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Medulloblastoma, the most common malignant brain tu-
mor in children, is a disease whose mechanisms are now 
beginning to be uncovered by high-throughput studies of 
somatic mutations, mRNA expression patterns, and epi-
genetic profiles of patient tumors. One emerging theme 
from studies that sequenced the tumor genomes of large 
cohorts of medulloblastoma patients is frequent mutation 
of RNA binding proteins. Proteins which bind multiple 
RNA targets can act as master regulators of gene expres-
sion at the post-transcriptional level to co-ordinate cellular 
processes and alter the phenotype of the cell. Identifica-
tion of the target genes of RNA binding proteins may high-
light essential pathways of medulloblastomagenesis that 
cannot be detected by study of transcriptomics alone. 
Furthermore, a subset of RNA binding proteins are attrac-
tive drug targets. For example, compounds that are under 
development as anti-viral targets due to their ability to 
inhibit RNA helicases could also be tested in novel ap-
proaches to medulloblastoma therapy by targeting key 
RNA binding proteins. In this review, we discuss a number 
of RNA binding proteins, including Musashi1 (MSI1), DEAD 
(Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, 
and cell division cycle and apoptosis regulator 1 (CCAR1), 
which play potentially critical roles in the growth and/or 
maintenance of medulloblastoma.  
1  
INTRODUCTION 
 
MEDULLOBLASTOMA 
 
Medulloblastoma, a pediatric brain tumor that arises in the ce-
rebellum, is a devastating childhood disease. About one thou-
sand new cases of medulloblastoma are diagnosed worldwide 
each year, making medulloblastoma the most common malig-
nant pediatric brain tumor (at an incidence of 0.6 cases per 
100,000 person-years) (CBTRUS 2012; Fogarty et al., 2005). 
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Medulloblastoma diagnoses peak in patients of 3-5 years of 
age, but can occur at any age, accounting for 1% of brain tu-
mors in adults (Kaderali et al., 2009; Packer and Vezina, 2008). 
Medulloblastoma is treated with a combination of surgical re-
section, chemotherapy, and intensive radiation to the entire 
cerebrospinal axis (Packer and Vezina, 2008). While the overall 
five year recurrence-free survival rates are around 70-80%, 
response to therapy differs dramatically depending on the exact 
underlying molecular alterations that drive an individual pa-
tient’s tumor (Kool et al., 2012; Smoll, 2012). Different medul-
loblastoma subgroups, as defined by histological and/or mole-
cular characteristics, have five year survival rates ranging from 
22-95% (Kool et al., 2012). 

Beyond the poor prognosis of some medulloblastoma sub-
types, the urgent need for targeted therapies for medulloblas-
toma is further illustrated by the extremely poor quality of life 
experienced by medulloblastoma survivors. Nonspecific, cyto-
toxic therapies cause severe neurological, endocrine, and cog-
nitive impairments in children. One year after treatment, up to 
80% of children with medulloblastoma are observed to exhibit 
at least one major neurological symptom such as gait problems 
or epilepsy (Frange et al., 2009). By identifying the molecular 
drivers of medulloblastoma, more precise drug targets can be 
pursued in hopes of increasing therapeutic efficacy and de-
creasing side effects. The concept of targeted drugs tailored to 
the specific molecular alterations present in a given tumor has 
revolutionized our approach to drug development. While there 
is still much work to be done before targeted therapeutics over-
take traditional modalities, successes such as imatinib for the 
treatment of chronic myeloid leukemia and trastuzumab for 
breast cancer treatment illustrate the extraordinary potential for 
this strategy (Sawyers, 2004). Currently, the main obstacle to 
developing targeted therapy for medulloblastoma is the poor 
understanding of the molecular alterations underlying this dis-
ease. 

