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During the immune response, the cytokine interleukin 8 (IL-8,
CXCL8) functions as a strong chemoattractant for polymorpho-
nuclear leukocytes helping to direct these cells to infected/
injured sites. This review focuses on the interaction of IL-8 with
sulfated glycosaminoglycans expressed on cell surfaces and
the extracellular matrix. This interaction contributes to the
recruitment of polymorphonuclear cells from blood, penetra-
tion of these cells through the vessel wall, and their directed
migration to inflammatory sites. Regulatory aspects of the
interplay between IL-8 and heparan sulfate, the most
abundant glycosaminoglycan, are highlighted. In this field,
the large natural heterogeneity of glycosaminoglycans repre-
sents a great challenge that impedes the modeling of IL-8
functions. The interaction of IL-8 with newly developed
artificial sulfated hyaluronan derivatives is also considered as
these artificial substrates are an important tool for develop-
ment of new materials in regenerative medicine.

Introduction

Chemokines are small proteins participating as important
players of the immune system in recruitment of leukocytes, cell
communication and activation. In humans, more than 40
different chemokines are known for their specific functions in
innate and acquired immunity. They are divided into four main
classes (C, CC, CXC and CX3C chemokines) according to
position and spacing of cysteine(s) near the N-terminus. The
cytokine interleukin-8 (IL-8, also called CXCL8 according to the
chemokine nomenclature) released from fibroblasts, monocytes/
macrophages, endothelial and epithelial cells at inflammatory sites
is a strong chemoattractant agent mainly toward polymorpho-
nuclear leukocytes (PMNs).1 These cells are rapidly recruited to
infected and/or injured tissue and represent the first line of
immune response in our body. In addition to IL-8, the infiltration

of PMNs to inflammatory sites is also highly regulated and
supported by adhesion molecules, other cytokines, and extra-
cellular matrix components in both blood vessel wall and adjacent
tissue.2,3 Polymorphonuclear leukocytes contribute to pathogen
defense, regulation of the inflammatory process and to tissue
injury by releasing special proteins and generating reactive
metabolites. The interplay between apoptotic and necrotic
PMNs as well as macrophages at infected/injured sites mainly
determines the outcome of inflammatory response.4-9 However,
fine mechanisms important to switch from a pro- to an anti-
inflammatory state including the termination of IL-8 responses
are only scarcely known and remain to be further evaluated.

Here we briefly review the physiological functions of IL-8 in
the stepwise recruitment of PMNs with special consideration of
the interaction of IL-8 with polysaccharides of the extracellular
matrix. The binding of IL-8 to sulfated glycosaminoglycans
(GAGs) is a crucial step for the regulation of cell adhesion,
migration and inflammation. Due to the great structural diversity
of GAGs, a number of important questions concerning the matrix
interaction of IL-8 remain unsolved. Answers to these questions
will help to better understand regulation of inflammation, but
also to develop new therapeutic strategies to treat conditions of
dysregulated innate immune functions.

Structure of IL-8 and Isoforms

The three-dimensional structure of IL-8, composed of 72 amino
acids, is well described.10 The monomer consists of a conforma-
tional flexible N-terminus, which passes through a loop region
and a three stranded antiparallel β-sheet, arranged in Greek
key manner, into a C-terminal a-helix (residues 57−72).11-14

Two disulfide bridges are necessary for the anchorage of the
N-terminus to the protein core and for the maintenance of the
tertiary structure.12,15 Important structural details of human IL-8
are given in Figure 1.

The short, more disordered N-terminus contains cleavage sites
for proteolytic enzymes. After secretion as a monomeric protein,
IL-8 is processed at the N-terminal end by extracellular pro-
teinases to yield several active forms. The most prominent forms
consist of 77 or 72 amino acid residues.16 Proteinase 3, thrombin,
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plasmin, CD13, cathepsin L and several matrix metalloproteinases
are known to be involved in the processing of IL-8. Elongation
and deimination are further modification procedures of natural
occurring IL-8.17,18

As many other cytokines, IL-8 monomers tend to form dimers.
Apparently, the monomeric form dominates at nano- and low
micromolar concentrations, i.e., the concentration range com-
monly used in receptor binding studies. At higher concentrations,
important for structural studies, the dimer is preferred.19

