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Abstract

The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial.
Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal
heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the
relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that
the degree of response variance is closely correlated with the size of its representational area. Further, we show that the
response variance within a given population is altered through training. These results suggest that larger representational
areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely
to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate
diverse response properties within a neural population.
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Introduction

Functional maps are commonly found in the sensori-motor

cortices in the forms of columnar organizations [1–3]. These maps

are subject to change during associative or skill learning [4–7].

Despite a broad consensus on the existence of plasticity in cortical

organization, the mechanisms by which functional maps and map

plasticity contribute to cortical computation remain controversial.

Learning-induced map plasticity has been interpreted as evidence

that cortical representations encode behaviorally relevant infor-

mation [7–11]. However, several pieces of evidence argue against

the functional significance of columnar organization. First, the

capricious expression of ocular dominance columns suggests that

the cortical column is a structure without any function [12,13].

Second, map plasticity is not always associated with enhanced

perceptual ability [14–16], and is sometimes associated with

deteriorated percepts [17]. Lastly, neural plasticity is transient in

motor and perceptual learning, thereby contradicting the notion

that map plasticity is crucial to learning [18–20]. Thus, it remains

unclear how learning-induced plasticity is related to cortical map

structure.

More recent experiments have demonstrated that map expan-

sion in the auditory cortex improves perceptual learning but is not

necessary for improved performance [21]. Furthermore, we

previously found that the learning-induced map plasticity in the

auditory cortex is dependent on the learning stage. In appetitive

operant conditioning tasks, the tone-responsive area globally

expands during the early stage of learning, but shrinks during the

late stage [22,23]. These findings are reminiscent of neural

Darwinism, which predicts that variation and selection within

neural populations are crucial to cortical computation [4,24,25].

The Darwinian principle may also be supported by recent

reports of heterogeneity among similar computational units. Two-

photon calcium imaging in the auditory cortex has revealed

significant heterogeneity in stimulus encoding among neurons in

close proximity within a single column. Thus, while a tonotopic

map is evident macroscopically, the map exhibits significant

variability within a single column [26,27]. Such heterogeneity

within a column is also consistent with our recent findings that the

degree of variation of stimulus encoding among multi-unit

responses is dependent on tonotopic columns [28]. Furthermore,

learning enhances sparse network coding, which makes the

response properties of individual neurons more distinct from one

another [29]. Thus, a growing body of evidence suggests that

neural Darwinism plays a role in the sensori-motor cortex.

However, experimental proof of whether and how the cortical

map is related to heterogeneity of neurons in Darwinian

computation has not yet been reported. Here, we hypothesize

that response variance within a given computational unit (e.g., a

tonotopic column and functionally delineated field) is closely

associated with the size of the corresponding unit. We tested this

hypothesis by using learning-stage-dependent, field-specific map

plasticity data gathered in the auditory cortex of rats. We

considered two possible outcomes of our data analysis. First,

overrepresentation in the cortical map may be a consequence of

accommodating a heterogeneous population of neurons within a

given functional unit. In this case, response variance among

neurons may increase with the size of the representational area.

Alternatively, overrepresentation may be a sign of redundant

encoding, in which important information is represented by more

neurons than necessary. In this case, response variance may not
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change with learning-induced map plasticity. Our analysis suggests

that the former is the case in the auditory cortex of rats.

Results

The data shown here were partially reported in our previous

study in which we used tones to evaluate map plasticity in

appetitive operant training in the auditory cortices of anesthetized

rats [23]. In the training, rats were rewarded for nose-poking

during the presentation of a conditioned stimulus (CS) of 20-kHz

tone. The rates of both hit and false-positive responses increased

during the early stage of training, while hit responses continued to

increase but false positive responses decreased thereafter. On day

4, the maximum false-positive rate was observed. Both hit and

false positive rates reached asymptotes by day 20. At the

recordings, 8 rats had engaged in the training for 4 consecutive

days (Day 4 group), and 8 other rats underwent training for 20

days or more (Day 20 group). Another 8 rats were assigned to a

non-trained, naı̈ve control group. The total numbers of tone

responsive sites were 838, 965, and 618 in the naı̈ve, Day 4 and

Day 20 groups, respectively.