In response to this need, massive effort has recently been 
devoted to identifying and correlating genomic and transcrip-
tomic differences among patient tumors to understand the mo-
lecular genesis of medulloblastoma. Extensive transcriptomic 
analysis led to the current consensus that medulloblastoma can 
be divided into four tumor subgroups (Cho et al., 2011; Kool et 
al., 2008; Northcott et al., 2011; Remke et al., 2011; Thompson 
et al., 2006). Two of these subgroups, known as the Wnt and 
SHH types, are named after their known mechanism of tumori-
genesis. The remaining two subtypes, which are far less well 
understood, are denoted Groups 3 and 4. Studies from geneti-
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cally engineered mouse models demonstrate that these differ-
ent medulloblastoma subtypes likely arise from different cell 
types within the cerebellum (Gibson et al., 2010; Kawauchi et 
al., 2012; Schüller et al., 2008; Yang et al., 2008).  

Tumors driven by Wnt signaling are the least common type 
of medulloblastoma. Patients with Wnt-driven tumors have an 
excellent prognosis, with a 95-100% five year survival rate 
(Kool et al., 2012). Over 90% of these tumors contain a muta-
tion in CTNNB1 (β-catenin), which drives the activation of Wnt 
pathway target genes. Wnt tumors have the lowest overall mu-
tation rate of all the medulloblastoma subtypes, and at the 
chromosomal level, monosomy of chromosome 6 is the only 
consistent alteration within this subgroup (Clifford et al., 2006). 

The best-understood medulloblastoma subgroup is driven by 
alterations in the Sonic hedgehog (Shh) signaling pathway, 
comprising approximately 28% of medulloblastoma cases (Kool 
et al., 2012). Shh group tumors can result from somatic or ger-
mline mutation in Shh pathway genes such as SMO, PTCH1, 
SUFU, or GLI2 (Raffel et al., 1997; Reifenberger et al., 1998). 
This subtype has an intermediate prognosis. Some progress 
has been made in tailoring therapies specific for Shh-driven 
medulloblastomas, through the development of Shh pathway 
antagonists (Lee et al. 2012; Reifenberger et al. 1998; Yauch et 
al. 2009). However, the rapid development of resistance to 
these drugs has so far limited the usefulness of this therapeutic 
approach. This group of tumors was recently found to harbor 
frequent mutations in the promoter of telomerase reverse tran-
scriptase (TERT), suggesting that a combination therapy with 
agents targeting Shh signaling and telomerase may be a prom-
ising avenue of research (Remke et al., 2013). 

Group 3 tumors express genes involved in GABAergic/photo-
receptor signaling, and have a poor prognosis (five year surviv-
al rates are 39% and 58% for infants and children, respectively) 
(Kool et al., 2012). Amplifications of the known oncogene MYC 
are exclusively found in Group 3, and are mutually exclusive 
with amplicons containing OTX2, a transcription factor that 
cooperates with MYC (Adamson et al., 2010; Northcott et al., 
2012a). While only approximately one third of Group 3 tumors 
amplify MYC, these tumors have by far the worst prognosis of 
any medulloblastoma (Northcott et al., 2012a). Group 3 tumors 
were also found to be significantly enriched for mutations that 
are predicted to activate TGF-β signaling (Northcott et al., 
2012a). Two mouse models for MYC-amplified Group 3 tumors 
were recently developed, yielding an important tool for the 
study of these tumors (Kawauchi et al., 2012; Pei et al., 2012).  

Group 4 is the most frequently observed medulloblastoma 
subtype comprising one third of all tumors, with an intermediate 
prognosis (5 year survival rate of approximately 70%) (Kool et 
al., 2012). Group 4 tumors feature frequent mutation in chroma-
tin modification genes, and express many genes involved in 
neuronal differentiation (Jones et al., 2012; Kool et al., 2012). 
Some Group 4 tumors amplify N-MYC, while the most frequent 
amplification (10% of Group 4 tumors) is the duplication of syn-
philin-1 (SNCAIP), a protein previously implicated in neurode-
generative disease (Northcott et al., 2012a). One study sug-
gested that NF-κB signaling may be implicated in Group 4 tu-
morigenesis, as several mutations were found in NF-κB path-
way genes (Northcott et al., 2012a). 

