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ABSTRACT

Previous studies on enhancers and their target genes
were largely based on bulk samples that represent
‘average’ regulatory activities from a large popula-
tion of millions of cells, masking the heterogeneity
and important effects from the sub-populations. In
recent years, single-cell sequencing technology has
enabled the profiling of open chromatin accessibil-
ity at the single-cell level (scATAC-seq), which can
be used to annotate the enhancers and promoters
in specific cell types. A comprehensive resource is
highly desirable for exploring how the enhancers
regulate the target genes at the single-cell level.
Hence, we designed a single-cell database scEn-
hancer (http://enhanceratlas.net/scenhancer/), cov-
ering 14 527 776 enhancers and 63 658 600 enhancer-
gene interactions from 1 196 906 single cells across
775 tissue/cell types in three species. An unsuper-
vised learning method was employed to sort and
combine tens or hundreds of single cells in each
tissue/cell type to obtain the consensus enhancers.
In addition, we utilized a cis-regulatory network algo-
rithm to identify the enhancer-gene connections. Fi-
nally, we provided a user-friendly platform with seven
useful modules to search, visualize, and browse the
enhancers/genes. This database will facilitate the re-
search community towards a functional analysis of
enhancers at the single-cell level.

INTRODUCTION

The DNA cis-regulatory elements, such as distal enhancers
and promoters, determine the transcriptional regulation
of tissue/cell type-specific gene expression in development,
embryogenesis, immunity, homeostasis and diseases (1–5).
To date, the annotation for enhancers or super-enhancers
increased rapidly through many large-scale resources, in-
cluding EnhancerAtlas, SEA, Endb, CancerEnD, SEdb,
HACER, RAEdb, HEDD, DiseaseEnhancer, GeneHancer,
DENdb, dbSUPER and VISTA (6–19). These resources an-
notate enhancers from bulk datasets and measured only
average enhancer activities in large populations of cells,
masking the heterogeneity and key effects among and
within the sub-populations (e.g. sub-cell types) contain-
ing small numbers of cells (3,20–22) (Supplementary Fig-
ure S1). Since enhancers are tissue/cell type-specific, en-
hancer identification based on the single-cell level can bet-
ter reveal the cellular specificity to determine the differ-
ences of gene expression on phenotypes across tissue/cell
types (23,24). Therefore, single-cell resources are ideal for
exploring how the enhancers regulate the target genes
at ultra-high resolution in an accurate cell type-specific
manner.

Assay of Transposase-Accessible Chromatin using se-
quencing (ATAC-seq) is a powerful tool for epigenomic
profiling of cell type-specific chromatin accessibility (25).
It was reported that at least 50% and around 25% of
the bulk ATAC-seq peaks fell into the enhancer and pro-
moter regions, respectively (26). Thus, the peaks called from
ATAC-seq mainly represent cis-regulatory elements, includ-
ing enhancers and promoters, and can be used to annotate
tissue/cell type-specific enhancers or promoters (22,27,28).
At the single-cell level, scATAC-seq studies have been
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widely applied to identify cell type-specific enhancers or
enhancer–promoter interactions (1,3,4,29–34). Especially,
accessible sites in the human genome identified by scATAC-
seq displayed a high overlap with 75% of experimentally val-
idated active enhancers in VISTA (3,9). Using the Graphi-
cal LASSO, a single-cell cis-regulatory network algorithm,
Cicero, was developed (33) and enabled identification of
genome-wide enhancer–promoter connections on a large
scale (1,3,4,29–32,34). For example, Domcke et al utilized
Cicero to identify 6.3 million unique pairs of cis-regulatory
elements in 54 human cell types (3). These indicate that
scATAC-seq may be an ideal single-cell sequencing tech-
nique for annotating enhancers and enhancer–promoter in-
teractions.

