
ORIGINAL RESEARCH
published: 25 August 2020

doi: 10.3389/fonc.2020.01494

Frontiers in Oncology | www.frontiersin.org 1 August 2020 | Volume 10 | Article 1494

Edited by:

Harsha Gowda,

The University of

Queensland, Australia

Reviewed by:

Francesco Grignani,

University of Perugia, Italy

Rafael Rosell,

Catalan Institute of Oncology, Spain

*Correspondence:

Toshihide Nishimura

t-nisimura@marianna-u.ac.jp

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 29 April 2020

Accepted: 13 July 2020

Published: 25 August 2020

Citation:

Nishimura T, Végvári Á, Nakamura H,

Kato H and Saji H (2020) Mutant

Proteomics of Lung Adenocarcinomas

Harboring Different EGFR Mutations.

Front. Oncol. 10:1494.

doi: 10.3389/fonc.2020.01494

Mutant Proteomics of Lung
Adenocarcinomas Harboring
Different EGFR Mutations
Toshihide Nishimura 1,2*†, Ákos Végvári 3†, Haruhiko Nakamura 2, Harubumi Kato 4,5 and
Hisashi Saji 2

1Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Japan,
2Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan, 3Division of Chemistry I,

Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden, 4Division of Thoracic and

Thyroid Surgery, Tokyo Medical University, Tokyo, Japan, 5 Research Institute of Health and Welfare Sciences, Graduate

School, International University of Health and Welfare, Tokyo, Japan

Epidermal growth factor receptor EGFR major driver mutations may affect downstream

molecular networks and pathways, which would influence treatment outcomes of

non-small cell lung cancer (NSCLC). This study aimed to unveil profiles of mutant

proteins expressed in lung adenocarcinomas of 36 patients harboring representative

driver EGFRmutations (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Surprisingly,

the orthogonal partial least squares discriminant analysis performed for identified mutant

proteins demonstrated the profound differences in distance among the different EGFR
mutation groups, suggesting that cancer cells harboring L858R or Ex19del emerge from

cellular origins different from L858R/Ex19del-negative cells. Weighted gene coexpression

network analysis, together with over-representative analysis, identified 18 coexpressed

modules and their eigen proteins. Pathways enriched differentially for both the L858R and

Ex19del mutations included carboxylic acid metabolic process, cell cycle, developmental

biology, cellular responses to stress, mitotic prophase, cell proliferation, growth, epithelial

to mesenchymal transition (EMT), and immune system. The IPA causal network analysis

identified the highly activated networks of PARPBP, HOXA1, and APH1 under the

L858R mutation, whereas those of ASGR1, APEX1, BUB1, and MAPK10 were highly

activated under the Ex19del mutation. Interestingly, the downregulated causal network

of osimertinib intervention showed the highest significance in overlap p-value among

most causal networks predicted under the L858R mutation. We also identified the causal

network of MAPK interacting serine/threonine kinase 1/2 (MNK1/2) highly activated

differentially under the L858R mutation. Tumor-suppressor AMOT, a component of

the Hippo pathways, was highly inhibited commonly under both L858R and Ex19del

mutations. Our results could identify disease-related protein molecular networks from

the landscape of single amino acid variants. Our findings may help identify potential

therapeutic targets and develop therapeutic strategies to improve patient outcomes.
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HIGHLIGHTS

- The first study to perform mutant proteomic analysis of
clinical tissue specimens obtained from patients of lung
adenocarcinoma with EGFR oncogenic driver mutations.

- Surprisingly, the OPLS discriminant analysis revealed
profound differences among the profiles of mutant proteins
identified under the different EGFR mutation statuses, which
were never seen before.

- Weighted gene coexpression network analysis (WGCNA)
screened by the over-representative test identified 18
significant network modules under the respective EGFR
mutation statuses.

- Interestingly, the downregulated causal network of
osimertinib intervention and highly activated MNK1/2
were associated with L858R-positive lung adenocarcinoma.
Upstream regulators and causal networks predicted
suggested a close link to EGFR mutation-positive cancers,
mainly NSCLC.

INTRODUCTION

The discovery of somatic mutations in the tyrosine kinase
domain of the epidermal growth factor receptor (EGFR) (1, 2)
drastically changed the therapeutic perspective of non-small-
cell lung cancer (NSCLC). The representative EGFR oncogenic
mutations are in-frame deletions in exon 19 (Ex19del) (44.8%)
and a point mutation at Leu-858 substituted with arginine
(L858R) (39.8%) (3). Personalized and/or precision medicine
(PM) have been successful by targeting those mutations with
tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib, and afatinib.
Because most patients, however, suffer from drug resistance after
a year of treatment, therapeutic strategies have been challenged to
improve the survival benefit of first-line treatment. The efficacy
of the first- and second-generation EGFR-TKIs is limited by the
result of drug resistance conferred by another mutation involving
the substitution of threonine 790 with methionine (T790M) (4).

Osimertinib is an irreversible third-generation EGFR-TKI that
is selective for sensitizing EGFR and T790M mutations. The
randomized phase III AURA3 trial demonstrated that the efficacy
of osimertinib was significantly greater than that of platinum
therapy plus pemetrexed in patients with T790M-positive
advanced NSCLC (5). Recently, osimertinib was recommended
as first-line treatment for patients with EGFR-mutant NSCLC
according to the FLAURA trial that reported significantly better
PFS and OS with osimertinib than with first-generation EGFR-
TKIs (gefitinib or erlotinib) (6, 7).

Numerous studies have been reported regarding EGFR
mutations and their disease-related downstream signaling
pathways (8–12) and EGFR-TKIs resistance (13–15).
Hyperactivation of STAT3 enhances carcinogenesis in various
cancers (16, 17) and drives drug resistance in response to EGFR
TKIs (18). Chromosomal instability was found to be significantly
increased during TKI treatment in T790M-negative patients
and resulting co-acquired alterations and genomic evolution
are primarily responsible for resistance to the first-generation
TKIs (19). Low-frequency EGFRmutations in NSCLC, including

point mutations, deletions, insertions, and duplications within
exons 18–25, are also associated with poor responses to EGFR
TKIs (20).

Today, the field of proteomics is strongly dominated by
mass spectrometry (MS)–based methodologies, largely due to
that modern mass spectrometers offer high mass resolution
and accuracy required for correct protein identification. The
most successful approach is “shotgun” proteomics that employs
proteases (often trypsin) to enzymatically cleave proteins
resulting in peptides, which are more convenient to separate and
sequence (21). The most reliable protein identification strategy
in shotgun proteomics is based on tandem (MS/MS) mass
spectra generation of tryptic peptides by fragmentation and their
consecutive search against databases of canonical/consensus
sequences. MS-based proteomics has been extensively applied
to investigate EGFR regulations, including phosphorylation,
ubiquitination, and protein–protein interactions as well
as post-translational modifications (22, 23). Zhang et al.
performed quantitative phosphoproteomics to unveil global
phosphorylation changes upon the erlotinib treatment of EGFR
mutation-positive lung adenocarcinoma cells (24, 25).

Unfortunately, mutant proteins, those products of non-
synonymous single nucleotide polymorphisms (nsSNP), are
overlooked in general MS-based proteomic data because these
proteoforms are excluded in canonical protein databases (26).
Although, the high number of nsSNPs, estimated to be >3
million, suggests that single amino acid variants (SAAVs) are
widely distributed in the human proteome (27), only a couple
of mutant proteins have been detected at expression level in
human samples (28). Cancerous diseases are often characterized
by high mutation rates (29) that are tightly associated with the
physiological and pathological traits of individuals (30), whereas
the allele-specific gene expressions in the heterozygous state are
also associated with various traits of individuals (31, 32).

Because many of these mutant proteins are exclusively
expressed in cancer cells (33), they can be identified as lead
candidates of optimal disease biomarkers. The qualitative and
quantitative analyses of these proteoforms, thus, can provide
novel diagnostic and prognostic values.

A laser microdissection (LMD) technique enables the
collection of target cells of a certain type from sections
of formalin-fixed paraffin-embedded (FFPE) cancer tissue
(34, 35). Label-free spectral counting and identification-based
semiquantitative shotgun proteomic analysis of microdissected
target cancerous cells of a certain type were used that
characterized lung adenocarcinoma (35).