Conventionally, frequency response areas (FRAs) are charac-

terized to identify the characteristic frequency (CF) at each

recording site and the tonotopic map in the auditory cortex

(Fig. 1a). The tonotopic map is then further divided into multiple

auditory fields on the basis of tonotopic discontinuity, response

latency, and FRA properties (Fig. 1b). These tonotopic maps and

field maps changed dynamically during learning (Fig. 1c).

Such conventional characterization has largely ignored the role

of response variability. Despite having an identical CF, some

multiunit responses show large FRAs (left column in Fig. 1a), while

others show small and uncertain FRAs (right column in Fig. 1a).

To quantify such variability among units, we used mutual

information (MI) to estimate how a discharge rate at a given site

carried information about the frequency of test tones. Qualita-

tively, small and uncertain FRAs tended to result in small MI.

Consistent with the notion of sparse coding in the auditory cortex,

MI was typically small. However, the degree of response variance

was dependent on CF and auditory field (Levene test, p,1.0e-12),

with more units having large MI in high CF regions and A1 (Fig. 2;

Kruskal-Wallis test, p,1.0e-8). Additionally, MI distribution also

depended on the stage of learning (two-sample Kolmogorov-

Smirnov test with Bonferroni correction, p,0.01; Kruskal-Wallis

test, p,1.0e-15; Levene test, p,0.01); multiunit responses with

high MI emerged at day 4, and thus response variation increased,

whereas these high-MI units decreased at day 20. These results

were consistent with the variation and selection process in neural

Darwinism. Consequently, neural representations may become

sparser during the later stages of learning [29].

This MI distribution is likely linked to properties of the

functional map. Irrespective of the learning stage, the variance

of MI was significantly positively correlated with the representa-

tional area delineated by either CF or auditory fields (Fig. 3a; t-

test, p,0.001). This positive correlation between the representa-

tional area and MI variance was not an artifact due to inadequate

sampling (i.e., inadequately small dataset), but is instead caused by

frequency-dependent MI distribution (Fig. 4); there was no

correlation between the representational area and MI variance

in shuffled data, which were randomly resampled irrespective of

any properties (p.0.5). This analysis has excluded the possibility

that IQR increased with the number of samples. Significant

correlation was also observed in the maximum value of MI

(Fig. 3b; p,1.0e-4), but was not obvious in the minimum value

(Fig. 3c) because small MI was commonly observed in all test

groups. Furthermore, the learning-induced changes of represen-

tational area were also positively correlated with those of MI

(Fig. 3d; p,0.05), suggesting that a gain and loss of representa-

tional area are associated with diversification and sparsification of

neural responses, respectively. This result adds compelling

evidence regarding the functional link between the response

variability and representational area because the measure of

learning-induced change is not biased by the delineation of the test

area, i.e., binning of CF and field.

Lastly, for comparison to the MI distribution discussed so far,

Fig. 5 characterizes CF-dependent variance of conventional

properties of neural responses and FRA, i.e., peak firing rate,

peak latency, threshold and bandwidth. All of these parameters

showed CF-dependent distributions. For example, the variance

and median of peak firing rate was dependent on CF (Fig. 5a (i);

Levene test, p,0.001; Kruskal-Wallis test, p,0.01). The peak

latency was shorter in high-CF regions than in low-CF regions

Figure 1. Characterization of neural responses in the auditory
cortex. (a) Representative frequency response area (FRA). Mutual
information (MI) for each unit is indicated in the upper of insets. (b)
Representative functional map in the rat auditory cortex: (i) tonotopic
map; and (ii) auditory field map. The primary, anterior, ventral/
suprarhinal, posterior, dorsal, and antero-ventral auditory fields are
labeled as A1, A, V/SR, P, D, and AV, respectively. (c) Learning-stage-
dependent representational area. Functional maps were quantified in
the naı̈ve group (n = 8) and conditioned groups at the early (day 4;
n = 8) and late stages (day 20; n = 8). The conditioning groups were
rewarded by nose-poking at the presentation of 20-kHz tone.
doi:10.1371/journal.pone.0068705.g001
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(Fig. 5b (i); Kruskal-Wallis test, p,1.0e-17). The threshold was

lower in high-CF regions (40 kHz) than in low-CF regions

(1.3 kHz) (Fig. 5c (i); two-sample Kolmogorov-Smirnov test,

p,1.0e-17). The bandwidth was narrower in high-CF regions

(40 kHz) than in low-CF regions (1.3 kHz) (Fig. 5d (i); two-sample

Kolmogorov-Smirnov test, p,1.0e-5). Additionally, similar to MI

distribution, the variance of peak firing rate was significantly

positively correlated with the representational area delineated by

CF (Fig. 5 a (ii); t-test, p,0.01). However, other parameters did

not significantly correlate with the representational area (Fig. 5 b–

d (ii); p.0.8), indicating that the links between the functional map

and response variance is only found in specific response properties.