However, little is known about the existence of these forms,
their functions and the equilibrium between them in vivo.
Genetic engineering allows the production of stable IL-8
monomers and dimers that can be used to evaluate the role of
this cytokine in inflammatory models.20

The receptor binding motif ELR (Glu4-Leu5-Arg6 of the 72
amino acid form of IL-8) is localized near the N-terminus and
arranged in a conformation favorable for receptor binding by
interaction with the residues 30–36 of the neighboring loop
region.21-24 Apparently, this ELR motif is also sterically protected
from proteolytic attack. Most, but not all, posttranslational
modifications of IL-8 are accompanied by a higher activity of
this cytokine in receptor-mediated responses in PMNs or
receptor-transfected cells.18,25 In IL-8, the receptor binding ELR
motif is immediately adjacent to the first cysteine of the CXC

motif that is an important structure characteristic of CXC
chemokines.

On the surface of IL-8, there are several positively charged
epitopes involved in the binding of sulfated glycosaminogly-
cans.26-28 The two main binding regions for heparin and heparan
sulfate are localized on the C-terminal a-helix and the proximal
loop around residues 18–23.

Thus, binding sites for receptors and GAGs are well separated,
allowing IL-8 to interact with both components at the same time.
While the removal of the entire C-terminus reduces partially the
biological activity of IL-8, the elimination of the N-terminus with
the receptor-binding motif completely prevents cytokine binding
to the receptor.12,21,29,30 Citrullination of the N-terminal arginine
in IL-8 has only small effects on the receptor-binding capacity,
but weakens considerably binding to heparan sulfate.17

Receptors for IL-8

Neutrophils as well as other leukocytes are equipped with two
kinds of G protein-coupled receptors for IL-8 called CXCR1 and
CXCR2.31,32 Both integral proteins have seven transmembrane
domains. They bind IL-8 with high affinity as indicated by low
interaction constants.1 While CXCR1 is highly specific to IL-8,
CXCR2 is known to interact with a number of other cytokines
bearing an ELR group.33

Receptor activation by IL-8 causes phosphorylation of protein
kinase B, calcium influx, formation of F-actin, and cytoskeletal
rearrangement. These events are very important for directed
chemotactic movement of PMNs.

The duffy antigen receptor for chemokines (DARC) is also able
to bind IL-8 and other chemokines with high affinity. This
receptor is involved in transepithelial transport of IL-8.34

In addition to proteolytic processing, several other factors are
known to modulate the binding of IL-8 to its receptors. Alpha-1
antitrypsin and IL-8 form a complex that is unable to interact
with CXCR1.35 Oligomerization of chemokines affects also their
interaction with receptors. While both monomeric and dimeric
IL-8 forms are capable of inducing cell recruitment, the dimeric
form seems to induce a stronger initial migration of neutrophils.20

Binding to sulfated glycosaminoglycans promotes oligomerization
of IL-8.36

Biochemistry of the IL-8/Glycosaminoglycan
Interaction

Structural diversity of glycosaminoglycans. Glycosaminoglycans
are complex, linear polysaccharides of the extracellular matrix.37,38

They are composed of repeating disaccharide units that can be
additionally modified by epimerization and/or sulfation. Most
important GAGs in the extracellular matrix are the sulfated
polysaccharides heparan sulfate, chondroitin sulfate, dermatan
sulfate and keratan sulfate as well as the non-sulfated hyaluronan.3

Mast cells contain and release heparin, a polysaccharide closely
related to heparan sulfate. Basic structural properties of these
GAGs and potential sites for postsynthetic modifications are
listed in Table 1.