A pivotal challenge is to understand how the major driver
mutations—EGFR L858R and Ex19del—affect disease-related
downstream networks together with other upstream driver
mutation crosstalk, which plays a central role in the context
of lung cancer progression, malignancy, and outcome and/or
resistance regarding TKI therapies (28). We performed mutant
proteomic analysis and applied the weighted gene correlation
network analysis (WGCNA), which is an unsupervised gene-
clustering method based on the correlation network of
gene expression (36–38) as well as spectral counting-based
comparative analysis. The main aim of this study was to identify
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the key modules and networks of mutant proteins associated
with the EGFRmutations L858R and Ex19del. To our knowledge,
this is the first proteomics study performed to identify mutant
proteoforms expressed in clinical tissue specimens.

MATERIALS AND METHODS

FFPE Tissue Specimens and Sample
Preparation
Among 974 patients who underwent surgical lung cancer
resection at St. Marianna University Hospital between 2000
and 2014, only 674 (69.3%) had tumors that were histologically
confirmed adenocarcinomas. Pathological specimens were
reviewed by pathologists to confirm that they satisfied the 2015
WHO classification of lung tumors (histological criteria) (39).
For tissue microdissection, 10-µm-thick sections from the
FFPE tumor blocks were cut onto DIRECTOR slides (OncoPlex
Diagnostics Inc., Rockville, MD, USA). The sections were
deparaffinized and stained only with hematoxylin using standard
histological methods prior to dissection. Microdissection was
performed using a Leica LMD7 Microdissection Microscope
(Leica, Wetzlar, Germany). A total area of 4 mm2 with about
15,000 tumor cells was transferred from the FFPE sections via
laser dissection directly into the cap of a 200-µL low-binding
tube. Proteins were extracted and digested with trypsin using
Liquid Tissue MS Protein Prep kits (OncoPlex Diagnostics,
Inc.). The procedures have been described in detail elsewhere
(34, 35, 38).

Liquid Chromatography-Tandem Mass
Spectrometry
Digested protein samples were used for liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis on a
Q-Exactive Orbitrap mass spectrometer (Thermo-Fisher
Scientific, Bremen, Germany) equipped with an LC system
operated at 500 nL/min via a nano-ESI device (AMR Inc., Tokyo,
Japan). The gradient was 110min long and a 5-µL sample was
injected in each analysis.

All LC-MS/MS data were acquired using Xcalibur, version 2.8
SP1 (Thermo Fisher Scientific) in high-resolution data-driven
analysis (DDA)mode with the survey scan (MS in the mass range
m/z 400–1,600) acquired in the Orbitrap at 70,000 resolution
(at m/z 200) in profile mode. The survey scan was followed by
the top 10 higher energy collision-induced dissociation (HCD)
MS/MS spectra, acquired in centroid mode in the Orbitrap at
17,500 resolution.

For MS/MS acquisition of top 10 precursors, the following
settings were used: minimal signal threshold = 1,700; isolation
width = 1.6 m/z; normalized collision energy = 27%.
Monoisotopic precursor selection, charge-state screening, and
charge-state rejection were enabled with rejection of singly
charged and unassigned charge states. Dynamic exclusion was
enabled to remove selected precursor ions (±10 ppm) for 15 s
after MS/MS acquisition. The expression levels of identified
mutant proteins were assessed by spectral count-based protein
quantification. Fold changes of expressed proteins in the base 2

logarithmic scale (RSC) (40) were calculated using the spectral
count (SpC) that is the number of MS/MS spectra assigned to
each mutant protein.

Identification of Mutant Proteoforms
A strategy to identify mutant proteoforms in lung cancer samples
was designed using high-quality shotgun proteomics tandem
mass spectra. The central component of the approach was a
unique set of protein sequences, which included SAAV sequences
translated from known genomic studies. Using a custom-made
software tool (FastaWriter v1.4.0), a new database of mutant
protein sequences (ProteoFinder v17.04.12) was generated to
include a mutation in each new entry that, thus, differed
in amino acid from the consensus protein. Titin (Q8WZ42)
was removed from the database to decrease the size of the
database as 21,045mutations were registered only on this protein.
The resulting in silico derived proteoforms (total number of
searchable mutations of 1,899,031) were denoted following the
neXtProt nomenclature, including the access codes but adding
information also about the position of the mutation (such as
NX_P07288-S132L). These SAAV sequences were then shortened
to reduce redundancy, keeping only the part of the protein
sequence where the amino acid exchange took place surrounded
by two additional tryptic peptides at both N- and C-termini.
The new database entries were rendered as a combination of
consensus (neXtProt database 2017-04-12 release) and mutant
proteoform sequences in standardized fasta format. Figure 1
illustrates a general workflow of identification of SAAVs by
tandem mass spectra searching a specialized protein database,
ProteFinder (PFdb), and MS-based sequencing of a mutant
peptide is exemplified.

The MS raw files of 108 runs (36 patient samples as triplicate)
were imported into PEAKS Studio v8.5 (Bioinformatics Solutions
Inc., Waterloo, Canada) (41) for database searching against the
PF v17.04.12 database, appended with contaminant sequences
(cRAP). PEAKS database searches were performed with a
precursor ion error tolerance of 10 ppm, fragment ion
error tolerance of 0.05 Da, fixed carbamidomethyl cysteine,
and modifications of oxidation (M), deamidation (NQ), and
acetylation (N-term) were set dynamically. Trypsin was specified
as the enzyme, allowing for two missed cleavages. The technical
triplicates were searched together, generating a single combined
result file of each biological sample.

The search results were further filtered for hits with
mutant specific tryptic peptides removing all multiple protein
identifications while multi-isoform hits with the same amino
acid change were included in the final list. Non-tryptic peptides
with the mutation were not considered as reliable identification
and were excluded in the additional filtering steps. Isobaric
amino acid mutations, i.e., exchange of Ile to Leu and Leu
to Ile, were registered for future experimental verification and
kept as potentially valid identifications. The summary of each
search, including score distributions and statistical data, which
are available as PDF files (e.g., AZ0x_summary.pdf) in Search
summaries in Supplementary Information File 1.

The technical triplicates together have resulted in rich data
with an MS/MS spectra range of 44,798–143,118, providing
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FIGURE 1 | General workflow of mutant proteomics. (A) Identification of SAAVs by tandem mass (MS/MS) spectra searching a specialized protein database,

ProteFinder (PFdb), which includes 1.9 million SAAVs, all human consensus sequences, splicing variants, and 105 common contaminant proteins. PFdb is verified in

PEAKS (Biosystems Inc.) and used together with its decoy databases. (B) MS-based sequencing of a SAAV of collagen a-1(I) chain (COL1A1–P02452) at the point

mutation, T1075A.

a peptide sequence match (PSM) range of 10,464–51,133,
peptide sequence range of 7,703–19,974, and protein group
range of 1,221–2,266. The identified mutant protein sequences
were between 252 and 964 after filtration, which is presented
in Supplementary Information File 2. The protein sequences
carrying amino acid variants were registered, and the presence
of each mutant protein was indicated in the technical replicates
as well as their scan numbers.

WGCNA
The similarity among protein expression patterns for all protein
pairs was calculated according to their pairwise Pearson’s
correlation coefficient, i.e., the similarity between proteins i
and j was defined as (1 – ri,j)/2, where ri,j is the correlation
of the protein expression patterns between the two proteins i
and j. An adjacency matrix was then computed by increasing

the similarity matrix up to the power of 10 to generate a
coexpression network with scale-free properties. Subsequently,
from the resultant scale-free coexpression network, we generated
a topological overlap matrix (TOM) that considers topological
similarities between a pair of proteins in the network. Using
the dissimilarity according to TOM (1 – TOM), we conducted
hierarchical clustering to generate a tree that clustered proteins
in its branches. Dynamic tree cutting was used to trim the
branches to identify protein modules. A protein module was
summarized by the top hub protein (referred to as eigen-protein)
with the highest connectivity in the module. To identify the
protein modules associated with clinical traits, we calculated the
correlation coefficients between the eigen-proteins and clinical
traits. WGCNA was conducted using a Garuda Platform gadget
(The Systems Biology Institute, Tokyo, Japan) that implemented
the WGCNA pipeline based on the WGCNA R-package (36).
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Protein–Protein Interaction Network
Construction and Functional Enrichment
To construct a protein interaction network for a protein module,
we used the STRING database (version 11.0) (42), which
accumulates information on protein–protein interactions from
various other databases, such as IntAct, Reactome, DIP, BioGRID,
MINT, KEGG, NCI/Nature PID, the Interactive Fly, and BioCyc.
STRING networks were constructed under the criteria for linkage
only with experiments, databases, text mining, and coexpression
using the default settings, i.e., a medium confidence score of
0.400, a network depth of 0 or 50 interactions. Subsequently,
protein networks imported from the STRING database were
visualized using Cytoscape version 3.7.2. Functional enrichment
results were obtained for canonical pathways considering p <

0.05 to be statistically significant.