After transcriptomic studies firmly established that these sub-
groups represent four distinct disease entities falling under the 
umbrella of medulloblastoma, the scientific community next 
turned to genomic sequencing to better understand the molecu-
lar pathogenesis underlying each medulloblastoma subtype. 
We now have a wealth of information regarding the somatic 

mutations which occur in the medulloblastoma genome, thanks 
to major sequencing and copy number variation studies which 
were recently published (Jones et al., 2012; Northcott et al., 
2012b; Pugh et al., 2012; Robinson et al., 2012). The implica-
tions of these massive and complex datasets are just now be-
ginning to be understood.  

One interesting observation is that many of the genes ob-
served to be mutated in medulloblastoma are RNA binding 
proteins. For example, the authors of one study note that up to 
15% of all medulloblastomas contain somatic mutations pre-
dicted to disrupt the function of at least one RNA helicase 
(Pugh et al., 2012). RNA binding proteins are especially inter-
esting as drivers of oncogenesis because of their ability to alter 
the expression of large numbers of downstream genes through 
multiple processes: they can regulate splicing, translation effi-
ciency, and mRNA localization, modification, and decay. In this 
review, we will highlight RNA-binding proteins which are known 
or suspected to contribute to medulloblastoma development.  
 
RNA-BINDING PROTEINS 
 
RNA-binding proteins are a large group of regulators (800-
1,000 in humans) that influence RNA processing, localization, 
storage, degradation, and translation efficiency (Castello et al., 
2012; Glisovic et al., 2008; Wilson et al., 2009) Their combined 
impact is thought to account for as much as 30% of protein 
expression variation (Schwanhäusser et al., 2011; Vogel et al., 
2010). Many RNA binding proteins regulate protein expression 
from a specific subset of mRNA transcripts with a related cellu-
lar function, which can be a powerful post-transcriptional me-
chanism to regulate cellular phenotype. RNA binding proteins 
often interact with the 5′ or 3′ untranslated regions (UTRs) of 
mRNAs, which contain a wealth of regulatory sequences that 
influence translational efficiency and mRNA stability (Wilkie et 
al., 2003). The importance of regulation of protein homeostasis 
by RNA binding proteins is highlighted by the numerous Men-
delian genetic diseases caused by mutations in RNA binding 
proteins (Castello et al., 2013). 

RNA binding domains can be found in a wide variety of pro-
teins; relevant domain families include the RNA recognition 
motif (RRM), CCCH Zinc finger, Winged-helix, Ferredoxin like 
RNA-binding, and K homology domains (Lorković, 2012; Wil-
son et al., 2009). However, a number of recent studies of the 
mRNA-bound proteome in yeast and human cells demonstrate 
that many proteins without canonical RNA binding domains can 
also bind RNA, suggesting that we have only begun to under-
stand this widespread and essential biochemical function (Baltz 
et al., 2012; Castello et al., 2012; Klass et al., 2013; Scherrer et 
al., 2010; Tsvetanova et al., 2010). 

One family of RNA binding proteins that contains several pro-
teins suspected to contribute to medulloblastoma tumorigene-
sis is the DEAD-box RNA helicase family. These proteins share 
a common set of domains within the helicase core, including 
the namesake D-E-A-D sequence in motif II (Lane, 1988). The 
human genome encodes approximately 30 DEAD-box RNA 
helicases, which metabolize ATP to unwind RNA and/or remo-
del RNA-protein complexes (Putnam and Jankowsky, 2013). 
These proteins can also clamp onto RNA, thus serving as a 
scaffold for the assembly of larger RNA-protein complexes 
(Linder and Jankowsky, 2011). RNA helicases perform a diver-
se variety of functions in the cell, and mutations in these genes 
have previously been linked to cancer (Abdelhaleem, 2004). 
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Fig. 1. Domain structures of selected RNA binding proteins. Vertical lines above the protein represent point mutations identified in medullob-
lastoma sequencing studies (Jones et al., 2012; Pugh et al., 2012; Robinson et al., 2012). Red lines = residues with mutations identified in 
multiple tumors. X = truncating mutation. RRM = RNA recognition motif, DEAD = DEAD/DEAH box RNA helicase domain, Hel_C = helicase C 
domain, S1L = S1-like RNA binding domain, DBC1 = domain found in DBC1, SAP = SAF-A/B, Acinus and PIAS DNA/RNA binding motif. 
Domain annotation as predicted by InterPro (Hunter et al., 2012).  
 