Here, we constructed a single-cell enhancer database,
scEnhancer, based on an improved unsupervised learn-
ing approach previously developed in our bulk enhancer
database, EnhancerAtlas 2.0 (6). This method was used to
integrate many genomic datasets to derive a consensus an-
notation of enhancers. It displayed several characteristics:
(i) it was based on a well-designed score voting strategy
for ranking and combining a large set of unlabelled data
(7,35); (ii) we replaced the Pearson correlation with the Jac-
card index, which was appropriate for the binary nature
of scATAC-seq data, for computing similarity among all
single-cell datasets (36); (iii) in contrast to the only 12 in-
dependent high-throughput datasets used in EnhancerAt-
las 2.0, the new method could process tens or hundreds
of single-cell datasets with different qualities as measured
by the average number of fragments per cell; (iv) the Ci-
cero results were used as a filtering condition for identifi-
cation of the final single-cell enhancers (33). We also lever-
aged Cicero to generate enhancer–promoter connections of
high quality (1,3,4,29–32,34). In some aspects, as a compre-
hensive single-cell enhancer resource, scEnhancer possesses
tremendous advantages: (i) it has profiled 1 196 906 single
cells and annotated a total of 14 527 776 enhancers in 775
tissue/cell types across three species; (ii) a suitable combi-
nation of an improved unsupervised learning method and a
cis-network algorithm was applied to identify the enhancers
and enhancer-gene interactions and (iii) a user-friendly plat-
form with seven functional modules and the browser op-
tions were designed for searching, visualizing, drawing, and
browsing enhancer or enhancer–promoter profiles. These
will facilitate the analysis of enhancers at the single-cell level
for the research community.

MATERIALS AND METHODS

Single-cell data collection and integration

To identify single-cell enhancers, we collected raw or pro-
cessed (e.g. by cellranger) single-cell datasets with peak and
tissue/cell-type annotations from several scATAC-seq re-
sources, including the NCBI GEO datasets (37), Signac
analysis with 10X Genomics data (38), DESCARTES (3),
LungMap (39), Mouse sci-ATAC-seq Atlas (4), Fly ATAC
Atlas (1) and MPAL-Single-Cell-2019 (29). All the samples
in human, mouse, and fly were mapped to genome builds
GRCh37/hg19, GRCm37/mm9 and BDGP5/dm3, respec-
tively, by liftOver (40).

Integration of tissue/cell-type specific binary matrix

To obtain the tissue/cell-type specific binary matrix, we
first converted the processed or raw scATAC-seq data into
a large standard matrix with labelled cell types. In most
scATAC-seq projects, the single-cell data are usually pre-
sented in many file formats, such as MatrixMarket (4), h5
(38), txt (41), RangedSummarizedExperiment (42), Seu-
rat RDS (3), or even the raw fastq files (43). Here, we
used the functions in R language and cellranger-atac 1.2.0
(30) to transform these different formats of single-cell data
into large standard matrices for the subsequent extrac-
tion of small cell-type specific matrices (Supplementary Ta-
ble S1). Data in MatrixMarket or h5 formats were trans-
formed into the standard matrix via ‘Matrix::readMM’ and
‘Read10X h5’ in Signac (38) while the txt datasets could
be read as data.frame and then converted into the ma-
trices. For the RangedSummarizedExperiment dataset, we
first parsed its R structure to obtain the matrix, peaks, cell
barcodes and cell type annotations from its ‘assay’, ‘col-
names’, ‘colData’, ‘rowRanges’ slots (42). Analogously, we
parsed the dataset in Seurat RDS and extracted the matrix
with peak, barcode, and cell type information from the slots
‘GetAssayData’, ‘assays RNA/peaks’ and ‘meta.data’, re-
spectively (3). The raw fastq single-cell datasets could be
transformed into a large standard matrix by cellranger-atac
(30) that processes peak and cell callings into MatrixMar-
ket or h5 formats (43). Finally, we removed the irregular
datasets with fewer than 200 peaks. Signac and cellranger-
atac tools can be downloaded and installed from: https://
satijalab.org/signac/ and https://support.10xgenomics.com/
single-cell-atac/software/downloads/1.2.