Discussion

We have demonstrated that functional maps and plasticity in

the auditory cortex are closely correlated with the variance of MI

and firing rate of neural activity. Within the functional units of

computation (e.g., tonotopic columns and auditory fields), the

degree of response variability is likely to be co-modulated with the

representational area according to training and experience. In

other words, larger representational areas may help to accommo-

date a heterogeneous population of neurons that emit diverse

responses to stimuli. These results suggest that the functional map

plays an important role in implementing Darwinian principles in

cortical computations. Our model is able to account for functional

roles as well as some specific features of cortical map and map

plasticity.

Moreover, except for the peak firing rate, the traditional

response properties such as peak latency, threshold and bandwidth

were not co-modulated with the representational area. This result

was consistent with that of our previous study showing that MI and

these response properties did not show clear correlation [28].

These traditional properties also varied among neurons, but we

had problems interpreting how such variability contributes to the

cortical computation of encoding tones. MI is more interpretable

in terms of encoding because MI is rigorously defined as the

reduction in uncertainty about the stimulus after a single neural

response is observed [30]. Thus, our goal in this study was to

quantify the variability in encoding ability of tone frequency

among neurons and to investigate the link to the size of either

tonotopic column with a given CF or functional auditory fields.

Furthermore, it is worth noting that the variability of MI is caused

by the amount of information conveyed by neurons (i.e., total

entropy) rather than by the transmission efficiency [28]. There-

fore, our model may be generally applicable to encoding of other

stimulus properties beyond tone frequency.

Previous studies have emphasized on the variability of neural

responses among single neurons [26,27]. Considering that

multiunit activities served as a spatially averaging filter of single-

unit activities, the variance of single units should be properly

reflected in the variance of multiunit activities. Thus, we believe

that our results are associated with the heterogeneity of neurons

within a given representational area. Alternatively, the fact that

Figure 2. Distribution of mutual information. (a) Histogram of
entire data: (i) naı̈ve (n = 838); (ii) day 4 (n = 965); and (iii) day 20
(n = 618). (b) CF-dependent distribution. On each box, the central mark
is the median, and the edges of the box are the 25th and 75th
percentiles. The whiskers extend to the most extreme data points
(maximum and minimum values) not considered outliers, which are
larger than the 75th percentiles or smaller than the 25th percentiles by
1.5 times the inter-quartile range. (c) Auditory-field-dependent distri-
bution.
doi:10.1371/journal.pone.0068705.g002

Figure 3. MI distribution on the functional map. (a) Interquartile
range (IQR) of MI with respect to representational area with a given
property: (i) CF; and (ii) Auditory field. The shapes of symbols indicate
the test groups: circle, naı̈ve; triangle, day 4; and square, day 20. R and p
are Pearson’s correlation and its significance level (t-test). (b) Maximum
value of MI. (c) Minimum value of MI. (d) Learning induced changes of
MI IQR (DIQR) and representational area (Darea).
doi:10.1371/journal.pone.0068705.g003
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our hypothesis has been confirmed in multiunit data suggests that

microcircuits within a cortical column rather than single units are

the relevant computational unit. Further investigation is needed to

address these alternative possibilities. Additionally, our findings

should be tested with a more complex stimulus set, including

natural sounds and vocalizations, because the simple stimulus set

of tones used in this study has limited the evaluation of response

heterogeneity, and thus, the actual effect might be larger than that

reported here [31,32].