 
 
MSI1 
 
Musashi1 (MSI1) was originally identified in Xenopus and Dro-
sophila, and later in mammals, as an RNA binding protein es-
sential for proper development of the nervous system (Naka-
mura et al., 1994; Richter et al., 1990; Sakakibara et al. 1996). 
MSI1 has two tandem RNA recognition motifs (Fig. 1), and func- 
tions to maintain the proliferation and renewal of multi-potent 
neural stem/progenitor cells. Staining for MSI1 expression can 
be used as a stem cell marker (Sakakibara and Okano, 1997). 
In addition to neural stem cells, MSI1 expression has been 
shown to define populations of multi-potent cells in a number of 
other niches, including in ducts in the breast, crypts in the intes-
tines, and hair follicles (Kayahara et al., 2003; Sugiyama-Naka-
giri et al., 2006; Wang et al., 2008). MSI1 can act as a positive 
or negative regulator of translation by binding to the 3’UTR of a 
target gene’s mRNA, with an apparent preference for sequen-
ces with (G/A)U1-3AGU repeats (Imai et al., 2001; Vo et al., 2012). 
The most well-characterized function of MSI1 is enhancement 
of Notch pathway signaling through blocking translation of Numb, 
which functions to repress this pathway (Imai et al., 2001). Only 
a few MSI1 target mRNAs have been validated to date, includ-
ing Numb, CDKN1A, doublecortin, and Robo3 (Battelli et al., 
2006; Horisawa et al., 2009; Imai et al., 2001; Kuwako et al., 
2010). However, recent research indicates that MSI1 regulates 
hundreds of targets through post-transcriptional mechanisms, 
affecting numerous critical cellular processes including prolife-
ration, differentiation, and apoptosis (Sanchez-Diaz et al., 2008; 
Vo et al., 2012). 

Medulloblastoma is considered an embryonal brain tumor as 
its cells resemble neural stem/progenitor cells both in general 
appearance and differentiation potential (Fan and Eberhart, 
2008; Hambardzumyan et al., 2008). Sub-populations of stem-
like medulloblastoma cells have been found within the tumor as 

a whole that are especially resistant to conventional therapy 
(Hambardzumyan et al., 2008b). The importance of MSI1 in the 
maintenance of neural stem cells lead to the hypothesis that 
MSI1 might also play a role in medulloblastoma tumorigenesis.  

The first evidence for such a role came from studies showing 
that MSI1 is highly expressed in a number of brain tumors, 
including medulloblastoma (Kong et al., 2008; Nakano et al., 
2007; Toda et al., 2001). Analysis of MSI1 across a large co-
hort of medulloblastoma samples from human patients demon-
strated that high MSI1 expression is a strong indicator of poor 
prognosis (Vo et al., 2012). MSI1 was found to be expressed in 
all four medulloblastoma subtypes, with particularly high ex-
pression in Group 3 and 4 tumors (Vo et al., 2012). Another 
study used suppression subtractive hybridization to identify 
MSI1 as a gene deregulated in tumors derived from a mouse 
model of medulloblastoma, as compared to the normal mouse 
cerebellum (Yokota et al., 2004). The overexpression of MSI1 
at both the mRNA and protein levels in human tumors and 
tumors from genetically engineered mouse models suggests 
that MSI1 plays an important role in medulloblastoma tumori-
genesis. In medulloblastoma, MSI1 appear to exert its pro-
tumorigenic effect through overexpression of the wild-type pro-
tein, as no evidence of somatic mutations in medulloblastoma 
have been found to date (Forbes et al., 2011). 