Comparative Analysis of the Causal
Networks and Pathways Predicted by IPA
Canonical pathways, upstream regulators, and causal networks
were predicted using the ingenuity pathway analysis (IPA)
software (43). Mutant protein expression data (quantile-
normalized for selected modules) were used as input data sets.
Comparative analysis of the predicted causal networks (p-value
< 0.05) was performed to elucidate networks associated with
the three clinical traits: Ex19del, L858R, and no Ex19del/L858R
mutations, where activation and inhibition of a predicted
network were defined by z-values >2.0 and < −2.0, respectively,
and upregulation and downregulation were defined by z-values
>1.0 and < −1.0, respectively.

RESULTS

Mutant Proteome Data Sets of Lung
Adenocarcinoma
MS-based proteomic analysis was conducted for 36 FFPE
tissue specimens of lung adenocarcinoma (35 involved the
acinar subtype and one involved the papillary subtype).
These specimens were selected for their preserved condition,
tumor area, and well-clarified pathological diagnosis and EGFR
mutation status (nine specimens of the clinical trait M1: L858R
mutation, nine specimens of the clinical trait M2: Ex19del
mutation, and 18 specimens of the clinical trait NM: no Ex19del
or L858R mutation; see Table 1). Pre-surgical treatment was not
performed in any of the cases.

A total of 1,100 mutant proteins were identified, in which
M1, M2, and NM were 678, 612, and 837, respectively, and 405
(34.1%) were expressed commonly (Figure 2A). The proportion
of mutant proteins unique to the L858R mutation was 121
(11.0%), and that to the Ex19del mutation was 84 (7.8%), whereas
the proportion of proteins expressed in only no EGFR mutation
cases was 273 (24.8%). GO analysis using PANTHER Ver. 14.1
(44) exhibited mostly similar profiles in gene hits for all the
traits (M1, L858R mutation; M2, Ex19Del mutation; NM, no
Ex19del or L858R mutation; see Figure S1). Mutation proteins
with high hits in GO biological process included cellular process
(GO:0009987), localization (GO:0051179), cellular component

TABLE 1 | Clinicopathological information of the 36 patients.

Variable Category No. patients %

Gender

Female 16 44.4

Male 20 55.6

AGE (years)

Median (range) 67.9 (22–82)

Smoking index (Brinkmann Index, BI)

Female

BI = 0 12 75

0 < BI ≤ 400 0 0

400 < BI ≤ 600 0 0

600 < BI ≤ 1,200 4 25

BI > 1,200 0 0

Male

BI = 0 3 15

0 < BI ≤ 400 4 20

400 < BI ≤ 600 0 0

600 < BI ≤ 1,200 10 50

BI > 1,200 3 15

Histologic type

Adenocarcinoma 36 100

Subtype

Acinar 35 97.2

Papillary 1 2.8

Surgical method

Radical lobectomy 24 66.7

Limited resection 12 33.3

Tumor size on CT

T1a (≤1 cm) 1 2.8

T1b (1–2 cm) 11 30.6

T1c (2–3 cm) 11 30.6

T2a (3–4 cm) 4 11.1

T2b (4–5 cm) 7 19.4

T3 (5–7 cm) 2 5.6

T4 (>7 cm) 0 0

Clinical stage

cIA 21 58.3

cIIA 2 5.6

cIB 9 25

cIIB 1 2.8

cIV 3 8.3

EGFR mutation status

Positive

L858R 9 25

Ex19 E746-A750 del 9 25

Negative

Neither L858R nor Ex19del 18 50

organization or biogenesis (GO:0071840), biological regulation
(GO:0065007), metabolic process (GO:0008152), and response to
stimulus (GO:0050896). Those in the GO protein class included
cytoskeletal protein (PC00085), nucleic acid-binding protein
(PC00171), and metabolite interconversion enzyme (PC00262).

An orthogonal partial least square-discriminant analysis
(OPLS-DA) (45) was applied to identified mutant proteins and
interestingly exhibited profound differences in distance among
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FIGURE 2 | Venn map and orthogonal partial least square-discriminant analysis (OPLS-DA) of the identified proteins. (A) Venn map of the identified proteins. (B)

OPLS-DA of the expressed proteins including their spectral counts for patients.

the EGFRmutation statuses (Figure 2B), whereas a conventional
hierarchical clustering of patients according to mutant protein
abundance failed to show a clear separation among the three
clinical traits. Surprisingly, clear differentiation was found
between the NM group and the M1 and M2 groups. The data
points of the M1 group appeared to be to some extent scattered,
whereas those of the M2 group clustered closely. These findings
seem to unveil the mutant proteome landscape correlating with
the EGFRmutation type in lung adenocarcinoma.

Identification of Key Mutant Protein
Modules by WGCNA
A weighted gene coexpression network was constructed in
which all the identified mutant proteins were clustered, and we
found 23 mutant protein modules (Figures 3A,B). A spectral
counting-based heat map (46) for eigen-proteins in the modules
is shown in Figure 3C. In the WGCNA, a soft threshold

power of 15 was selected to define the adjacency matrix
according to the criteria of approximate scale-free topology
with a minimum module size of 30 and a module detection
sensitivity deepSplit of 4. The clinical traits for patients were set
according to the EGFR mutation status with M1, M2, and NM
traits corresponding to L858R mutation, Ex19del mutation, and
neither Ex19del/L858R mutation, respectively. The correlations
between resultant modules and clinical traits were determined
to identify mutant protein modules whose expressions were up-
or downregulated in L858del, Ex19del, or no Ex19del/L858R
mutation samples (Figure S2).

Among the 23 modules, only the WM6 module was
moderately correlated with the EGFR Ex19del mutation status
(r = 0.41, p < 0.05). Most of the other WGCNA modules were
not statistically significant. However, several modules seem to
be characteristic to the clinical traits (Figure S2). The WM10,
WM12, WM14, and WM22 modules seem to be characteristic
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FIGURE 3 | Gene modules identified by weighted gene coexpression network analysis (WGCNA). (A) Patient clustering according to mutant protein abundance with

the EGFR mutation profiles. The red, orange, and white cells below the patients indicate the EGFR mutation types, i.e., Ex19del mutation, L858R mutation, and no

EGFR mutation, respectively. (B) Gene dendrogram obtained by clustering dissimilarity according to topological overlap with the corresponding module. The colored

rows correspond with the 23 modules identified by dissimilarity according to topological overlap. (C) Heat map for the proteome abundance of eigen proteins in the

23 mutant protein modules by WGCNA. The rows and columns are the mutant protein modules and EGFR mutation types, respectively. The red and green colors

indicate high and low mutant protein abundances, respectively, of an eigen protein in a mutant protein module. The names of the eigen proteins in the protein modules

are indicated in parentheses.

to the L858R mutation status (r = 0.3, p = 0.08). The WM17
module showed a positive correlation with the Ex19del mutation
status (r = 0.3, p = 0.08). We could find no modules
characteristic to the NM trait (no L858R or Ex19del mutations).

WGCNA Modules Screened by ORA and
Functional Enrichment Analysis
The computational WGCNA framework (36) has been proven
to be powerful in identifying coexpression protein modules
(37, 38). However, it should be noted that traditional trait
analysis of the correlations between eigen components of
WGCNA modules and clinical traits might overlook important

modules for investigating molecular mechanisms differentially
behind a disease. Especially for clinical traits quite close to
each other, difficulties would be sometimes encountered to
attain identification of key WGCNA modules with a high
significance. Multiple correction testing, such as Bonferroni,
Benjamini-Hochberg, etc., would result in that none of the
modules associated withM1 orM2 remains significant. Statistical
over-representative analysis (ORA) would help to evaluate
potential keyWGCNAmodules with identified proteins uniquely
expressed and upregulated to each trait.