Empirically, representational areas in the sensori-motor cortices

are likely to increase with their functional importance [1,7,11]. For

example, in the auditory cortex of rats, the ultrasonic, high-

frequency region is wider than the low-frequency region (Fig. 1c),

possibly because ultrasonic sounds are used for vocal communi-

cations [33,34]. Similarly, a larger representational area is devoted

to low frequencies below 10 kHz in the auditory cortex of cats [35]

and monkeys [36], whose vocal communications are mediated

within these lower ranges that are audible to humans. The biased

distributions of functional columns can be taken as experimental

evidence that functional maps represent an adaptive infrastructure

in Darwinian computation, in which heterogeneous neural

responses make computation more efficient.

The response variability, and thus the tone responsive area,

tentatively increased in the early stage of learning and then

decreased in the late stage (Fig. 2c). This is generally consistent

with the expansion then renormalization model based on

Darwinian selection [4,24,25]. The original theory of neural

Darwinism involves selective death of neurons [24]; however, this

is unlikely in our experiments because the size of the tone-

responsive area not only shrank but also expanded during the

learning. Instead, we should assume selective strengthening or

weakening of population of synapses [4,25]. In this model, the

number of neural circuits that respond to task stimuli increases at

the early stage, causing heterogeneous circuits to emerge. The late

stage of learning constitutes selection of the most efficient neural

circuit from the heterogeneous population. By the end of learning,

the useful circuit is stabilized and the cortical map is normalized.

This model is also consistent with recent findings in human studies

that neural plasticity is transient in motor and perceptual learning

[18–20].

We demonstrated that in the early stage of learning, the increase

of response variability is associated with the emergence of large MI

responses, which showed large, robust FRAs. These neural

populations indicate increased responses to task-relevant stimuli.

The most likely mechanism of this transient plasticity is

disinhibition, which unmasks weak excitatory inputs, triggers

Hebbian plasticity, and facilitates global remodeling of cortical

map [37]. Such disinhibition is enabled by the activation of the

cholinergic nucleus basalis, which also induces map expansion that

improves learning [4,21,38–40].

By the end of learning, the cortical network was more

dominated by small MI responses than the naı̈ve cortex,

suggesting that the effect of extended learning goes beyond

renormalization: the learning makes cortical representation

sparser and thus endows the cortical circuits with energy-

efficient encoding [41–43]. This is also supported by a recent 2-

photon imaging study demonstrating that associative learning

enhances sparse population coding, by which the total network

activity decreases [29]. Such modification is likely mediated by

inhibitory synapses, which suppress responses to task-irrelevant

stimuli [38,44,45].

The functional map endows neurons in close proximity with

shared synaptic inputs, but allows for different outputs through

mutually independent computations [26]. Decorrelating neuro-

nal activities from shared inputs is a possible neural underpin-

ning of such computation [46–48]. Thus, the functional map is

likely to play an essential role in Darwinian computation,

serving as an effective, but not absolutely necessary, structure to

generate various response properties within a neural population.

Materials and Methods

The original experimental data has already been published and

described in detail in our previous work [23]. The estimation of

MI and the validity of analyses were also described in detail

elsewhere [28].

The animal experiments were carried out in strict accordance

with the ‘‘Guiding Principles for the Care and Use of Animals in

the Field of Physiological Science’’ by the Japanese Physiological

Society. The protocol was approved by the Committee on the

Ethics of Animal Experiments at Research Center for Advanced

Science and Technology, The University of Tokyo (Permit

Number: RAC07110). All surgeries were performed under

isoflurane anesthesia, and all efforts were made to minimize

suffering.

Subjects
Twenty-four male Wistar rats at postnatal week 12–15 were

used in total. At the time of recordings, 8 rats had engaged in

behavioral training for 4 consecutive days (Day 4 group, or early-

learning-stage group), and 8 other rats had trained for 20 days or

more (Day 20 group, or late-learning-stage group). The remaining

8 rats were assigned to a naı̈ve control group.