Evidence for a causal role of MSI1 in medulloblastoma came 
from studies of the widely used medulloblastoma cell line DAOY. 
Knockdown of MSI1 in DAOY cells diminished their ability to 
grow as neurospheres and to form colonies in soft agar, indicat-
ing that MSI1 helps to maintain stem cell-like properties in tu-
mor cells (Muto et al., 2012; Sanchez-Diaz et al., 2008). Analy-
sis of brain tumor cells in which MSI1 was knocked down re-
sulted in impairment of several essential signaling pathways, 
including Notch and PI(3) kinase-Akt (Muto et al., 2012). 

Further insight into the mechanism by which MSI1 regulates 
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the growth and survival of medulloblastoma cells was provided 
by studies which investigated target mRNAs bound and regu-
lated by MSI1. Reverse immunoprecipitation combined with 
microarray technology was used to identify genes whose mRNAs 
are bound by MSI1 in medulloblastoma cells (Vo et al., 2012). 
This list of genes was found to significantly overlap with similar 
experiments performed in glioblastoma cells, suggesting that 
MSI1 may promote tumorigenesis in a variety of tumor types. 
Genes regulated by MSI1 in medulloblastoma were significantly 
enriched for a number of cancer-related functions, including cell 
proliferation, apoptosis, and differentiation (Vo et al., 2012). 

Proof-of-principle experiments have tested the utility of target-
ing MSI1 as a therapeutic measure for medulloblastoma. Treat-
ment of mice bearing xenograft tumors derived from human 
medulloblastoma cell lines with siRNAs targeting MSI1 resulted 
in tumor regression and prolonged survival (Vo et al., 2012). 
Therapies that target MSI1 may also be of use for other types 
of cancer as well. Knockdown of MSI1 has been shown to re-
duce tumor size and increase overall survival in animal models 
of several other tumors, including glioblastoma and colorectal 
cancer (Muto et al. 2012; Sureban et al. 2008). Other tumors 
have also been shown to overexpress MSI1 in comparison to 
normal tissue, although the reliance of these tumors on MSI1 
expression has in most cases not yet been determined (Li et al., 
2011; Liu et al., 2010; Moghbeli et al., 2013; Wang et al., 2010; 
2013).  
 
DDX3X 
 
One of the strongest emerging candidate RNA binding proteins 
with a potential role in medulloblastoma pathogenesis is the 
DEAD-box RNA helicase DDX3X. Human DDX3X was original-
ly discovered through its interaction with proteins from the he-
patitis C virus (HCV) (Owsianka and Patel, 1999). DDX3X has 
since been found to play contrasting roles in viral infection, 
being manipulated by viruses such as HCV, influenza, and 
human immunodeficiency virus (HIV) to facilitate viral infection 
(Jorba et al., 2008; Owsianka and Patel, 1999; Yedavalli et al., 
2004), while also serving to activate the interferon-based innate 
immune response (Schroder, 2011; Soulat et al., 2008). How-
ever, anti-viral defense is only a small part of the cellular func-
tion of DDX3X. DDX3X also regulates the translation and loca-
lization of numerous mRNAs to control cellular processes that 
are related to cancer, including apoptosis signaling and the cell 
cycle (Choi and Lee, 2012; Sun et al., 2013). 

Recent work has identified both general as well as specific 
roles of DDX3X in translation regulation. DDX3X may augment 
translation by resolving secondary structures of long 5′-untran-
slated regions in the mRNA during ribosome scanning (Lai et 
al., 2008). DDX3X also binds the translation initiation factor 
EIF4F, allowing for translation of specific mRNAs (Soto-Rifo et 
al., 2012). In terms of specific targets, one study has shown 
that DDX3X regulates cell growth through translational control 
of cyclin E1 and other cell cycle regulators (Lai et al., 2010). A 
precise binding motif is as yet unknown, and specificity may 
instead result from interactions with other RNA binding proteins. 
On the level of general (non-targeted) translational regulation, 
DDX3X assists with ribosome assembly (Geissler et al., 2012).  