After integrating the large standard matrix containing
barcodes of all mixed cell types, we extracted cell-type spe-
cific single-cell datasets from the matrix based on the cell
type annotation information in the metadata. To make the
single-cell datasets comparable, we binarized them to nor-
malize each dataset. In each dataset, the peak signal was
set to ‘1’ (‘open’) for at least one read and ‘0’ (‘closed’)
otherwise in the absence of reads (36). Thus, all the single-
cell datasets for one tissue/cell type were merged and con-
solidated into a binary cell-type matrix. In this cell-type
matrix, single cells (i.e. columns) with less than 200 peaks
(i.e. rows) were removed, as well as the peaks without any
signal in all single cells or in uncommon chromosomes (e.g.
chr1 random). We also removed the cell types with <50 sin-
gle cells. Genomic coordinates of peaks with other genome
builds in human and mouse were converted by liftOver to
GRCh37/hg19 and GRCm37/mm9, respectively (40).

Generation of consensus single-cell enhancers

We designed an improved unsupervised method to iden-
tify the bulk consensus enhancers from 12 types of inde-
pendent datasets in EnhancerAtlas 2.0 (6). Here, we mod-
ified the method to determine the weights of hundreds of
single-cells and combine them to generate consensus single-
cell enhancers. On average, there were hundreds of single
cells per cell type in our integrated data (Table 1). For these
datasets we hypothesized that one dataset was high-quality
if it was highly correlated with the other datasets and low-
quality otherwise (7). Since single-cell datasets are binary,
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to weigh more on the ‘open’ peaks across the whole genome
rather than the ‘close’ peaks, we applied the Jaccard coeffi-
cient that had been used for scATAC-seq clustering analysis
(36,44), to measure the correlation between any two single
cells (e.g. ci and c j ) based on the overlapping degree in open
chromatin regions:

JCi Cj =
∣∣Ci ∩ Cj

∣∣
∣∣Ci ∪ Cj

∣∣ =
∣∣Ci ∩ Cj

∣∣
|Ci | + |Cj |−| Ci ∩ Cj |

where |Ci |, |Cj | and |Ci ∩ Cj | represent the number of
‘open’ peaks in Ci , Cj and their overlap, respectively. For
a cell type with n single-cell datasets, a Jaccard similarity
matrix for all combined datasets was integrated as:

⎡
⎢⎢⎢⎢⎢⎣

JC1C1 · · · JC1Ci

...
...

· · · JC1Cn

...
JCi C1 · · · JCi Ci

...
...

JCnC1 · · · JCnCi

· · · JCi Cn

...
· · · JCnCn

⎤
⎥⎥⎥⎥⎥⎦

Using the Jaccard matrix, we measured the weight of any
single-cell dataset Ci as:

wCi =
∑n

j=1 JCi Cj∑n
j=1,k=1 JCj Ck

( j, k ∈ [1, n] , j �= i, j �= k)

By combining all single cells into one cell type, the signal
score of any consensus single-cell peak i could be defined
as:

Sconsensus (i ) =
n∑

j=1

wCj SCj (i )

where the SCj (i ) represents the signal score of the peak i in
the single-cell dataset Cj .

Furthermore, we removed the single-cell peaks overlap-
ping with promoter or exon regions. We also used the ex-
perimentally validated silencers in SilencerDB (45) as a key
filter to remove the single-cell peaks that overlapped with
silencers. Finally, one consensus single-cell peak should sat-
isfy two the requirements: (i) The signal of single-cell peak
should be larger than 95% of the random signals calculated
by shuffling the peaks in each single cell; (ii) Cicero con-
nection score (≥0.1) is required to display the interaction of
single-cell peak with at least one gene promoter.

