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Abstract 

Purpose:  Predictively diagnosing infectious diseases helps in providing better treatment and enhances the preven-
tion and control of such diseases. This study uses actual data from a hospital. A multiple infectious disease diagnostic 
model (MIDDM) is designed for conducting multi-classification of infectious diseases so as to assist in clinical infec-
tious-disease decision-making.

Methods:  Based on actual hospital medical records of infectious diseases from December 2012 to December 
2020, a deep learning model for multi-classification research on infectious diseases is constructed. The data includes 
20,620 cases covering seven types of infectious diseases, including outpatients and inpatients, of which training data 
accounted for 80%, i.e., 16,496 cases, and test data accounted for 20%, i.e., 4124 cases. Through the auto-encoder, data 
normalization and sparse data densification processing are carried out to improve the model training effect. A residual 
network and attention mechanism are introduced into the MIDDM model to improve the performance of the model.

Result:  MIDDM achieved improved prediction results in diagnosing seven kinds of infectious diseases. In the case of 
similar disease diagnosis characteristics and similar interference factors, the prediction accuracy of disease classifica-
tion with more sample data is significantly higher than the prediction accuracy of disease classification with fewer 
sample data. For instance, the training data for viral hepatitis, influenza, and hand foot and mouth disease were 2954, 
3924, and 3015 respectively and the corresponding test accuracy rates were 99.86%, 98.47%, and 97.31%. There is less 
training data for syphilis, infectious diarrhea, and measles, i.e., 1208, 575, and 190 respectively and the correspond-
ing test accuracy rates were noticeably lower, i.e., 83.03%, 87.30%, and42.11%. We also compared the MIDDM model 
with the models used in other studies. Using the same input data, taking viral hepatitis as an example, the accuracy 
of MIDDM is 99.44%, which is significantly higher than that of XGBoost (96.19%), Decision tree (90.13%), Bayesian 
method (85.19%), and logistic regression (91.26%). Other diseases were also significantly better predicted by MIDDM 
than by these three models.

Conclusion:  The application of the MIDDM model to multi-class diagnosis and prediction of infectious diseases can 
improve the accuracy of infectious-disease diagnosis. However, these results need to be further confirmed via clinical 
randomized controlled trials.
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Background
Infectious diseases have accompanied human develop-
ment at every stage and seriously threaten human health 
even today. Despite advances in medicine, infectious 
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diseases are still the main cause of death, disease, disabil-
ity, and socio-economic turmoil worldwide [1]. Early and 
correct diagnosis and the correct choice of treatment can 
considerably affect the outcome of any infection. China 
implements classified management of infectious dis-
eases. The current statutory reported infectious diseases 
are divided into three categories: class A, B, and C. With 
COVID-19 being newly added in 2020, there are as many 
as 40 kinds of infectious diseases. The National Health 
Commission has decided to include certain infectious 
diseases under Class B and Class C infectious diseases 
for management, while other infectious diseases that 
are subject to emergency monitoring reports fall under 
Class A management [2]. Different management meth-
ods are adopted for different types of infectious diseases. 
Class A needs to be reported to the National Center for 
Disease Control and Prevention within 2 h of diagnosis, 
while class B and C need to be reported within 24  h of 
diagnosis [3]. When facing a multitude of diseases, mak-
ing an accurate diagnosis of suspected infectious diseases 
is very important in the prevention and control of infec-
tious diseases.

At present, there are few studies on the application of 
artificial intelligence (AI) methods for disease classifica-
tion. Furthermore, existing research is mainly based on 
image data, such as X-rays, CT scans, MRIs, electrocardi-
ograms (ECGs), and ultrasounds. Hannun et al. [4] used a 
deep neural network to detect and classify cardiac expert 
arrhythmias in a Holter monitor. Their results show good 
classification accuracy (area under curve = 0.97). Attia 
et  al. [5] found the observed accuracy of an AI applica-
tion on ECGs to be 85.7%. Wildman Tobriner et  al. [6] 
showed that an AI-optimized thyroid imaging report and 
data system (TI-RADS) can moderately improve specific-
ity and sensitivity compared to TI-RADS. Li Yang et  al. 
[7] applied a neural network for the diagnosis of femoral 
head necrosis based on X-rays. They diagnosed femoral 
head necrosis based on the angle changes of the neu-
ral network learning image characteristics and recom-
mended stages. S Sathitratanacheewin et al. [8] designed 
a DCNN to monitor lung nodules based on X-rays taken 
from the data of the National Institute of Health Clinical 
Centers and the National Library of Medicine Shenzhen 
No.3 Hospital. AI techniques are used in the detection 
of lymph node metastasis in women with breast can-
cer [9], skin cancer dermatological level classification 
[10], diabetic retinopathy and diabetic macular edema 
[11], and multiple diagnoses of Alzheimer’s disease [12]. 
However, there are few studies on using AI techniques 
to aid the decision-making applicable to infectious 
diseases. Rogachev et  al. [13] used decision trees and 
Bayesian methods to classify and diagnose respiratory 
infections, where the final classification accuracy was 