We conducted an ORA-based screening of WGCNA mutant
protein modules to further identify key protein modules to
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FIGURE 4 | Overlapping proteins unique to the clinical traits and/or upregulated under the M1 or M2 traits and those from weighted gene coexpression network

analysis (WGCNA). (A) Results of identified proteins and spectral-counting based semiquantitative comparison. Each row represents results for each protein group.

The red and pink cells in the “L858R mutation” and “Ex19del mutation” columns indicate that the proteins in the group are uniquely expressed and significantly

upregulated, respectively, in samples with the mutations [Upregulated with |Rsc| > 1 (M1 > M2 or M1 < M2)]. The fourth column shows the number of proteins in

each protein group. The fifth column provides notes for each protein group. The WGCNA modules with significant overlap with each protein group are listed in the

sixth column (“Modules” column). (B) Overlap in proteins between the groups by the protein expression profiles and the modules by WGCNA. Each row in the

embedded table represents overlap analysis results for each module. The first and second columns in the table represent module ID and color name of the module.

The third through eighth columns indicate the q-values for overlap in proteins between a module by WGCNA and the five protein groups. In the six columns, significant

q-values are highlighted in red. The eighth column represents the value of the most significant q-value (max q-value) in each module. The 18 modules with max

q-values <0.05 are listed in order.

investigate the differential disease mechanisms associated with
the EGFR L858R and Ex19del mutation statuses; 121, 84, and
273 mutant proteins identified were expressed uniquely to the
respective traits: M1, M2, and NM (Figure 3A); 132 and 142
mutant proteins were upregulated differentially to M1 and M2
with |RSC| >1 (higher than 2-fold change) in the comparison
between M1 and M2 (Figure S3). The overlaps between the
WGCNA-derived protein modules and identification-based
significantly expressed proteins were then assessed using the
over-representation test. We confirmed that five WGCNA
modules overlapped significantly (maximum q-value among the
groups <0.05) with protein groups unique to each trait and/or
highly upregulated to M1 or M2 (Figures 4A,B).

To characterize those five modules, we analyzed the biological
connectivity among the proteins in each module by mapping
the module proteins in the human protein–protein interaction
(PPI) network and among the biological pathways by pathway
enrichment analysis (Figures 5, 6).

Three WGCNA modules—WM10, WM14, and WM22—
significantly overlapped with protein groups uniquely identified
and highly upregulated under the L858R mutation (Figure 4).
The enriched pathways of the WM10 mutant protein module
involved DNA duplex unwinding, canonical glycolysis, glucose
catabolic process to pyruvate, DNA unwinding involved in DNA
replication, COPI-dependent Golgi-to-ER retrograde traffic, the
role of GTSE1 in G2/M progression after G2 checkpoint,
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FIGURE 5 | Analysis results for three protein modules (WM10, WM14, and WM22) that overlap with proteins uniquely and upregulated under the L858R mutation,

respectively. (A) Protein interaction networks for the three WGCNA modules. Dotted circle nodes in blue and red represent eigen-proteins and hub proteins,

respectively, for each module. (B) Pathway enrichment analysis using Go Biological Process and Reactome pathway databases for the three protein modules. The

vertical axis shows the pathway names, and the bars on the horizontal axis represent the –log10 (p-value) of the corresponding pathway. The different colors of the

bars are following the corresponding modules. Dashed lines in red, orange, and magenta indicate p-values <0.05, <0.01, and <0.001, respectively.

and formation of tubulin folding intermediates by CCT/TriC
(Figure 5B). The hub protein alpha-enolase (also known asMBP-
1) encoded by ENO1 is involved in the subnetworks related to
the carboxylic acid metabolic process (as indicated by the pink
dotted line 1 in Figure 5A) and is associated with glycolysis,
growth control, and hypoxia tolerance. MBP-1 binds to the
myc promoter and acts as a transcriptional repressor and so
maybe a tumor suppressor. The cell cycle–related subnetwork is
denoted by the pink dotted line 2 in Figure 5A. DHX9 encodes
ATP-dependent RNA helicase A [also known as nuclear DNA
helicase II (NDH II) or leukophysin (LKP)] participates in
multiple processes of gene regulation, including transcription,
translation, and DNA replication, and plays important roles at
themaintenance of genomic stability. DHX9 has been reported to
be overexpressed in various types of malignant tumors andmight
be a potential therapeutic target for the treatment of NSCLC (47).

The enriched pathways of the WM14 module include
epithelial cell differentiation, tissue development, cell death,

programmed cell death, developmental biology, and collagen
degradation (Figure 5). The hub protein KRT14 is associated
with developmental biology, which subnetwork is indicated
by the pink dotted line 3 in Figure 5A. The enriched
pathways of the WM22 module involve the immune effector
process, immune response, cytokine signaling in immune
system, and cellular responses to stress (Figure 5B). The
subnetworks related mostly to the immune system (the
pink dotted line 4 in Figure 5A), in which sterile alpha
motif and HD domain-containing protein 1 (SAMHD1),
a deoxyribonucleoside triphosphate triphosphohydrolase is
known to play roles in defense response to the virus
and cellular response to DNA damage stimulus, and is
dysregulated in breast and other cancers (48). Frequently
mutated SAMHD1 found in colon cancers was suggested to
be involved in tumorigenesis with defective mismatch repair
(MMR) (49) and also act as a resistance factor for anticancer
drugs (50).
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FIGURE 6 | Analysis results for three protein modules (WM6 and WM17) that overlap with proteins uniquely expressed and upregulated under the Ex19del mutation.

(A) Protein interaction networks for the three WGCNA modules. Dotted circle nodes in blue and red represent eigen-proteins and hub proteins, respectively, for each

module. (B) Pathway enrichment analysis using Go Biological Process and Reactome pathway databases for the three protein modules. The vertical axis shows the

pathway names, and the bars on the horizontal axis represent the –log10 (p-value) of the corresponding pathway. The different colors of the bars are following the

corresponding modules. Dashed lines in red, orange, and magenta indicate p < 0.05, <0.01, and <0.001, respectively.

Two WGCNA modules—WM6 and WM17—significantly
overlapped with protein groups uniquely identified and
highly upregulated under the Ex19del mutation (Figure 4).
The enriched pathways of the WM6 module involved DNA
replication-dependent nucleosome assembly, chromatin
silencing, double-strand break repair via non-homologous end
joining, cellular responses to stress, DNA damage/telomere
stress-induced senescence, and M phase (Figure 6B). The
hub protein is the mutant H3.1t encoded by the mutant
HIST3H3. Histone H3.1t protein (also known as H3t) itself
is a core component of the nucleosome and plays a central
role in transcription regulation, DNA repair, DNA replication,
and chromosomal stability. The subnetworks related to both
cellular responses to stress and mitotic prophase are indicated
by the pink dotted line 5 in Figure 6A. Calcineurin-like
phosphoesterase domain containing 1 (CPPED1, also known
as CSTP1) blocks cell cycle progression and promoting cell

apoptosis by dephosphorylating AKT family kinase (51).
CDK5RAP3 itself encodes CDK5 regulatory subunit associated
protein C53 (Cdk5rap3, also known as C53 and LZAP) that is
a probable tumor suppressor involved in signaling pathways
governing transcriptional regulation and cell cycle progression.
Its specific mutant protein was reported to prevent apoptosis-
induced cleavage of nuclear substrates, including nuclear
shrinkage, chromatin condensation, and DNA fragmentation
(52). The homeobox protein Nkx-2.1 [also known as thyroid
transcription factor-1 (TTF-1)] has a role in lung development
and surfactant homeostasis and is highly expressed in both
small-cell lung carcinoma (SCLC) and lung adenocarcinoma
(53, 54). Based on a quantitative real-time RT-PCR study
of the NSCLC cell lines, Zu et al. (55) concluded that TTF-
1 may serve as a tumor suppressor because of its inverse
correlation with Ki-67 proliferative activity and increase of
cellular apoptosis.
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TABLE 2 | The top master regulators of causal networks predicted using the ingenuity pathway analysis (IPA) for the WM10 and WM6 modules, which are representatively characteristic under the L858R and Ex19del

mutation statuses, respectively.