To evaluate the accuracy of single-cell enhancers identi-
fied by this approach, we extracted the experimentally val-
idated active enhancers from the VISTA database (9) as
the gold standard. We compared them with bulk enhancers
from the EnhancerAtlas 2.0 (6) in four human tissue/cell
types. For single-cell or bulk enhancers in one cell type, the
ones that overlapped with VISTA enhancers were classi-
fied as the positives while the others remained as the neg-
atives. The sensitivity and specificity of the single-cell or
bulk enhancers were computed on a base pair basis. We
used the area under the receiver operating characteristic
(AROC) to evaluate the performance for single-cell or bulk
enhancers. The results showed that single-cell enhancers in
brain, heart, eye and cranial nerve had much more overlaps
with VISTA enhancers than the ones in bulk enhancers, as

well as an average higher performance measured by AROC
than bulk enhancers (Supplementary Figure S2). This indi-
cated that single-cell enhancers were more accurately anno-
tated than bulk enhancers.

Identification of enhancer–promoter interactions in scATAC-
seq data

To identify the enhancer–promoter interactions in cell
types, we employed the single-cell cis-regulatory net-
work tool, Cicero, which had been widely used in many
scATAC-seq projects to identify all the distal elements (e.g.
enhancers)–promoter connections on a genome-wide basis
(3,4,29–34). Because the scATAC-seq binary data for each
tissue/cell type are extremely sparse, it is difficult to make
accurate estimates of the co-accessibility score of chro-
matin accessibility loci with no normalization of the ma-
trix (33,36). To successfully use Cicero, we transformed the
binary matrix into a term frequency-inverse document fre-
quency (TF-IDF) matrix using the latent semantic indexing
(LSI) method for aggregating similar single cells to obtain
denser counts in each peak (1,4). For each cell type, the bi-
nary count matrix M was converted into TF-IDF matrix as
following:

MTF = t (t (M) /col Sums (M))

I DF = log(1 + ncol (M) /rowSums (M)

MTF−I DF = I DF × MTF

where col Sums(M) and rowSums(M) represent the sum
of each column or row of the matrix M,respectively, while
col(M) is the number of columns in M.

We then performed the Singular Value Decomposition
(SVD) on the transformed TF-IDF matrix to reduce the
dimensionality (1,4). Since the first dimension was highly
correlated with the read depth, only the 2nd to 50th dimen-
sions were passed to UMAP for 2D visualisation. Finally,
Cicero used the UMAP coordinates and normalization ma-
trix as the standard input to calculate the co-accessibility
scores among peaks within a limited distance in DNA by
the Graphical LASSO algorithm. Applying Cicero to each
cell type across the three species with a cut-off of value >0.1,
we annotated 63 658 600 enhancer–promoter connections
involving 4 942 303 promoters, and 14 527 776 enhancers
across 775 tissue/cell types in human, mouse and fly.

Implementation of scEnhancer

We developed a powerful web server, scEnhancer, for single-
cell analysis of enhancers and enhancer–promoter interac-
tions. scEnhancer adopted the Linux CentOS7 with a new
web configuration of nginx (1.20.1)-php (5.4.16)-mySQL
(5.7.34) in a new web configuration to build the website. In
addition, we employed perl (5.16.3) for the fast processing
of text files with large data. Moreover, the HTML5 Can-
vas API and Javascript with a drawing module were uti-
lized together to establish a genome browser for display-
ing enhancer/gene distributions for single-cell or consensus
datasets of tissue/cell types. We also set up a two-handle
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Table 1. The numbers of tissue/cell types, single-cell enhancers, single-cell datasets, average peaks per cell, single-cell promoters and enhancer–gene
interactions for three species

Homo sapiens Mus musculus
Drosophila

melanogaster Total

Tissue/cell types 543 185 47 775
Enhancers 1 13 73 862 26 94 616 4 59 298 1 45 27 776
Single cells 10 47 052 1 30 481 19 373 11 96 906
Average peaks per cell 6212 5371 3427 5003
Promoters 39 05 212 9 42 549 94 542 49 42 303
Enhancer-gene interactions 5 08 61 554 1 14 58 766 13 38 280 6 36 58 600