63.38%–70.68%. For COVID-19, Govindaraj et  al. [14] 
used convolutional neural networks for feature extraction 
and classification based on chest CT image data and tried 
to achieve accuracy rate more than 90% of the COVID-
19 classification model. Rajpurkar P et al. [15] considered 
the X-ray information of AIDS patients, using deep learn-
ing to help improve the diagnosis rate of tuberculosis in 
AIDS patients, with an accuracy rate of 79%. The only 
data used in this study were the original X-ray images; 
it lacked important textual information such as medi-
cal records. Although some studies explored the deci-
sion support of infectious disease diagnosis in the early 
stage, it is necessary to explore the research direction in 
combination with real text medical records. It is impor-
tant to note that most current studies generally focus on 
a certain type of infectious disease based on image data. 
There are few effective methods for classifying a variety 
of infectious diseases simultaneously.

In this study, MIDDM, a model based on deep learn-
ing, is applied to support decision-making for infectious 
disease diagnosis recommendations. The infectious dis-
eases required by the national health department to be 
reported [2] were selected for multi-classification clinical 
decision-making. The data source was clinical real data, 
covering 20,620 medical records from 2012 to 2020. The 
accuracy of the model is compared with common models 
such as Extreme Gradient Boosting (XGBoost), Bayes-
ian model, Decision tree, and Logistic regression to esti-
mate the prediction accuracy. This study first introduces 
the data used and the corresponding processing meth-
ods, then describes the currently popular models and 
introduces the research and the MIDDM structure. Next, 
the experimental results of the model are displayed and 
analyzed. Finally, we discuss the advantages, characteris-
tics, and shortcomings of this study.

Materials and methods
Study design
In this study, patients admitted from 2012 to 2020 at 
a large general hospital were selected as the research 
object. First, we applied a quality control process to 
review the qualification of EHRs. Medical records with 
incomplete entries, inconsistent information, or follow-
up medical records were discarded; 407,267 medical 
records remained. The dataset was then filtered accord-
ing to the following inclusion criteria, as shown in Fig. 1: 
(1) The admission department must be the infection-
related department. (2) Data related to non-communica-
ble diseases is filtered out. (3) Other infectious diseases 
and non-infectious infectious sub diseases are filtered 
out. After screening, 20,620 medical records met the cri-
teria, with the average age being 43.52 years old. 47.95% 
were men and 52.05% were women.
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Data
The diagnosis of infectious diseases requires patient 
medical records containing a variety of detailed infor-
mation. In this study, the medical records were mainly 
obtained from the Medical Data Center of Peking Uni-
versity Third Hospital. Owing to the paucity of patients 
with infectious diseases, data from the outpatient and 
emergency department and the inpatient department are 
combined to expand the dataset. Data is extracted from 
unstructured electronic medical records (EMRs). As this 
data lacks uniformity, it should be processed in multiple 
steps before training the diagnosis model. For example, 
the alias and subclass names of the features and diseases 
used in the data are replaced by the Knowledge Base. We 
use regular expressions and natural language process-
ing (NLP) methods to generate features. Then the train-
ing data are structured and vectorized. A wide variety of 
information that has an important impact on infectious 

diseases is considered. Table  1 presents the data used 
in the training model. Medicine diagnosis is used as the 
label of the sample, and the remaining extracted data is 
used as the input feature of the model. The data includes 
five kinds of documents, i.e., patient personal informa-
tion, outpatient records, admission records, laboratory 
test reports, and examination reports.