Module ID

(module

color)

Master

regulator

Molecule type Depth Predicted

activation

state

Activation

z-score

p-value of

overlap

Network

bias-

corrected

p-value

Participating regulatorsa Target molecules in datasetb

WM 10

(turquoise)

Osimertinib Chemical drug 3 Downregulated

highly under

M1 and NM

−1.667 3.84E-12 1.00E-04 AGT, Akt, AKT1, BLK, Creb, CTNNB1,
EGFR, ERBB2, ERBB3, ERBB4, ERK1/2,
ESR1, FOS, FOXO1, HBEGF, HIF1A,
HRAS, JUN, KRAS, MAP2K1, MTOR,
NFkB (complex), NRG1, osimertinib,
PSEN1, RAF1, RB1, ICTOR, SRC, STAT1,
STAT3, STA T5B, STAT6, TNK2, TP53,
TSC2

ACADVL, ACTA1, ACTC1, ALDH3A2, ALDOA,
COPA, COPB2, COPE, DDX39B, ENAH, ENO1,
FAM120A, G3BP1, GBE1, GFPT2, GSTK1,
HNRNPK, KRT10, LDHB, MACROH2A1, MCM2,
MCM4, MCM5, MMUT, NIPSNAP1, PADI2,
PDXDC1, PFKL, PFKM, PGD, PRPH, PSMC5,
PURA, RBBP7, RNF213, RTCB, RUVBL2,
SERPINH1, SF3B3, STMN1, TES, TMEM109,
TUBB2A, TUBB4A, VCL, VCP

NEUROG1 Transcription

regulator

3 Downregulated

highly under

M1 and NM

−1.89 4.35E-11 1.00E-04 Akt, AKT1, Cdc42, CHUK, ERK1/2,
HRAS, MAP2K1/2, MRTFA, NEUROG1,
PI3K(complex), RAF1, RELA, RHOA,
ROCK2, SRF, STAT, STAT3, STAT4,
STAT5A, STAT5B, STAT6, TP53

ACADVL, ACTA1, ACTC1, ALDH3A2, ALDOA,
COPB2, ELN, ENAH, ENO1, FAM120A, GBE1,
GFPT2, GSTK1, KRT10, LDHB, MACROH2A1,
MCM2, MCM4, MCM5, MMUT, MYO6, NOL3,
PADI2, PFKM, PGD, PURA, RBBP7, RTCB,
RUVBL2, SERPINH1, STMN1, TES, TUBB2A, UBC,
VCP

PARPBP Other 3 Activated

highly under

M1

2.449 4.52E-11 1.00E-04 AKT1, ESR1, ESR2, estrogen receptor,
NFkB (complex), PARPBP, PI3K (complex),
PRL, STAT1, STAT4, STAT5A, STAT5B,
TP53

ACADVL, ACTC1, ALDH3A2, ALDOA, CKM, COPA,
COPE, DDX39B, ELN, ENAH, FAM120A, GBE1,
GFPT2, HNRNPH2, KRT19, MACROH2A1, MCM2,
MCM4, MCM5, MMUT, NOL3, PADI2, PFKM, PGD,
PURA, RBBP7, RNF213, RUVBL2, S100A7A,
SERPINH1, STMN1, TUBA1B, UBC, VCL, VCP

HOXA1 Transcription

regulator

3 Activated

highly under

M1

2.646 5.38E-11 1.00E-04 AKT1, EGFR, ESR1, ESR2, HOXA1, PI3K
(complex), PPARA, PRL, RELA, STAT1,
STAT4, STAT5A, STAT5B, TP53

ACADVL, ACTA1, ACTC1, ALDH3A2, ALDOA,
CKM, COPA, COPE, DDX39B, ELN, ENAH,
FAM120A, GBE1, GSTK1, HNRNPH2, KRT19,
MACROH2A1, MCM2, MCM4, MCM5, MMUT,
NOL3, NQO1, PADI2, PFKM, PGD, PURA, RNF213,
RUVBL2, S100A7A, SERPINH1, STMN1, TUBA1B,
UBC, VCL, VCP

AMOT Other 3 Inhibited

highly under

M1 and M2

−2.646 7.02E-11 1.00E-04 AKT1, AMOT, CDKN1A, CTNNB1,
DYRK1A, ERBB4, GLI1, ITCH, Jnk, JUN,
JUNB, LATS2, MAP3K7, NFkB (complex),
RAF1, RELA, TAZ, TP53, TP63, TP73,
YAP1

ACADVL, ACTA1, ACTC1, ALDOA, CNIH4,
FAM120A, GBE1, GFPT2, HLA-, KRT10, KRT19,
LDHB, MACROH2A1, MCM2, MCM4, MCM5,
MMUT, MYL12A, MYO6, NOL3, NQO1, PADI2,
PFKM, PGD, PURA, RBBP7, RTCB, SERPINH1,
SF3B3, TUBB2A, UBC, VCL, VCP

IP6K2 Kinase 2 Inhibited

highly under

M1 and M2

−2.236 8.93E-11 1.00E-04 Akt, AKT1, IP6K2, MAP3K7, STK11, TP53 ACADVL, ACTA1, ALDOA, CKM, ENO1, FAM120A,
GSTK1, HLA-B, LDHB, MACROH2A1, MCM2,
MCM4, MCM5, MMUT, MYO6, NOL3, NQO1,
PADI2, PFKM, PGD, PURA, RBBP7, SERPINH1,
STMN1, UBC, VCL, VCP

(Continued)
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TABLE 2 | Continued

Module ID

(module

color)

Master

regulator

Molecule type Depth Predicted

activation

state

Activation

z-score

p-value of

overlap

Network

bias-

corrected

p-value

Participating regulatorsa Target molecules in datasetb

APH-1 Group 3 Activated

highly under

M1

2 9.86E-11 1.00E-04 Akt, AKT1, APH-1, APH1A, APH1B,
NOTCH1, PSEN1, PSEN2, Secretase
gamma, TP53

ACADVL, ALDOA, CKM, ENO1, FAM120A, GSTK1,
HLA-B, LDHB, MACROH2A1, MCM2, MCM4,
MCM5, MMUT, MYO6, NOL3, NQO1, PADI2,
PDXDC1, PFKM, PGD, PURA, RBBP7, SERPINH1,
STMN1, UBC, VCL, VCP

WM6 (blue) ASGR1 Transmembrane

receptor

3 Activated

highly to M2

3.606 1.90E-11 1.00E-04 AGT, AKT1, ASGR1, CCND1, CEBPB,
CREB1, CTNNB1, DDIT3, EGFR, ERBB2,
ERK, ERK1/2, ESR1, estrogen receptor,
FOS, FOXO1, HBEGF, HIF1A, HRAS,
JUN, MKNK1, MTOR, MYC, MYCN,
NCOA2, NOS2, PGR, PLCB1, PPARG,
PTPN11, SIRT1, SRF, TP53

AKR1A1, ARPC1B, ATP6V0D1, CAPZA2,
CDK5RAP3, CLDN3, COL3A1, COL6A2, DPYSL2,
FBL, GPD2, H2AC6, H2BC18, H4C1, H4C11,
H4C12, H4C14, H4C15, H4C2, H4C3, H4C4,
H4C6, H4C8, H4C9, HSPA2, HSPA5, HSPG2,
LMAN2, MAPK1, MOGS, NKX2-1, PCK2, PGAM1,
PRSS1, PSMA6, PTGFRN, RBM3, SEC22B,
SELENBP1, SND1, TINAGL1, TKT, UBE2L3,
UQCRC1

CEBPB Transcription

regulator

1 Activated

commonly

3.317 1.78E-10 1.00E-04 CEBPB GFAP, H4C1, H4C11, H4C12, H4C14, H4C15,
H4C2, H4C4, H4C6, H4C8, H4C9, PSMA6,
SERPINA1

APEX1 Enzyme 2 Activated

highly to M2

2 1.42E-06 9.00E-03 APEX1, c-Src, HIF1A, SIRT1, TDG,
temozolomide, TP53

ARPC1B, COL3A1, COL6A2, COX4I1, FTH1, GFAP,
H2AC6, H2BC18, H4C15, HSPA5, HSPG2,
LGALS3, LMAN2, MAPK1, NKX2-1, PCK2, RAP1B,
RBM3, TINAGL1, TKT, UQCRC1

Cbp/p300 Group 2 Activated

under both

M1 and M2

2 1.74E-06 1.99E-02 Cbp/p300, CTNNB1, EP300, ESR1,
estrogen receptor, NCOA2, NCOA3,
NFE2L2, NR3C2, PPARG, SMAD3, TP53