Figure 1. Simple search options. (A) Searching for single-cell enhancers by the input of a genomic region. (B) Querying for the enhancers around the
input target gene. (C) Searching and comparing the distribution of single-cell enhancers across the selected tissue/cell types. (D) Fixing the target gene
and comparing the enhancers regulating the gene across the selected tissue/cell types. (E) Checking whether the input genomic regions were single-cell
enhancers, promoters or not in known tissue/cell types.

slider in Canvas to scale the genomic regions. Especially, us-
ing several packages including Signac (1.2.1), Seurat (4.0.0),
and ggplot2 (3.3.5) in R language (4.0.3), we successfully de-
signed a powerful module with a function of online plotting
capabilities to graphically display the differences among any
selected group of tissue/cell types by single-cell clustering

analysis. Several useful analytic tools on the homepage were
available for users to compare single-cell enhancers at dif-
ferent levels. The current version of scEnhancer can run in
Windows, Mac and Linux systems and supports common
web browsers such as Google, Safari, Microsoft Edge and
Firefox.
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Figure 2. Advanced search with scATAC-seq enhancer matrix. (A) Browsing all tissue/cell types by clicking on the name or image of that species. (B)
Displaying the differences among selected tissue/cell types by scATAC-seq clustering analysis. (C) Showing the similarities among selected tissue/cell
types by the Jaccard index.

RESULTS

Database statistics

We employed a modified unsupervised learning approach
and the Cicero algorithm to build the single-cell enhancer
resource scEnhancer (Supplementary Figure S3). To date,
scEnhancer has catalogued 775 tissue/cell types, including
14 527 776 consensus single-cell enhancers and 63 658 600
enhancer-gene interactions from 1 196 906 single cells in
three species (Table 1). We overlaid SNPs from GWAS (46)
or TF binding motifs from JASPAR (47) with enhancer re-
gions and found that the single-cell enhancers were much
enriched for SNPs and TF binding sites. We also summa-
rized the number of single cells, enhancers, and enhancer-
gene connections in all tissue/cell types for each species
(Supplementary Tables S2–S4). The integrated cell types
covered many cancers and nearly all tissues in human and
mouse (Supplementary Tables S2 and S3). Most cell types
display high quality with an average of >3000 peaks per cell
(Supplementary Tables S2–S4). The final consensus single-
cell enhancer was determined by the possible functional ev-
idence from enhancer–promoter interactions as defined by
Cicero (33). As more and more cell type-specific marker
genes were identified (48), we will use these marker genes
to confirm the cluster’s cell type in the scATAC-seq cluster-
ing analysis to confirm the cell types of clusters and then
predict single-cell enhancers even when single-cell datasets
are not labeled with cell type information.

Simple search

We designed five user-friendly analytical modules in scEn-
hancer for a simple search of single-cell enhancers (Figure
1): (i) Search for single-cell enhancers by region (Figure 1A).
(ii) Search for single-cell enhancers by a gene (Figure 1B).
(iii) Compare single-cell enhancers from different tissue/cell
types (Figure 1C). (iv) Compare enhancers of a gene in dif-
ferent tissue/cell types (Figure 1D). (v) Predict target genes
in genomic regions at the single-cell level (e.g. peaks from
ChIP-Seq) (Figure 1E). Users can search for the enhancers
by region in any tissue/cell of any species. In each mod-
ule, an ‘Example’ button can facilitate users to give input
in one-step for a simple search. We allowed the gene name
or ID input from several common gene/protein resources,
including Ensembl, EMBL,UCSC, PDB, FlyBase, Ref-
Seq and UniProt (49–55). These modules serve as easy-to-
use web interfaces for users to search, visualize and down-
load single-cell enhancers and enhancer–promoter connec-
tions in any genomic region or any tissue/cell type(s).