Unstructured data processing
The EMRs contains comprehensive, detailed, and accu-
rate personal health information of patients. We deeply 
analyze and mine the information in the EMRs to obtain 
a large amount of potential information. However, in 
addition to the structured data such as medical labora-
tory results, unstructured free text data accounts for a 
large proportion of data in the EMRs. There are various 
ambiguities and potential polysemy in the free text in all 

Fig. 1  Flowchart of enrolment

Table 1  Key information extracted from medical records

Target information class Specific extraction

Patient information Age, gender, visiting time

Physical examination Temperature, blood pressure, pulse, respiratory rate

Symptom Diagnosis, symptom

Medical history Main complaint, history of present illness, anamne-
sis, medication

Medical laboratory examination Name of item, results

Examination reports Name of examination item, results, value range
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areas. Model training usually finds it difficult to under-
stand and use unstructured data. NLP can effectively 
transform these data into structured data that can be rec-
ognized by the model, which is the basis for construct-
ing the model of infectious disease auxiliary diagnosis 
[16]. Sequence labeling is one of the core tasks in NLP 
for extracting information and mining deep semantics, 
including word tagging, named entity recognition, key-
word extraction, and word meaning. The sequence anno-
tation of EMRs can extract entities including diseases, 
symptoms, drugs, laboratory examinations, and the rela-
tionship between entities. This study is based on the cur-
rent open-source method BiLSTM-CRF network [17], 
which performs sequence annotation well. Combined 
with the rule model and other methods, we use BiLSTM-
CRF to realize the information extraction of the original 
EMRs. First, we input the serialized text after performing 
word segmentation into the BiLSTM layer, after which 
the forward and backward hidden state results are com-
bined to generate the output of BiLSTM [18, 19]. Then, 
the output of BiLSTM is sent to CRF as the input, form-
ing a BiLSTM CRF network structure [20]. This structure 
combines the advantages of BiLSTM and CRF, based on 
the bidirectional LSTM component so that it can effec-
tively keep the information before and after the whole 

sentence [21] and extract the feature information in the 
sentence. With the help of the CRF layer, it can effectively 
learn the constraint information in the learning corpus 
and improve the accuracy of information extraction, as 
shown in Fig. 2.

Next, the extraction results of BiLSTM and CRF are 
stored in the database. At this time, the patient’s medi-
cal record data is transformed from free text into struc-
tured field feature data. To use structured data to train 
models, we also need to process them via feature engi-
neering, so that the field data can be input into the deep 
learning model. The discrete and continuous numeri-
cal features in the data are processed. For continuous 
numerical features, such as body temperature, diastolic 
blood pressure, and systolic blood pressure, abnormal 
values shall be processed first, and those significantly 
deviating from the normal value range shall be filtered 
out. Then, in order to eliminate the adverse effects of 
different dimensions between different features on 
model training, the continuous features will be normal-
ized to the range [0,1]. For discrete features, such as 
gender, symptoms, and past diseases, the name is first 
standardized, and entity aliases such as symptoms, dis-
eases, and signs are then replaced with standard names. 
In addition, the feature name and its chapter name shall 

Fig. 2  Sequence labeling of current case history based on BiLSTM-CRF model (English and Chinese)
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be spliced. Different chapters in the medical record may 
contain the same entity information, but they have dif-
ferent medical meanings in medicine. For example, the 
name of the symptoms in the main complaint is the 
same as that at the time node in the current medical 
history, but one represents the current main symptoms 
while the other represents the symptoms that have 
appeared before, i.e., the past history. Therefore, we 
need to splice feature names based on chapters, such as 
"main complaint"_ "Femoral neck fracture" and "previ-
ous history"_ Femoral neck fracture ". Finally, one-hot 
coding is conducted to represent the original category 
features with 0/1 in high-dimensional space. Table  2 
presents the data after word segmentation converts it 
into a feature; a value of 1 indicates that it has this fea-
ture, while 0 indicates that it does not have this feature.

After processing continuous and discrete features, 
395,950 dimensional features are obtained as model 
input data, including patient personal information hav-
ing 2-dimensional characteristics (gender and age). 
The outpatient records and admission records contain 
354,589 dimensional characteristics. The laboratory 
test reports contain 1742 dimensional characteristics. 
Examination reports contain 39,619 dimensional fea-
tures. In addition, the training label of the sample is 
obtained by diagnosis through one-hot coding. After 
the above processes, a total of 20,620 samples were 
obtained. The number of samples of each infectious 
disease category is listed in Table 3.

It can be seen from Table 3 that there is an imbalance 
in the number of samples in this multi-category data. 
In order to alleviate the impact of data imbalance on 
the model results, this study adopts multiple sampling 
of a few samples and category weight measures. Among 

them, multiple sampling involves random sampling 1.5 
times and random sampling 2 times for measles and 
infectious diarrhea, respectively. After sampling, the 
number of infectious diarrhea samples increased to 
1095 and the number of measles samples increased to 
540.