AKR1A1, ARPC1B, ATP6V0D1, CALD1, CLDN3,
COL3A1, COL6A2, COX4I1, FTH1, GPD2, H4C15,
H4C3, H4C6, HSPA5, HSPG2, LGALS3, LMAN2,
MAPK1, MOGS, NKX2-1, PCK2, PSMA6, PSMD5,
RBM3, SERPINA1, TINAGL1, UQCRC1

BUB1 Kinase 3 Activated

highly to M2

but inhibited

under NM

1.732 2.51E-07 3.80E-03 APC, AURKB, BUB1, CTNNB1, GFAP,
MTOR, PKM, TP53

AKR1A1, ARPC1B, COL3A1, COL6A2, COX4I1,
FTH1, GFAP, H4C15, HSPA5, HSPG2, LGALS3,
LMAN2, MAPK1, NKX2-1, PCK2, RBM3, SEC22B,
SERPINA1, SND1, TINAGL1, TKT, UQCRC1

MAPK10 Kinase 2 Activated

highly under

M2 but

inhibited

under NM

1.732 1.40E-05 4.76E-02 APP, CCND1, CDKN1A, JUN, L-serine,
MAPK10, MAPKAPK3, NR3C1, TP53

ARPC1B, COL3A1, COL6A2, DPYSL2, FTH1,
GFAP, H4C15, HSPA5, HSPG2, LGALS3, LMAN2,
MAPK1, MOGS, PCK2, PRSS1, RBM3,
SELENBP1, TINAGL1, TKT, TUFM, UQCRC1

HSF1 Transcription

regulator

2 Inhibited

commonly

−2.887 1.72E-11 1.00E-04 CEBPB, EIF2A, ERK1/2, HSF1 COL3A1, COL6A2, GFAP, H4C1, H4C11, H4C12,
H4C14, H4C15, H4C2, H4C4, H4C6, H4C8, H4C9,
HSPA5, MAPK1, PCK2, PSMA6, SERPINA1

HNRNPK Transcription

regulator

2 Inhibited

commonly

−2.887 1.06E-10 1.00E-04 CEBPB, ERK1/2, HNRNPK, MAP2K1/2 COL3A1, GFAP, H4C1, H4C11, H4C12, H4C14,
H4C15, H4C2, H4C4, H4C6, H4C8, H4C9, HSPA5,
MAPK1, PSMA6, SERPINA1

(Continued)

F
ro
n
tie
rs

in
O
n
c
o
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

1
2

A
u
g
u
st

2
0
2
0
|V

o
lu
m
e
1
0
|A

rtic
le
1
4
9
4

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Nishimura et al. Mutant Proteomics of Lung Adenocarcinomas

T
A
B
L
E
2
|
C
o
n
tin

u
e
d

M
o
d
u
le

ID

(m
o
d
u
le

c
o
lo
r)

M
a
s
te
r

re
g
u
la
to
r

M
o
le
c
u
le

ty
p
e

D
e
p
th

P
re
d
ic
te
d

a
c
ti
v
a
ti
o
n

s
ta
te

A
c
ti
v
a
ti
o
n

z
-s
c
o
re

p
-v
a
lu
e
o
f

o
v
e
rl
a
p

N
e
tw

o
rk

b
ia
s
-

c
o
rr
e
c
te
d

p
-v
a
lu
e

P
a
rt
ic
ip
a
ti
n
g
re
g
u
la
to
rs

a
Ta

rg
e
t
m
o
le
c
u
le
s
in

d
a
ta
s
e
tb

TG
FB

1
G
ro
w
th

fa
c
to
r

2
U
p
re
g
u
ra
te
d

u
n
d
e
r
M
2

1
.3
4
2

1
.3
1
E
-0
7

8
.2
0
E
-0
3

A
K
T1
,E
G
FR

,E
R
B
B
2,
FO

X
O
1,
H
IF
1A

,
IK
B
K
B
,J
U
N
,M

TO
R
,M

Y
B
,M

Y
C
,N

R
2C

2,
R
IC
TO

R
,S

R
F,
S
TA
T4
,S

TK
11
,T
G
FB

1,
TP

53

A
R
P
C
1B

,A
TP

6V
0D

1,
C
A
LD

1,
C
A
P
Z
A
2,

C
D
K
5R

A
P
3,
C
LD

N
3,
C
O
L3
A
1,
C
O
L6
A
2,
D
H
R
S
2,

D
P
Y
S
L2
,F
B
L,
FT
H
1,
G
FA
P,
H
2A

C
6,
H
4C

15
,H

4C
3,

H
B
G
2,
H
S
PA

5,
H
S
P
G
2,
LG

A
LS

3,
LM

A
N
2,
LM

N
B
1,

TA
4H

,M
A
P
K
1,
M
O
G
S
,N

K
X
2-
1,
P
G
A
M
1,
P
S
M
A
6,

R
B
M
3,
S
E
C
22
B
,S

E
LE
N
B
P
1,
S
E
R
P
IN
A
1,
S
N
D
1,

S
Y
P
L1
,T
IN
A
G
L1
,T
U
FM

,U
B
E
2L
3,
U
Q
C
R
C
1

a
P
ar
tic
ip
at
in
g
re
gu
la
to
rs
ar
e
re
gu
la
to
rs
th
ro
ug
h
w
hi
ch

th
e
up
st
re
am

re
gu
la
to
r
m
ol
ec
ul
e
co
nt
ro
ls
th
e
ex
p
re
ss
io
n
of
ta
rg
et
m
ol
ec
ul
es

in
th
e
d
at
as
et
.

b
Ta
rg
et
m
ol
ec
ul
es

in
th
e
d
at
as
et
ar
e
m
ol
ec
ul
es

in
ou
r
d
at
as
et
w
ho
se

ex
p
re
ss
io
n
is
p
ot
en
tia
lly
co
nt
ro
lle
d
b
y
an

up
st
re
am

re
gu
la
to
r.

The enriched pathways of the WM17 module involved
neutrophil degranulation, immune response, and immune
system (Figure 6B). The hub protein is the RAS-related
protein Rab-5C (also known as L1880 or RAB5L). Rab-5C
itself is one of the three isoforms of Rab-5, which is a
master regulator of the endocytic pathway. The subnetworks
related mostly to the immune system process are indicated
in the pink dotted line 6 in Figure 6A. Protein FAM83D
(also known as spindle protein CHICA), a probable proto-
oncogene, plays a role in cell proliferation, growth, migration,
and epithelial to mesenchymal transition (EMT) (56). Elevated
FAM83D expressions were reported in several cancers including
metastatic lung adenocarcinomas (57). Recently, Shi et al.
suggested its oncogenic activity by regulating cell cycle in lung
adenocarcinoma (58).

Comparative Analysis of Causal Networks
Predicted by IPA
The ORA-based screening of the WGCNA modules was
performed to capture clinically important modules and their
upstream regulators, which reflect the disease mechanisms
affected differentially under the different driver EGFR mutations
in lung adenocarcinoma. Both upstream regulators and causal
networks using IPA (http://www.ingenuity.com) software (43)
were performed especially for the two selected modules, WM
10 and WM6, which were significantly associated with the
Ex19del and L858R mutation (Figures 5, 6). Causal networks
predicted for these mutant protein modules included chemical
drugs, transcriptional regulators, transmembrane receptors,
growth factors, kinases, transporters, etc. Table 2 summarizes
top causal networks significant to each module (|z-value|
> 1.5) representative under the EGFR L858R or Ex19del
mutation status in the order of higher overlap significance,
p-value. Figure 7 presents the representative modules of
master and participating regulators with the target mutant
proteins differentially significant to the EGFR L858 or Ex19del
mutation status.

