miR-212 has been found in several brain diseases

[57]. These include anencephaly [58], schizophrenia

[59], and Alzheimer’s disease [60]. Together these stud-

ies hint that deregulation of miR-212 may be patho-

logical in the brain.

Conclusion

We report here the first miRNA profile of brain exo-

somes in TBI. Differential expression of five miRNA

was found between EVs from CCI-injured brain versus

uninjured controls. Of the differentially expressed

miRNA, miR-21 showed the highest increase in EVs

of the injured brain. Interestingly, increased levels of

miR-21 were found in neurons of the injury boundary

zone near reactive microglia. Further studies need to

be done to test whether neuronal derived EV miR-21

transmigrates into adjacent microglia and activates

them.

This work shows that TBI induces changes in EV

miRNA, which likely has important consequences for

cell–cell signaling and in the disease progression in

TBI.
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