Category weight is added to make the category with 
fewer samples have higher calculation weight and get 
more learning in model training. wk represents the 
weight of class k, Nall represents the total number of 
samples in the dataset, C represents the total number 
of categories (C = 7 in this experiment), and Nk repre-
sents the number of samples in category K. When the 
weight is not changed, the weight of each category is 
1
C  of the average attention. We assume that the calcula-
tion formula of the weight satisfies:

Category weight × Proportion of category samples in 
the total dataset = Average attention

Model
The classification machine learning method is usually 
used for the diagnosis of infectious diseases. Under the 
current multi-classification task of simultaneous diag-
nosis of multiple infectious diseases, we also considered 
using the classification machine learning method. With 
a two-class machine learning model, we use a multi-
classification strategy (such as One-VS-Rest strategy) 
to transform it into a multi-class architecture.

Logistic regression model
Logistic regression model is a binary classification 
algorithm based on the combination of linear regres-
sion model and sigmoid activation function [22]. The 
model has a simple structure. Compared with the deep 
neural network, the logistic regression model only 
has a single-layer weight, so its weight can be under-
stood well [23]. The value range of the model output is 
within [0, 1], which can be regarded as the probability 
of belonging to a certain class. In the infectious dis-
ease diagnosis task for this research, we use strategies 

(1)wk =
Nall

C · Nk

Table 2  Data transformed into features after NLP word 
segmentation

Case 
number

Main 
complaint_ 
Femoral 
neck 
fracture 
pain

Past 
history_ 
Femoral 
neck 
fracture

Main 
complaint_ 
Symptoms_ 
Chest pain

Main 
complaint_ 
Symptoms_ 
fever

Temperature

1 1 0 1 1 0.91

2 0 1 0 1 0.89

Table 3  Number of samples of each infectious disease category

Infectious disease category Viral hepatitis Influenza Hand foot and mouth 
disease

Tuberculosis Syphilis Infectious diarrhea Measles

Number of samples 3663 5007 3616 5834 1500 730 270
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such as One-VS-One or One-VS-Rest to transform the 
binary classification model into a multi-class prediction 
architecture.

Multiple infectious disease diagnostic model (MIDDM)
The basic structure of the multi-class neural network has 
an input layer, hidden layer, and output layer [24]. When 
the neural network is applied to multi-classification 
tasks, the softmax function should be used as the activa-
tion function in the final output layer, so that the model 
can calculate the classification probabilities of multiple 
categories simultaneously, with the category with the 
highest probability being the final diagnosis output [25]. 
In this study, a multiple infectious disease diagnostic 
model (MIDDM) was constructed for a variety of com-
mon infectious diseases. Figure  3 shows the structure 
of the MIDDM. Owing to high-dimensional sparse data 
(that is, data with more 0 values), the computational 
complexity in training is relatively high and the model is 
difficult to optimize [26]. Therefore, it is necessary to use 
the method to compress the data and extract the features. 

Given the large amount of sparse data in medical data, 
MIDDM introduces the auto-encoder deep learning 
model [27] and uses unsupervised learning [28,  29] to 
perform efficient feature extraction and feature represen-
tation on high-dimensional data. The auto-encoder can 
be used to densify sparse data so that the model is eas-
ier to train and achieves better results. In the optimiza-
tion process, the Auto-Encoder does not need to use the 
infectious disease category to which the sample belongs 
as the label, but learns the characteristics of the sample as 
the input of the neural network and the label of the model 
concurrently. By minimizing the reconstruction error, it 
learns the abstract characteristics of the sample to repre-
sent the Z vector (the output vector of the middle hidden 
layer). The structure of the Auto-Encoder model applied 
in this study is shown in Fig.  4, which mainly includes 
encoder, decoder, and hidden layer. Encoder and decoder 
both contain two-layer neural networks. The number of 
neurons in the two-layer network of encoder ranges from 
more to less. By contrast, the hidden layer in the middle 
has only a single neural network. The auto-encoder first 

Fig. 3  Multiple infectious disease diagnostic model structure



Page 7 of 13Wang et al. BMC Medical Informatics and Decision Making           (2022) 22:41 	