Training
On the first day of training, body weights of rats were

maintained at 85% of the normal weight through diet

restriction for 5–7 days. Rats were rewarded for nose-poking

during the presentation of a conditioned stimulus (CS). This

training was performed in a custom-made operant chamber

(O’hara & Co. Ltd., Tokyo, Japan) with a dimension of

20624635 cm. The chamber was equipped with a 3-cm-

diameter poking hole and a food dispenser on the wall. A

speaker on the ceiling of operant chamber delivered CS tone

Figure 4. Validation that the positive correlation between the
representational area and MI variance is caused by frequency-
dependent MI distribution, but not by inadequate sampling.
IQR was estimated as a function of the representational area in shuffled
data, which were randomly resampled irrespective of any properties.
The shapes of symbols indicate the test training groups: circle, naı̈ve;
triangle, day 4; and square, day 20. Representational areas of each
resampled dataset were determined on the basis of the tonotopic map
in each training group. Means and standard deviations are shown when
the resampling was conducted 100 times. No significant correlation
between IQR and representational area was observed, thereby denying
the possibility that IQR may increase with the number of samples
because test datasets are inadequately small.
doi:10.1371/journal.pone.0068705.g004
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with a frequency of 20 kHz, intensity of 80 dB SPL (sound

pressure level in decibel with respect to 20 mPa; ,70 dB SPL in

the operant chamber), and a duration of 3 s. The interval of CS

presentation was determined pseudo-randomly within a range of

15–25 s. In a daily training session, the CS was presented 60

times in total. Nose-poking responses during the CS tone were

scored as a hit, while responses in the absence of the CS were

scored as a false positive. A hit triggered delivery of a 20-mg

sucrose pellet.

At the early stage of learning, both the hit and false-positive rate

increased. The false positive rate was maximum at day 4 and

decreased thereafter. On day 20, both hit and false-positive rates

were stable.

Electrophysiological Mapping
Rats were anesthetized with isoflurane (3% at induction and 1–

2% for maintenance) and were fixed using a custom-made head-

holding device. Atropine sulfate (0.1 mg/kg) was administered at

the beginning of the surgery and every 8 h thereafter. The

temporal muscle, cranium, and dura overlying the auditory cortex

were surgically removed and the exposed cortical surface was

covered with silicone oil to prevent desiccation.

Acoustic stimuli were composed of tone bursts with 5-ms

plateau and 5-ms rise/fall times. The test frequencies ranged

between 1–50 kHz with 1/3-octave increments (1.0, 1.3, 1.6, 2.0,

2.5, 3.2, 4.0, 5.0, 6.4, 8.0, 10, 13, 16, 20, 25, 32, 40 and 50 kHz)

and intensities between 30 and 70 dB SPL with 5-dB increments.

Each tone was presented 20 times in a pseudorandom order.

Figure 5. Distribution of conventional properties in tone-evoked neural responses and FRA. (a) Peak firing rate; (b) Peak latency; (c)
Threshold; (d) Bandwidth. (i) CF-dependent distribution in each test group (naı̈ve, day4 and day 20). Breakdown lists, instead of boxplots, are used to
characterize the threshold (c) and bandwidth (d) because these properties are discretized. Proportions of subgroups of threshold (in dB SPL) and
bandwidth (in octave) are shown in discrete grey levels as indicated in the left inset. (ii) Variance of response property with respect to
representational area with a given CF. IQR was used to quantify the variances of firing rate (a) and latency (b), whereas the Shannon index of diversity
(ID) was used in discrete properties of the threshold (c) and bandwidth (d). Other conventions comply with Fig. 3.
doi:10.1371/journal.pone.0068705.g005
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These stimuli were delivered at a left (contralateral) pinna every

200 ms through a sound delivery tube of an electrostatic speaker

(Tucker-Davis Technologies, Inc., EC1). Prior to the experiments,

acoustic calibration of each test tone was performed with a 1/4-

inch microphone (Brüel and Kjaer, 4939).

Multiunit activities were recorded with teflon-coated tungsten

microelectrodes (California fine wire Co.) at a depth of 500–

800 mm from the pial surface. Each insulated probe had a

diameter of 50 mm in total with a bare metal diameter of 30 mm

(,100 kV impedance at 1 kHz). The neural signals were obtained

with an amplification gain of 1000, digital filter bandpass of 0.75–

7.5 kHz and sampling frequency of 30 kHz (Cyberkinetics Inc.;

Cerebus Data Acquisition System).

Data Analysis
All analyses were performed offline with custom-written Matlab

programs (The Mathworks, Natick, MA).