Three recent, independent large-scale genomic sequencing 
studies identified frequent somatic mutations in DDX3X in me-
dulloblastoma (Jones et al., 2012; Pugh et al., 2012; Robinson 
et al., 2012). In fact, DDX3X was the second-most frequently 
mutated gene, following only CTNNB1 (the driver mutation for 
Wnt pathway tumors) (Table 1). DDX3X mutations are strongly 

Table 1. Most frequently mutated genes in medulloblastoma 

Gene Description # mutations Subgroup

CTNNB1 Beta-catenin 29 Wnt 

DDX3X DEAD (Asp-Glu-Ala-Asp) 
box helicase 3, X-linked 

25 
Wnt & 
Shh 

KMT2D Lysine (K)-specific methyltrans-
ferase 2D (MLL2) 

19 all 

PTCH1 Patched 1 18 Shh 

SMARCA4

SWI/SNF related, matrix  
associated, actin dependent 

regulator of chromatin,  
subfamily A, member 4 

18 
Wnt, 

Group 3

KDM6A Lysine (K)-specific  
demethylase 6A 

16 Group 4

Mutation data were tabulated from three medulloblastoma genome 
sequencing studies (Jones et al., 2012; Pugh et al., 2012; Robinson et 
al., 2012). Subgroup = the subgroup(s) in which mutations most fre-
quently occur. The top six most frequently mutated genes are listed. 
 
 
 
enriched in the Wnt medulloblastoma subtype, with approx-
imately half of Wnt tumors bearing a mutation in DDX3X (Pugh 
et al., 2012). DDX3X mutations are also seen in some Shh 
tumors. DDX3X mutations observed in medulloblastoma were 
point mutations, not truncations, and structural analysis sug-
gests nearly all of the mutations identified occurred within the 
RNA helicase domain or RNA binding interface (Fig. 1) (Jones 
et al., 2012; Pugh et al., 2012; Robinson et al., 2012). These 
findings suggest that the DDX3X mutations alter the protein’s 
function, likely in the realm of a modified protein-RNA interac-
tion, as opposed to a complete loss of function. 

To validate a potential role played by DDX3X in medulloblas-
toma, DDX3X was knocked down in lower rhombic lip progeni-
tor cells, a cell population which is thought to be the cell-of-
origin for Wnt-driven medulloblastomas (Gibson et al., 2010). 
DDX3X depletion significantly reduced the self-renewal rate of 
these cells, supporting the hypothesis that DDX3X promotes 
the development of medulloblastoma (Robinson et al., 2012). 

The prevalence of DDX3X mutations in Wnt-driven medullob-
lastomas suggests that DDX3X mutations exert their pro-
tumorigenic effect by promoting Wnt signaling. This hypothesis 
is supported by the finding that co-transfection of mutant beta-
catenin (with an activating mutation found in > 90% of Wnt-
driven medulloblastomas) alongside mutant DDX3X enhanced 
transcription from the TOP-FLASH promoter, suggesting that 
these tumor-derived DDX3X mutants act to further enhance 
Wnt signaling in the presence of stabilized beta-catenin (Pugh 
et al., 2012). One recent study showed that DDX3X can play a 
direct role in the promotion of Wnt signaling in mammalian cells, 
by acting as a regulatory subunit of casein kinase 1 (CK1) (Cru-
ciat et al., 2013). When bound to CK1, DDX3X activates phos-
phorylation of disheveled (DVL2), thereby promoting assembly 
of a multiprotein complex that results in the stabilization of beta-
catenin and the activation of Wnt signaling (Cruciat et al., 2013). 
These findings strongly support the hypothesis that the DDX3X 
mutations observed in medulloblastoma enhance Wnt signaling 
by augmenting the binding of DDX3X to CK1, thereby further 
enhancing the stability of mutant beta-catenin and amplifying 
the transcription of Wnt target genes. In this case, it appears 
that DDX3X exerts its regulatory effect via protein-protein, ra-
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ther than protein-mRNA interactions. 
One important remaining question is the role played by the 