Advanced search

We developed two powerful modules with several R
packages as ‘advanced search’ to graphically display the
differences/similarities among cell types or reveal the cell
type specificity of enhancers at the single-cell level: (i)
Display the differences among tissue/cell types by single-
cell enhancer clustering (Figure 2). (ii) Identify tissue/cell
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Figure 3. Identification of cell type-specific single-cell enhancers. (A) A list of cell type-specific enhancers for one cell type against the reference cell types.
(B) Cell type specificities of the top three enhancers using VlnPlot. (C) The feature enrichments of the top three enhancers across all cell types using
FeaturePlot. (D) Heatmap based on the top five single-cell enhancers that distinguish each cell type from the others.

type-specific enhancers at the single-cell level (Figure 3).
To avoid the batch effects to the greatest extent, we as-
signed each tissue/cell type to a batch and compared dif-
ferent tissue/cell types within the same batch. Based on the
equipment or technology platforms, we classified all the cell
types into 10, 8 and 1 batches in human, mouse and fly, re-
spectively.

In the first module, the users can select a group of cell
types of interest in the same batch to observe their dif-
ferences or similarities among them (Figure 2A). Merg-
ing the scATAC-seq matrices of the selected cell types,
the differences among selected tissue/cell types can be dis-
played by DimPlot of Signac (38) (Figure 2B). In ad-
dition, this module can also calculate and present the
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Figure 4. Single-cell enhancer browser. (A) List tissue/cell types by clicking on the name of the species or by clicking on the image of the species (B). (C)
Selecting a tissue/cell type to browse all enhancers. The number in parentheses indicates the number of enhancers in that tissue/cell type. (D) A table of
all the enhancers in the selected tissue/cell type. (E) A summary table describing the available features of the selected enhancer.

similarities among selected tissue/cell types by Jaccard in-
dex (Figure 2C).

To reveal the cell type specificity of single-cell enhancers,
the users can select a batch of interest and a primary cell
type in which specific enhancers were found and select the
reference cell types to compare with (Figure 3). By clicking
on ‘Search’, a list of cell type-specific enhancers will be ob-
tained (Figure 3A). Moreover, the cell-type specificity of the
identified single-cell enhancers can be displayed by partic-
ular analyses, such as VlnPlot, FeaturePlot, and Heatmap
(Figure 3B–D).

Browser of single-cell enhancers

A browser page was provided in scEnhancer for accessing
the single-cell enhancers. By clicking on the species name or
image, the users can browse any tissue/cell type, any chro-

mosome, and any single-cell enhancer, generating a sum-
mary table including the genomic coordinate of the en-
hancer, the contained GWAS SNPs (46), TF binding sites
(47), relative super-enhancers (8), diseases (17) and DNA
sequences (Figure 4).

CONCLUSIONS

scEnhancer is the first database to annotate enhancers or
enhancer–promoter interactions at the single-cell level. It
contains 50 861 554, 11 458 766 and 1 338 280 enhancer–
promoter connections involving 3 905 212, 942 549 and 94
542 promoters, 11 373 862, 2 694 616 and 459 298 enhancers
across 543, 185 and 47 tissue/cell types in human, mouse
and fly, respectively. We believe this is the most comprehen-
sive enhancer database that includes the largest number of
enhancer-related datasets at the single-cell level.
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DATA AVAILABILITY

A webserver with multiple analytic tools and deep browser
capabilities is available at http://www.enhanceratlas.net/
scenhancer and no login is required for all users to
access the website. Tutorials for performing the scEn-
hancer analytic tools are freely provided at http://www.
enhanceratlas.net/scenhancer/help.php. All the data includ-
ing single-cell enhancers, promoters, enhancer–promoter
interactions, SNPs/Motifs in enhancers, and scATAC ma-
trix in tissue/cell types could be downloaded in http://www.
enhanceratlas.net/scenhancer/download.php

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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