compresses the original high-dimensional sparse vector 
to the low-dimensional hidden layer through the encoder 
neural network, and then restores the output of the hid-
den layer to the original feature dimension through the 
decoder. The smaller the loss between the final model 
output and the original feature calculation, indicating 
that the smaller the information lost in the process of 
compressing to the hidden layer, the more accurately the 
hidden layer can represent the original feature. After the 
pre-training of the auto-encoder, the decoder part in the 
model is deleted, and the Z vector output from the hid-
den layer is directly used as the dense representation of 
the original features and input into the subsequent clas-
sification model. Given that different medical records 
contain different types and numbers of features, we con-
struct different auto-encoder models for different records 
in the process of densification, so as to obtain their own 
more effective abstract feature expressions. Specifically, 
the number of neurons in the two layers of the encoder 
is 4096 and 2048 respectively; the number of neurons in 
the hidden layer is 1024; the number of neurons in the 
two layers of the decoder is 2048 and 4096 respectively, 
and finally the 4096 dimension of the decoder output 
is mapped back to the input feature dimension and the 
input data to calculate the loss. According to the model 
structure, two auto-encoders are trained, one each for 
outpatient data/admission record and inspection report. 
Finally, each auto-encoder takes the 1024 hidden layer 
output as the dense vector representation of the original 
high-dimensional sparse data and inputs it into the sub-
sequent self-attention module.

Next, the decoder part of the auto-encoder is deleted 
after training, and the remaining structure is combined 
with the self-attention module. Specifically, the dense 
data output by the hidden layer in the two auto-encoders 

are combined with the coding vector containing the 
patient’s personal information, with a total of 2050 
dimensional features. Before being input to the subse-
quent classification structure, the merged vectors are 
normalized by the layer normalization method. Finally, 
the results are input into the self-attention module. The 
dense vectors obtained from different documents after 
different auto-encoders do not belong to the same feature 
value space. Layer normalization is used to normalize 
the entire vector to reduce the impact of the above-men-
tioned issues on the training results. Self-attention and 
residual learning are mainly introduced in the calculation 
structure of MIDDM. The dense vector and result after 
self-attention calculation are added and then the result of 
the addition and the result after the feed-forward calcula-
tion are directly summed. The model finally uses softmax 
as the activation function to output the respective prob-
abilities of multiple infectious diseases, so as to complete 
the simultaneous classification of multiple infectious 
diseases.

Effect evaluation
The MIDDM model predicts that the first diagnosis is 
correct if it is consistent with the patient’s clinical diag-
nosis; otherwise, it is incorrect. According to medical 
safety management requirements, infectious diseases 
are different from other non-communicable diseases and 
are managed separately. Therefore, the diagnostic accu-
racy of infectious diseases does not consider the order of 
diagnosis.

The confusion matrix predicted by the multi-classifica-
tion model is presented in Table  4 (three categories are 
listed as examples).
TPk represents the number of samples whose real 

label is k for which the model predicts k; Ek ,i represents 
the number of samples whose real label is k for which 
the model predicts i; C represents the total number of 
categories of multiple classifications. According to the 
definition of the multi-classification confusion matrix, 
the overall prediction performance and accuracy of the 
model are evaluated. The specific formula is:

Fig. 4  Auto-encoder model structure and hidden layer output Z 
vector

Table 4  Confusion matrix predicted by the multi-classification 
model

Real label Prediction results

Class 1 Class 2 Class 3

Class 1 TP1 E1,2 E1,3

Class 2 E2,1 TP2 E2,3

Class 3 E3,1 E3,2 TP3
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In order to more comprehensively improve the predic-
tion performance of the multi-classification model, preci-
sion and recall are used for evaluation.

Results
This section introduces the results of the classifica-
tion study using the MIDDM for the diagnosis of multi-
ple infectious diseases. All data used in the experiment 
comes from the actual medical records of hospitals. 
First, the infectious disease data is used to filter the nor-
malized infectious disease names and then screen out 
the sub-diseases that are not infectious under the sub-
categories of tuberculosis. For example, thyroid tuber-
culosis and renal tuberculosis, which appear under the 
sub-category of tuberculosis, are not infectious. Next, 
in order to ensure the balance of the data used in the 
training model and the testability of the model’s predic-
tive ability, infectious diseases with fewer than 10 cases 
per quarter were eliminated. Finally, seven infectious 
diseases were predicted and verified. In order to make 
the input data for the MIDDM for training, we use the 
word segmentation and entity recognition method 