Regarding the WM10 module associated with the M1 trait,
the EGFR L858R mutation, PARPBP, HOXA1, and APH-1 were
highly activated or upregulated under the EGFR L858Rmutation,
whereas AMOT was highly inhibited under both L858R
and Ex19del mutations. PARPBP encodes poly (ADP-ribose)
polymerase-1 (PARP-1) binding protein, which plays a central
role in DNA repair and the maintenance of genomic stability,
regulating DNA repair, and negatively double-strand break repair
via homologous recombination. Xu et al. reported that PARPBP
expression was enhanced in lung adenocarcinoma tissues and
correlated with poor prognosis in lung adenocarcinoma patients
(59) and also that its high expression was closely correlated
with pathologic stages, suggesting its utility as an independent
predictor in lung adenocarcinoma patients. HOXA1 encodes
homeobox protein Hox-1F, a member of the Homeobox
(HOX) transcription factor family. HOXA1 mRNA and protein
expression levels were significantly upregulated in breast cancer,
and its overexpression was associated with poor prognosis
and tumor progression in breast cancer patients (60). Anterior
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FIGURE 7 | The representative modules of master and participating regulators with the target mutant proteins differentially significant under the EGFR L858 or

Ex19del mutation status, which were obtained by using IPA software. The modules of (A) HOXA1, (C) CXCL14, and (D) EP300 were predicted to be highly activated

and (B) AMOT highly inhibited in association with the L858R mutation status. The modules of (E) ASGR1 and (F) TYK2 were highly and/or differentially activated on

the Ex19del mutation status. Node shapes indicate molecular types: triangle, kinase; square (dashed), growth factor; rectangle (horizontal), ligand-dependent nuclear

receptor; rectangle (vertical), ion channel; diamond (vertical), enzyme; diamond (horizontal), peptidase; trapezoid, transporter; oval (horizontal), transcription regulator;

oval (vertical), transmembrane receptor; double circle, complex; circle, other. Red or light red colors indicate highly or moderately increased expression of a mutant

protein in the data set. Orange or light orange colors indicate the extent of confidence for predicted activation and the blue and light blue for predicted inhibition. Lines

denote predicted relationships. A solid or dashed line indicates direct or indirect interaction, respectively. Orange indicates leading to activation; blue, leading to

inhibition; yellow, findings inconsistent with the state of a downstream molecule; gray, an effect not predicted.

pharynx defective 1 (APH1) is the group APH1A and APH1B,
which are the members of the gamma-secretase complex,
comprising presenilin (PSEN1 and PSEN2), anterior pharynx
defective 1 (APH1), presenilin enhancer 2 (PEN2), and nicastrin.
Gamma secretase substrates are known to include the four well-
characterized mammalian Notch receptors (Notch1-4) and the
five canonical transmembrane Notch ligands. Aberrant Notch
activation drives development, tumorigenesis, and progression
of lung cancer and is known to participate in resistance to
anti-VEGF therapy (61). The inhibition of Notch activation by

gamma-secretase inhibitors (GSIs) then could benefit NSCLC
patients (62). Angiomotin (AMOT) and its related proteins,
scaffold proteins, AMOT family proteins, were identified to have
a strong interaction with the transcription factors Yes-associated
protein (YAP) and TAZ (transcriptional coactivator with PDZ-
binding motif) by tandem affinity purification (TAP) and
mass spectrometry (63). Scaffold proteins angiomotin negatively
regulated the transcription factors YAP and TAZ by preventing
their nuclear translocation, suggesting a tumor-suppressing
role of AMOT family proteins as components of the Hippo
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FIGURE 8 | The causal networks of downregulated osimertinib intervention and activated MNK1/2, which were predicted to be significant under L858R mutation

status, illustrated together with the related inhibitors: dacomitinib and tomivosertib.

pathway. However, Hong reported the controversial results that
AMOT may promote nuclear translocation of YAP and act as a
transcriptional cofactor of the YAP-TEAD complex to facilitate
the proliferation of epithelial cells and cancer development (64).
It has been pointed out that the functional roles of AMOTs in
different cancer types are controversial, highly depending on cell
context (65).

Interestingly, among all causal networks predicted from the
WM10 module, the downregulation of osimertinib intervention
showed the highest significance in overlap p-value, in which
EGFR, ERBB2, ERBB3, ERBB4, BLK, and TNK and their
downstream pathways were maintained. In this study, we used
FFPE tissue specimens collected from lung adenocarcinoma
patients who did not receive any EGFR tyrosine kinase inhibitors,
such as osimertinib. It has been reported that L858R-positive
patients of NSCLC had a poor prognosis and difference in
therapeutic outcome compared to Ex19del-positive patients
(6). Moreover, the comparative IPA analysis predicted the
MNK1/2 causal network highly and differentially activated
under the L858R mutation status (Table S1), which have
been targeted by several chemical drug inhibitors for EGFR
mutation-positive lung cancers. Those inhibitors, including
dacomitinib, tomivosertib, BAY1143269, and ETC-1907206, have
been developed for various types of EGFR mutation-positive
cancers mainly including NSCLCs and various types of clinical
trials are currently undergoing. Other top causal networks
activated differentially under the EGFR L858Rmutation included
max-myc (complex),MYC, F8, STK11, and RAD21.

For the WM6 module associated with the M2 trait, the EGFR
Ex19del mutation, ASGR1 and APEX1 were highly activated,
and BUB1, MAPK10, and TGFB1 were upregulated. CEBPB was
activated commonly under all the traits, whereas Cbp/p300 was
activated under both Ex19del and L858R mutations. ASGR1
encodes a subunit of the asialoglycoprotein receptor (ASGR)
expressed in the extracellular region and a complex of the
receptor and binding ligand is internalized. ASGR has been
suggested to promote cancer metastasis by activating the EGFR–
ERK pathway through interactions with counter-receptors on
cancer cells, responding to endogenous lectins in the tumor
microenvironment (66). APEX1 (also known as APE1, APX,
HAP1, and REF1) and encodes DNA-apurinic/apyrimidinic (AP)
site endonuclease (protein names, such as APEN, APE-1, and
REF-1), which plays a central role in the cellular response to
oxidative stress, in which its two major activities are DNA
repair and redox regulation of transcriptional factors. The
elevated levels of APEX1 have been reported in several cancers,
including lung cancer (67), and also to be associated with
resistance to chemotherapy and radiotherapy in some cancers
(68). MAPK10 encodes mitogen-activated protein kinase 10
(also known as stress-activated protein kinase JNK3), which is
involved in a wide variety of cellular processes, including stress
response, proliferation, differentiation, transcription regulation,
and development.MAPK10 functions as a tumor suppressor and
the deletion of this proapoptotic gene would favor the survival
and proliferation of cancer cells (69). BUB1 encodes mitotic
checkpoint serine/threonine-protein kinase BUB1 or budding
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uninhibited by benzimidazoles 1 (Bub1), which is required for
chromosome alignment and resolution of spindle attachment
errors but does not play a major role in the spindle assembly
checkpoint (SAC) activity. Overexpression of Bub1 in breast
cancer is associated with a poor clinical prognosis (70). Recent
tumor xenograft studies suggested that the Bub1 kinase inhibitor
BAY 1816032 in combination with taxanes or PARP inhibitors
enhanced their efficacy and suppressed the development of
therapy resistance (71). CEBPB encodes CCAAT/enhancer-
binding protein beta (C/EBP beta), which is important in the
regulation of genes involved in immune and inflammatory
responses. C/EBP beta induces elevated IL-6 expression levels
frequently observed in human lung adenocarcinomas (72) and
interacts with peroxisome proliferator-activated receptor-gamma
(PPARG) involved in pathways of transcriptional misregulation
in cancer (73). The study using the inducible EGFR T790M-
L858R transgenic mouse models suggested that C/EBP beta is
dispensable for lung tumorigenesis in EGFR-driven murine lung
cancer (73).

DISCUSSION

Outcomes of lung adenocarcinoma patients receiving EGFR
TKIs were reported to be affected depending on the types of
EGFR gatekeeper mutation (6, 74), which are serious clinical
challenges. Targeting disease-associated dual core networks
rather than targeting a single protein (gene) as in conventional
approaches is expected to greatly improve the outcomes of
individual patients, such as efficacy and safety, in line with
the concept of precision medicine. Such a concept, so-called
network pharmacology, was first proposed by Hopkins (75),
which aims to induce synthetic lethality by targeting dual
hub molecules involved in different disease core networks. We
have first conducted a mutant proteomic analysis for clinical
tissue specimens of 36 lung adenocarcinoma patients who
harbored distinct EGFRmutations, Ex21 L858R, Ex19del, and no
L858R/Ex19del. Disease-related network modules are elucidated
from mutant protein expression data sets, which would be
potentially associated with the activation of downstream and/or
upstream networks affected under distinct EGFR mutations. In
particular, this study focuses on influence in disease-related
networks of lung adenocarcinoma, which would take place
under the L858R mutation. Our analytical workflow combining
WGCNA with ORA-screening identified several mutant protein
modules significantly overlapping with upregulated mutant
proteins under the EGFR L858R mutation.