RNA binding function of DDX3X in Wnt signaling and medullob-
lastoma tumorigenesis. The finding that all of the DDX3X muta-
tions are found in locations related to RNA binding suggests 
that alterations in the RNA binding and/or helicase function of 
DDX3X may contribute to the pro-tumorigenic function. Howev-
er, this conjecture has to be reconciled with the finding that the 
promotion of Wnt signaling via CK1 is independent of both the 
RNA binding and ATPase activity of DDX3X (Cruciat et al., 
2013). One possibility is that the RNA binding/helicase func-
tion(s) of DDX3X compete with its role as a regulator of CK1 
phosphorylation. Destruction of the RNA binding capability of 
DDX3X may therefore free up more protein to bind CK1, there-
by ultimately promoting Wnt signaling. This mechanism may 
involve differential localization of different pools of DDX3X, 
depending on whether or not it is bound to RNA. However, it is 
also possible that the RNA binding function of DDX3X directly 
contributes to tumorigenesis independent of Wnt signaling, 
through its roles in cell cycle control, regulation of cell growth, 
and apoptotic signaling (Lai et al., 2010; Pek and Kai, 2011; 
Schroder, 2010). 
 
DDX31 
 
DDX31 is another DEAD-box RNA helicase that was found to 
be mutated in multiple tumors in a medulloblastoma sequenc-
ing study (Robinson et al., 2012). DDX31 is a protein con-
served across eukaryotes, but it has not been well-studied. No 
DDX31-mRNA interactions have been verified for individual 
targets. DDX31 and its yeast homolog DBP7 participate in the 
transcription of rRNA genes and the assembly of the 60S ribo-
some subunit (Daugeron and Linder, 1998; Fukawa et al., 2012). 
DDX31 was characterized in humans as a nucleolar protein 
consistently upregulated in renal cell carcinoma (Fukawa et al., 
2012). In mammalian cells, DDX31 binds nucleophosmin (NPM), 
blocking an interaction between NPM and HDM2, the E3 ubi-
quitin ligase for p53 (Fukawa et al., 2012). Depletion of DDX31 
restores the NPM-HDM2 interaction, ultimately resulting in sta-
bilization of p53. Either of these cellular functions could plausi-
bly contribute to a potential role for DDX31 in medulloblastoma 
tumorigenesis, but further study is needed. 

Multiple mutations in DDX31 were observed in the medullob-
lastoma genome sequences. DDX31 deletions were observed 
in three different Group 4 medulloblastomas (as well as one 
tumor of unknown subtype). DDX31 was located in the break-
point of this focal deletion, which also encompassed the genes 
AK8 and TSC1 (Robinson et al. 2012). The DDX31 deletions 
occurred simultaneously with amplification of the OTX2 locus, a 
known medulloblastoma oncogene (Adamson et al., 2010; Di et 
al., 2005). This finding suggests that DDX31 mutation (either by 
deletion or truncation) may cooperate with the oncogenic role of 
OTX2. Several other tumors in the medulloblastoma study 
contained DDX31 missense mutations (Robinson et al., 2012). 
The frequency with which DDX31 mutations occur, along with 
its essential functions in ribosome biogenesis and p53 regula-
tion, suggest that DDX31 will be a fruitful target for further study 
of the signaling pathways involved in medulloblastoma. 
 
CCAR1 
 
Two of the three major medulloblastoma genome sequencing 
studies identified mutations in cell division cycle and apoptosis 
regulator 1 (CCAR1/CARP1) (Pugh et al., 2012; Robinson et al., 

2012). CCAR1 contains a cold-shock RNA binding domain, and 
associates with cytoplasmic RNA structures known as stress 
granules (Kolobova et al., 2009; Rishi et al., 2003). CCAR1 was 
originally discovered as a stress-induced protein that represses 
expression of a number of cell cycle regulatory genes, including 
cyclin B1 and c-Myc (Rishi et al., 2003). In addition to its role in 
regulation of the cell cycle, CCAR1 also mediates signaling for 
apoptosis (François et al., 2012; Rishi et al., 2003; 2006), and 
serves as a co-factor to recruit the Mediator complex to several 
nuclear receptors to activate transcription of downstream genes 
(Kim et al., 2008). The multiple mutations in the CCAR1 gene in 
sequencing studies and its involvement in several cancer-
related processes render the gene an excellent candidate for a 
potential role in medulloblastoma tumorigenesis. 