(2)Accuracy=

∑C
k TPk

∑C
k TPk +

∑C
k

∑C
i �=k Ek ,i

× 100%

(3)Pr ecisionk=
TPk

TPk +
∑C

i �=k Ei,k

(4)Recallk=
TPk

TPk +
∑C

i �=k Ek ,i

realized using NLP technology to extract the features 
of infectious disease records and transform the format 
through One-Hot Encoding. Finally, we obtain 20,620 
samples of high-quality medical records, which can be 
used for research. Training data, consisting of 16,496 
samples, accounts for 80%, while test data, consisting of 
4124 samples, accounts for 20%. MIDDM compresses 
the 395,936-dimensional sparse data into a 1024-dimen-
sional dense vector through the auto-encoder with 1024 
neurons in the abstraction layer. The number of feed-for-
ward neurons in the classification structure is 256. In this 
study, 32 epochs were trained on the model with a learn-
ing rate of 0.001. In the process, only the model with the 
smallest loss of the test set is retained, and the training 
is stopped when the loss exceeds 10 epochs. The num-
ber of effective training epochs is 32. In addition, we also 
compared auto-encoders with different numbers of hid-
den layer neurons, which are 256, 512, 1024, 2048, and 
4096 respectively. The results in Table  5 represent that 
the number of hidden-layer neurons increases from 256 
to 1024, and the subsequent multi-classification results 
are improved. However, when the number of neurons 
is more than 1024, the accuracy of the model does not 
improve noticeably. Considering the model size, calcula-
tion efficiency, and subsequent practical deployment and 
application, 1024 is finally selected as the optimal num-
ber of hidden layer neurons.

Via the experiment, it is found that because the goal of 
the model is to solve the multi-classification task of pre-
dicting all categories simultaneously, it is equivalent to 
training the same number of epochs for the prediction 
of all categories, which is more vulnerable to the unbal-
anced number of category samples. In order to alleviate 
the problem of unbalanced samples, the measures of cat-
egory weight and multiple sampling for categories hav-
ing a small number of samples are added in this study. 
Finally, the overall prediction accuracy of all infectious 
diseases in the test set is 89.52%. The respective results of 
each infectious disease are presented in Table 6.

Table 5  Final model prediction results after auto-encoder pre-
training with various numbers of neurons

Number of neurons 256 512 1024 2048 4096

Test set accuracy 82.71% 86.03% 89.52% 89.74% 89.67%

Table 6  Training and test results for MIDDM

Infectious disease Number of 
training samples

Training 
accuracy (%)

Number of test 
samples

Testing recall (%) Testing 
precision (%)

F1-score

Viral hepatitis 2954 99.86 709 99.44 87.04 0.8704

Influenza 3924 98.47 1083 95.38 91.42 0.9142

Hand foot and mouth disease 3015 97.31 601 95.17 88.82 0.8882

Tuberculosis 4630 95.01 1204 86.88 94.66 0.9466

Syphilis 1208 83.03 292 72.60 89.45 0.8945

Infectious diarrhea 575 87.30 155 60.65 72.31 0.7231

Measles 190 42.11 80 37.50 44.12 0.4412
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It can be seen from Table 6 that MIDDM has achieved 
better prediction results in the diagnosis experiment for 
various kinds of infectious diseases. In the case of simi-
lar diseases, characteristics used for diagnosis are simi-
lar and the category weight is adjusted. The prediction 
accuracy of disease classification with more sample data 
is significantly better than the prediction accuracy of dis-
ease classification with fewer sample data. For example, 
the training data for viral hepatitis, influenza, and hand 
foot and mouth disease were 2954, 3924, and 3015 cases 
respectively, and the corresponding test recall rates were 
99.44%, 95.38%, and 95.17%. By contrast, syphilis, infec-
tious diarrhea, and measles have less training data, i.e., 
1,208, 575, and 190, and the corresponding test recall 
rates are 72.60%, 60.65%, and 37.50%, respectively. The 
increase of the interference factors of the disease diag-
nosis feature also directly affects the prediction accuracy 
rate. For example, the sample size of tuberculosis is 4630 
and the prediction accuracy rate is 86.88%. For the clas-
sification results of tuberculosis, although the sample size 
is up to 4630, the result is not significantly better than 
that of viral hepatitis with the sample size of 2954. The 
main reason is that tuberculosis has similar symptoms 

to many other diseases, such as lung cancer, pneumonia, 
and chronic obstructive pulmonary disease. Further-
more, tuberculosis also involves multiple variations such 
as positive and negative etiology, and the clinical diagno-
sis of tuberculosis is also more complicated than that of 
viral hepatitis, influenza, and other diseases. However, 
for infectious diseases with a very small amount of data 
such as measles, the characteristics of infectious diseases 
cannot be fully learned during training and the accuracy 
of the training set is low; therefore, the accuracy of the 
test set is also low and the model cannot be widely veri-
fied using a small test set. For diseases with fewer data 
samples, the amount of data needs to be increased to fur-
ther prove the effectiveness of the model. Figure 5 shows 
the recall of the diagnosis and classification of the corre-
sponding model for each infectious disease when there 
are different numbers of training samples.