Our goal with the present study was to apply an unbiased
bioinformatic method to characterize the mutant profiles
of detectable SAAVs after filtering with stringent criteria
of database identifications in pathologically well-described
patient samples. Mass spectrometry-based proteomic data is
widely recognized as an information-rich source of uniquely
expressed proteoforms, but tandem mass spectra interpretation
is dependent on fragmentation efficiency and identification
strategies. Because the number of subjects was limited in
each patient group, we presented quality control data in

the Supplementary Material demonstrating the overall
homogeneity of the mass spectrometric data due to low technical
variability of sample preparation and data acquisition. Careful
interpretation of the findings highlighted potential differences
between phenotypes, which suggests that different oncogenic
driver EGFRmutations would affect activation or inactivation of
their downstream disease-related molecular networks, which are
often associated with protein mutations.

Surprisingly, the OPLS-DA performed for identified mutant
proteins demonstrated profound differences in distance among
the different EGFR mutation groups, L858R, Ex19del, and
no L858R/Ex19del, suggesting that cancer cells harboring
L858R or Ex19del emerge from cellular origins differently
from L858R/Ex19del-negative cells (Figure 2B). Aberrant cells
would, thus, emerge as a subpopulation of tumor cells of
genetic intratumor heterogeneity, which would rapidly grow and
predominantly survive by disrupting the tumor environment.
To confirm our observation, a further large-scale investigation
with genomic alteration analysis by next-generation sequencing
(NGS) is required.

The pathways of the carboxylic acid metabolic process,
cell cycle, developmental biology, and immune system were
centrally associated under the L858R mutation. The top IPA
causal networks predicted for the representative mutant protein
module-WM10 were associated with the regulation of DNA
repair, cancer development, tumorigenesis, and maintenance of
genomic stability as well as therapeutic resistance. Interestingly,
the downregulation of osimertinib intervention showed the
highest significance rank in overlap among all causal networks
predicted from the WM10 module (Table 2). This finding might
suggest the potential usefulness of osimertinib to be revisited
for the L858R-positive patients of lung adenocarcinoma. Both
the causal networks of osimertinib intervention and MNK1/2
identified significantly and differentially, respectively, may
evidence disease mechanisms associated with EGFR mutation-
positive lung adenocarcinoma (Figure 8).

The pathways of cellular responses to stress, mitotic prophase,
cell proliferation, growth, migration, epithelial to mesenchymal
transition (EMT), and immune system process were mostly
involved under the Ex19del mutation. The IPA causal networks
elucidated for the representative mutant protein module,
WM6, seem to be associated dominantly with the EGFR–ERK
pathway. The pathways related to the Hippo pathway and
tumorigenesis were commonly involved under both L858R and
Ex19del mutations.

The limitations of this study are as follows: first, the number
of patients examined is limited to be 36, which was attributed
to collect the homogeneous tumor-derived samples with the best
effort. Second, genomic alteration analysis was not conducted for
the same samples.

In conclusion, we successfully applied WGCNA combined
with ORA-based protein screening to clinical mutant proteomic
data sets from 36 patients of lung adenocarcinoma. The
proteomic discovery method detecting mutant proteoforms
has revealed specific profiles distinguishing the phenotypically
characterized patient groups. Our results could confirm the
usefulness of mutant proteomics to identify activated or
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inactivated disease-related mutant protein networks affected
under distinct EGFR mutations. Verification and quantitative
analysis of these molecular features in an independent patient
cohort are yet to be undertaken by either using targeted
proteomics or RNAseq and combining the resulting data in
a systems biology approach. Additionally, our findings may
help in the development of therapeutic strategies to improve
patient outcomes. Differences in mutant proteomes between
L858R and Ex19del mutation cells help to demonstrate the
difference in efficacy of various EGFR-TKIs. Further verifications
with a greater number of patient samples and targeted analysis
of mutant proteoforms throughout the cohorts are planned
in follow-up studies to achieve a better understanding of the
expression profiles of SAAVs in phenotypic groups and establish
a relationship between the detected networks in connection to
disease progression.
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Figure S1 | Geneontology (GO) analysis of the identified proteins to the three

traits-M1 (L858R), M2 (Ex19del), and NM (no L858R/Ex19del). (A) GO Biological

process. 1, developmental process (GO:0032502); 2, multicellular organismal

process (GO:0032501); 3, cellular process (GO:0009987); 4, reproduction

(GO:0000003); 5, cell population proliferation (GO:0008283); 6, localization

(GO:0051179); 7, reproductive process (GO:0022414); 8, multiorganism process

(GO:0051704); 9, biological adhesion (GO:0022610); 10, immune system process

(GO:0002376); 11, cellular component organization or biogenesis (GO:0071840);

12, biological regulation (GO:0065007); 13, growth (GO:0040007); 14, signaling

(GO:0023052); 15, metabolic process (GO:0008152); 16, response to stimulus

(GO:0050896); 17, pigmentation (GO:0043473); 18, behavior (GO:0007610); 19,

locomotion (GO:0040011). (B) GO Molecular function. 1, translation regulator

activity (GO:0045182); 2, transcription regulator activity (GO:0140110); 3,

molecular transducer activity (GO:0060089); 4, binding (GO:0005488); 5,

structural molecule activity (GO:0005198); 6, molecular function regulator

(GO:0098772); 7, catalytic activity (GO:0003824); 8, transporter activity

(GO:0005215). (C) GO Cellular component. 1, synapse part (GO:0044456); 2,

membrane part (GO:0044425); 3, membrane (GO:0016020); 4, synapse

(GO:0045202); 5, organelle part (GO:0044422); 6, extracellular region part

(GO:0044421); 7, cell junction (GO:0030054); 8, membrane-enclosed lumen

(GO:0031974); 9, protein-containing complex (GO:0032991); 10, supramolecular

complex (GO:0099080); 11, extracellular region (GO:0005576); 12, cell

(GO:0005623); 13, cell part (GO:0044464); 14, organelle (GO:0043226). (D) GO

Protein class. 1, extracellular matrix protein (PC00102); 2, cytoskeletal protein

(PC00085); 3, transporter (PC00227); 4, scaffold/adaptor protein (PC00226); 5,

cell adhesion molecule (PC00069); 6, nucleic acid binding protein (PC00171); 7,

intercellular signal molecule (PC00207); 8, protein-binding activity modulator

(PC00095); 9, calcium-binding protein (PC00060); 10, gene-specific

transcriptional regulator (PC00264); 11, defense/immunity protein (PC00090); 12,

translational protein (PC00263); 13, metabolite interconversion enzyme

(PC00262); 14, protein modifying enzyme (PC00260); 15,

chromatin/chromatin-binding, or -regulatory protein (PC00077); 16, transfer/carrier

protein (PC00219); 17, membrane traffic protein (PC00150); 18, chaperone

(PC00072); 19, cell junction protein (PC00070); 20, structural protein (PC00211);

21, storage protein (PC00210); 22, transmembrane signal receptor (PC00197).

Figure S2 | Relationship between module eigen proteins and the L858R and

Ex19del mutations in the EGFR gene. Each row in the embedded table represents

weighted gene coexpression network analysis results for each module. The first

and second columns in the table represent module ID and color name of the

module. The third column represents the number of proteins in each module. The

fourth, fifth, and sixth (seventh, eighth, and ninth) columns indicate the correlation

coefficients (p-values of the correlation coefficients) between the corresponding

modules and the clinical traits. The table is color-coded by correlation coefficient

according to the color legend on the right side of the figure. The intensity and

direction of the correlations are indicated on the right side of the heat map (red,

positive correlation; blue, negative correlation). p-values (<0.10) are highlighted

in red.

Figure S3 | RSC values between M1 and M2 calculated for proteins identified

(X-axis). Mutant proteins upregulated with 2-fold changes for M1 (RSC ≥ 1) and

M2 (RSC ≤ −1) are denoted.

Table S1 | The comparative analysis results of causal networks predicted for

mutant proteins expressed commonly (see Venn map in Figure 2A). MNK1/2,
Max-Myc, MYC, XBP1, BTG2, F8, STK11, and RAD21 were highly activated

(z-score > 2.5) and differentially under M1 (L858R).
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