From multiunit activities, the peak latency of tone-evoked

responses was determined as a temporal property at each

recording site on the basis of a post-stimulus time histogram

(PSTH) with a bin width of 1 ms. PSTH plotted a firing rate as the

mean number of spikes per second evoked for the entire stimulus

conditions. The peak latency was defined as the time bin in which

the maximum number of spikes was recorded. The peak firing rate

in PSTH was also determined to characterize each recording site.

The frequency response area (FRA) at each recording site was

then determined on the basis of multiunit activities within 40-ms

post-stimulus latency in response to the 18 test frequencies at 9

sound intensities. The evoked response to each tone was quantified

by subtracting the sum of the mean spontaneous rate and 20% of

the peak firing rate from the mean firing rate. The mean

spontaneous rate was defined as the firing rate during the first

3 ms after stimulus onset, averaged over all stimuli. As in our

previous works [23,28], the characteristic frequency (CF) was

determined at each recording site as the test frequency that evoked

a reliable response at the lowest intensity (i.e., threshold) or the

largest response at 30 dB SPL, the minimum intensity used in this

experiment. The bandwidth at 10 dB above threshold was also

characterized as an octave distance between the upper and lower

frequencies of the tuning curve; when the threshold was lower than

30 dB SPL, the bandwidth at 30 dB SPL was taken.

The borders of auditory fields were determined by the

discontinuity of tonotopic and latency gradients [23,49,50]. A1

was first defined on the basis of short peak latency in the most

dorsal auditory field containing a complete high-to-low tonotopic

gradient running along the rostral-to-caudal axis. A tonotopic

reversal at the anterior periphery of A1 was defined as a border

between A1 and AAF. Tone-responsive areas that abutted a

ventral border of A1 and posterior border of AAF were labeled as

the VAF/SRAF. These fields had longer latency response than the

A1 and AAF did. PAF and DAF were defined posteriorly and

dorsally to A1, respectively, both with longer peak latency. AVAF

was defined on the basis of tonotopic discontinuity at a ventral

border of AAF and anteroventral border of SRAF.

To visualize the topography of the auditory cortex, the Voronoi

tessellation procedure was used to create tessellated polygons with

their centers corresponding at recording sites. Functional param-

eters such as CF and field were then illustrated by color-coded

polygons. These polygons were used to characterize the area

assigned to the functional parameters on the surface of auditory

cortex.

The mutual information (MI) can be computed between a set of

stimulus set, S, and a particular feature of neural responses, R, as

follows:

MI S; Rð Þ~ H Rð Þ{ H RDSð Þ

~
X
s[S

X
r[R

p s, rð Þ log2

p s, rð Þ
p sð Þp rð Þ

� � ð1Þ

where p(.) denotes a probability. H(R) and H(R|S) are the response

entropy and noise entropy, respectively, each of which is defined

by

H Rð Þ~ {
X
r[R

p rð Þ log2 p rð Þ ð2Þ

H RDSð Þ~ {
X
r[R

X
s[S

p sð Þ p rDsð Þ log2 p rDsð Þ

where p(r|s) denotes the probability of observed response r given

presentation of stimulus s. The stimulus sets, S, consisted of 162

test stimuli with 2 stimulus parameters: 18 frequencies and 9

intensities. A frequency distribution of spike counts in a given

temporal window of 10 ms was obtained for each test stimulus

with a bin size of 1 ms. The temporal window was slid by 1-ms

increments to examine the time course of MI, and the maximum

value in this trace was taken as the representative MI.

Each neural response property of interest was characterized

with respect to the functional map of the CF and field. Within a

given representational area, the variances of MI, peak firing rate

and latency were quantified by interquartile ranges (IQR).

Additionally, after removing outliers, which were larger than the

75th percentiles or smaller than the 25th percentiles by 1.5 times

IQR, the maximum and minimum values were taken within the

area under the test. For discrete properties of threshold (5-dB

increment) and bandwidth (1/3-octave increment), the variances

were quantified by the Shannon index of diversity (ID):

ID ~ {
X

i

p ið Þ log2 p ið Þ

where p(i) is the proportion of individuals belonging to the ith

discrete subgroup in the dataset; the threshold and bandwidth

consisted of 7 subgroups (,30, 30, 35, 40, 45, 50 and .50 dB

SPL) and 6 subgroups (1/3, 2/3, 1, 3/4, 3/5 and .2 octaves),

respectively. ID is maximized when pi in each subgroup is

identical.
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