Discussion
Performance of different NLP models
In information extraction, we compare the traditional 
machine learning models CRF, HMM and deep learn-
ing models LSTM-CRF and BiLSTM-CRF. The model is 

Fig. 5  Relationship between the diagnostic recall of infectious diseases and the number of samples

Table 7  Recognition accuracy and recall rate of five types of entities (%)

CRF++ is an open source implementation tool for CRF. It is essentially a CRF algorithm. It is the CRF tool with the best comprehensive performance at present

Model Disease diagnosis Symptom Medicine Laboratory test Imaging 
examination

Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall

HMM 71.4 78.0 77.9 84.5 69.8 72.6 86.3 88.7 80.6 88.2

CRF++ 69.7 79.2 78.1 80.5 77.2 84.6 89.6 90.8 80.2 78.8

LSTM-CRF 85.3 87.5 81.8 87.8 82.5 91.2 90.2 91.5 89.6 88.5

BiLSTM-CRF 88.4 90.1 87.5 87.8 91.8 90.6 91.2 92.6 95.3 94.1
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applied to the identification of 20,620 electronic medical 
record data with five types of entity labels: disease diag-
nosis, symptom, medicine, laboratory test, and imaging 
examination. Training data, consisting of 16,496 samples, 
accounts for 80%, while test data, consisting of 4124 sam-
ples, accounts for 20%. After training, the comparison 
conclusion is presented in Tables 7 and 8.

Overall, the deep learning model performs better than 
the traditional machine learning model. The F1-score of 
BiLSTM-CRF model is 90.9% on average in five types of 
entities, which is better than 87.5% of LSTM-CRF model, 
especially in imaging examination entity. Thus, it can be 
seen that the two-way LSTM structure better identifies 
the entity boundary.

Table 8  F1-socre of five types of entity recognition (%)

Model Disease diagnosis Symptom Medicine Laboratory test Imaging 
examination

Average

F1-score F1-score F1-score F1-score F1-score F1-score

HMM 74.6 81.1 71.2 87.5 84.2 79.7

CRF +  +  74.1 79.3 80.7 90.2 79.5 80.5

LSTM-CRF 86.4 84.7 86.6 90.8 89.0 87.5

BiLSTM-CRF 89.2 87.6 91.2 91.9 94.7 90.9

Fig. 6  Work flow

Table 9  Comparison of the accuracy of infectious disease diagnosis between MIDDM and other models

Infectious disease MIDDM (%) XGBoost (%) Decision tree (%) Bayesian (%) Logistic 
regression 
(%)

Viral hepatitis 99.44 96.19 90.13 85.19 91.26

Influenza 95.38 91.51 89.47 82.27 90.49

Hand foot and mouth disease 95.17 90.03 88.29 84.44 85.49

Tuberculosis 86.88 83.08 80.21 76.29 82.31

Syphilis 72.60 70.75 70.28 65.09 68.87

Infectious diarrhea 60.65 56.38 56.38 54.26 56.38

Measles 37.50 36.25 32.50 33.75 35.00
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Performance of different models
MIDDM model is compared with other models used in 
other studies. The process is shown in Fig.  6. With the 
same data source being used, the comparison conclusion 
is presented in Table 9. The MIDDM model is superior to 
other models in terms of the multi-classification of infec-
tious diseases. Even for tuberculosis, which is difficult to 
partition, the MIDDM model is also significantly better 
than other methods. This indicates the superiority of the 
model in the multi-classification of unstructured medical 
records of infectious diseases.

This study also analyzes the reasons for the perfor-
mance of different models. The Bayesian model is a sta-
tistical model that predicts by calculating feature and 
label conditional probabilities. The calculation theory 
of the model is simple but its simplicity also restricts its 
performance in classification tasks. We set the Laplacian 
Smoothing to 1e−9. In addition, the application of the 
Bayesian model must meet the assumption of conditional 
independence among various features and the high-
dimensional medical records data used in the current 
research cannot meet the above assumptions. Therefore, 
it is difficult for the Bayesian model to have better classifi-
cation results than MIDDM. A decision tree is a common 
classic machine learning model. It has strong interpret-
ability and can process data with missing features. How-
ever, this model is prone to overfitting. Furthermore, 
owing to attribute division based on information gain, 
different judgment criteria will produce different attrib-
ute selection tendencies. The decision tree model used 
for comparison uses the Gini coefficient [30] as the node 
judgment algorithm. In order to prevent overfitting, the 
maximum depth is 5 and the minimum number of leaf 
node samples is 2. In the research of multi-classification 
of infectious diseases, there are differences in the amount 
of data of each category and the number of attribute 
features, which does not allow the decision tree model 
full play to its advantages when working on the current 
data. XGBoost is an improved model with better pre-
diction performance and has been more widely used 
in recent years. The model uses a tree model as a base 
model, simultaneously applies the first derivative and the 
second derivative, and approximates the training model 
by learning residuals. We set the maximum depth of 
the XGBoost tree as 6, learning rate as 0.05, alpha value 
as 0.01, and gamma value as 0.05 in the experiment. 
Although the XGBoost model can achieve better classi-
fication performance [31], it finds it difficult to achieve 
fast model iteration and optimization. In order to deal 
with the high-dimensional sparse medical data used in 
current multi-classification tasks, this study proposes the 
MIDDM deep learning model. This model can construct 