Although a direct role for CCAR1 in medulloblastoma has not 
yet been established, one study has examined the potential of 
CCAR1 as a therapeutic target in medulloblastoma (Kim et al., 
2008). Two human medulloblastoma cell lines were treated with 
small molecule inhibitors of CCAR1, known as CARP-1 Func-
tional Mimetics (CFMs), which are designed to block the inte-
raction of CCAR1 with the APC-2 subunit of the anaphase 
promoting complex (APC/C) (Puliyappadamba et al., 2011). 
Inhibition of CCAR1 with the CFMs reduced cell proliferation, 
stimulated apoptosis, and repressed migration, colony forma-
tion, and invasion of human medulloblastoma cells (Ashour et 
al., 2013). These results provide further support to the hypothe-
sis that CCAR1 may be an essential gene for the development 
of medulloblastoma, and an excellent target for therapeutic 
strategies. 
 
CONCLUSION 
 
Mounting evidence from studies of patient medulloblastoma 
samples and genetically engineered mouse models suggests 
that several RNA binding proteins play a role in the develop-
ment of medulloblastoma.This diverse class of proteins is able 
to influence cellular phenotypes through both their protein-RNA 
and protein-protein interaction activities. Because RNA binding 
proteins often regulate the expression of numerous other pro-
teins, the study of these master regulators has the potential to 
shed light on the pathways essential for the growth of these 
tumors. The identification of numerous mutations in RNA bind-
ing proteins not previously known to contribute to brain tumor 
pathogenesis demonstrates that there is still much work to be 
done in this field. As even more -omics level studies are com-
pleted, such as epigenetics (Dubuc et al., 2013) and proteo-
mics (Epple et al., 2012) analysis, our understanding of the 
mechanisms of medulloblastoma tumorigenesis will be further 
enriched. 

The RNA binding proteins described above are only few ex-
amples of the many putative regulators of medulloblastoma 
tumorigenesis. A large-scale cross-study analysis of aberrantly 
expressed RNA-binding proteins identified twelve proteins spe-
cifically up-regulated in the DAOY medulloblastoma cell line, 
providing candidates for further analysis (Galante et al., 2009). 
Among these candidates are several genes which have been 
linked to cancer in various capacities, including the RNA bind-
ing protein NONO/p54 (Clark et al., 1997; Schiffner et al., 2011), 
and the RNA helicase DHX9. ATP-dependent RNA helicases, 
such as DDX3X and DDX31 mentioned in this review, as well 
as DHX9, are particularly interesting targets for future medul-
loblastoma research because of their potential as druggable 
targets.  

Small molecule drugs aimed at inhibiting DEAD-box RNA he-
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licases are currently in various stages of development, mostly 
as anti-viral therapies (as RNA helicases often serve as cellular 
co-factors for viral infections) (Kwong et al., 2005; Lindqvist et 
al., 2008; Radi et al., 2012). For other RNA binding proteins, 
the promise of directly targeted therapies is more limited, al-
though the discovery of small molecule inhibitors of CCAR1 
function does provide some hope. There are still significant 
barriers to be overcome in the development of RNAi-based 
therapeutics, and in the absence of other enzymatic functions, 
inhibitory small molecules will also likely be difficult to develop 
(Zhou et al., 2013). Perhaps the real promise of studying the 
function of RNA binding proteins in medulloblastoma lies in 
their role as master regulators of tumorigenic processes. By 
mapping the genes regulated by these RNA binding proteins, 
we gain tremendous insight into the pathways by which medul-
loblastoma cells proliferate and survive (Vo et al., 2012). 
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