different auto-encoders for different document data. It 
also performs abstract and dense representation of high-
dimensional sparse features while independently retain-
ing the original feature information of each document. 
Following that, self-attention, residual learning, and feed-
forward neural network constitute the core structure of 
classification. Finally, the softmax layer is used to weight 
the multi-classification results. This model alleviates the 
adverse effects of high-dimensional sparse data and has 
strong generalization capabilities while having excellent 
fitting capabilities.

Practical significance of MIDDM
Before having the MIDDM model to assist in the diag-
nosis of clinical infectious diseases, doctors needed to 
diagnose infectious diseases based on their experience. In 
actual medical scenarios, most infectious diseases do not 
have designated clinics and are companion diagnoses of 
other diseases. Through MIDDM, doctors can be notified 
as soon as possible and the patient can be contacted for 
diagnosis or follow-up diagnosis of infectious diseases, so 
as to prevent the spread of infectious diseases in society.

Limitations
In hospitals, some infectious diseases are rare, such 
as cholera and plague. For these rare diseases, it is dif-
ficult to learn from the existing data of the hospital, so 
we use standard diagnosis and treatment guidelines for 
infectious diseases classification [32]. When the medi-
cal record content triggers the rule, it can be reminded 
of infectious diseases. This study also has some limita-
tions. First, owing to the quality of medical records and 
other factors, the amount of infectious disease data used 
in this study is small, accounting for only 10.1%. Second, 
this study did not consider the national adjustments to 
the diagnostic criteria for infectious diseases from 2016 
to 2021, which prompted a significant difference between 
physicians’ initial medical records and the lab reports, 
which led to the accuracy of the model input features 
being unstable. For example, in order to facilitate moni-
toring, changes were made to the medical history collec-
tion of influenza after COVID-19, resulting in changes 
in model input features. Third, this research is mainly 
aimed at one hospital and its collaborative institutions in 
Beijing, China. The incidence of some infectious diseases 
is low and the data samples are not enough to support 
MIDDM training and verification. Therefore, for infec-
tious diseases such as brucellosis and echinococcosis that 
have an extremely low incidence, there may be a certain 
gap between the coverage of infectious diseases within 
the scope of our study and within other regions in China.
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Conclusions
This research is based on the real infectious medical 
records of the hospital and establishes a basic data-
set through data collection throughout the course 
of various diseases. Using the unsupervised learn-
ing method of an auto-encoder model to extract and 
express the features of high-dimensional data effi-
ciently, and dense the sparse data, so that the model 
is easier to train. In order to improve the performance 
of the MIDDM deep learning model, residual network 
and attention mechanism are introduced. MIDDM 
has achieved better prediction results in the diagno-
sis experiment for several kinds of infectious diseases. 
In the case of similar disease diagnosis characteris-
tics and similar interference factors, the prediction 
accuracy of disease classification with more sample 
data is significantly better than the prediction accu-
racy of disease classification with fewer sample data. 
This study proposes experiments with the MIDDM 
model and other models used in other studies. Tak-
ing viral hepatitis as an example, the accuracy of 
MIDDM is 99.44%, which is significantly higher than 
that of XGBoost (96.19%), decision tree (90.13%), 
Bayesian method (85.19%), and logistic regres-
sion (91.26%). This is true for other diseases as well. 
These findings confirm the role of AI-based assisted 
decision-making for diagnosing infectious diseases 
with improved diagnosis efficiency. It is of consider-
able significance for early screening and early warn-
ing of infectious diseases. Infectious diseases are more 
sensitive than other non-communicable diseases and 
need to be diagnosed with higher accuracy. Therefore, 
in the future, it is necessary to combine the group 
experiment, carry out retrospective research, and cre-
ate early diagnosis plans for uncommon infectious 
diseases.
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