Figure 1. Three-dimensional structure of human IL-8 in solution as
determined by NMR spectroscopy. The figure was constructed using
the coordinates deposited in the Protein Data Bank (accession code
pdb1IL8) by the pymol software (version 0.99). Due to the high
concentrations used in structural studies IL-8 is present as a dimer, where
the two a-helices are arranged in antiparallel fashion on top of a six
stranded b-sheet. The receptor binding site, including the N-terminal
receptor binding motif ELR (Glu-Leu-Arg) and the loop region from
residue 30–36, is shown in yellow. GAG-binding regions, shown in red,
comprise the residues 18–23 in the proximal loop and the a-helical
domain. Of note, receptor- and GAG-binding sites are spatially separated.
Further details are given in the text.
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Different kinds of postsynthetic modifications result in a great
structural diversity of polymers especially in the sulfated forms.
For example, 48 different disaccharide units can principally be
formed in heparin/heparan sulfate. Even though only 23 of these
variants really exist due to steric restrictions,39 the resulting large
variety of these polysaccharides is enormous. Moreover, there are
also large differences in the degree of modifications in repeating
units along the polysaccharide chain. In heparan sulfate, highly
N-sulfated regions are alternating with unmodified N-acetyl-rich
domains.40 The latter domains contain a considerable fraction of
6-O-sulfate residues.41 This large structural heterogeneity limits
considerably our understanding of interacting mechanisms
between cytokines and glycosaminoglycans.

Sulfated GAGs (most of all heparan sulfate) are often attached
to proteins forming proteoglycans. Table 2 contains important
proteoglycans of the cell surface and the extracellular matrix.
Syndecans and glypicans are expressed on the surface of
endothelial cell and leukocytes. Agrin, perlecan and type XVIII
collagen are components of the subendothelial basement
membrane.42 Several other proteoglycans on the cell surface
acquire heparan sulfate chains only upon activation of the cell.
Important members of this group are the hyaluronan receptor
CD44, the type III transforming growth factor-β receptor
betaglycan, and testican.42-44

Together with different collagens, proteoglycans form a tight
network stabilizing tissues and contributing to various tissue-
specific functions. In case of infection or injury, immune cells

have to penetrate from surrounding blood vessels to inflammatory
sites through this network to fulfill their specific immune
functions. Interleukin-8, like other cytokines and a number of
small proteins such as growth factors, lipases and proteases, is
known to interact closely with sulfated proteoglycans.45-49

Structural aspects of the interaction of IL-8 with sulfated
glycosaminoglycans. An obvious important question is the signi-
ficance of particular postsynthetic modifications of sulfated GAGs
in interaction with IL-8. Measurement of the tryptophan fluo-
rescence of recombinant human IL-8 (human IL-8 contains one
tryptophan residue at position 57)11 in interaction with selected
glycosaminoglycan hexasaccharides revealed high affinity binding
for both chondroitin-6-sulfate (KD = 1.4 ± 0.4 mM) and heparin
(KD = 2.0 ± 0.4 mM).28,50 Binding constants for chondroitin-
4-sulfate, dermatan sulfate and hyaluronan are considerably
higher.28 These data indicate the importance of 6-O-sulfate
groups in these saccharides, which are only found in chondroitin-
6-sulfate and heparin/heparan sulfate. The significance of other
modifications still remains unknown.

Based on site-directed mutagenesis,51,52 molecular modeling52,53

and NMR spectroscopy,26,50 H18, K20, R60, K64, K67 and R68
were identified as the essential residues in IL-8, participating in
the interaction with heparin and heparan sulfate. These basic
amino acids, located in the proximal loop and the C-terminal
a-helix, are the driving force for electrostatic interaction with
negatively charged carboxylic and sulfate groups of the GAGs. It
is therefore not surprising that IL-8 possess the same binding

Table 1. Glycosaminoglycans of the extracellular matrix

Glycosaminoglycan Repeating sugar units Postsynthetic modifications

Epimerisation of
GlcA to IdoA

O-Sulfation Modification of
N-acetyl groups

Hyaluronan →3)bGlcNAc(1→4)bGlcA(1→ — — —

Dermatan sulfate →3)bGalNAc(1→4)bGlcA(1→ + GalNAc: 4-O-SO3
- —

Keratan sulfate →4)bGlcNAc(1→3)bGal(1→ — GlcNAc: 6-O-SO3
- —

Chondroitin-4-sulfate →3)bGalNAc(1→4)bGlcA(1→ + GalNAc: 4-O-SO3
- —

Chondroitin-6-sulfate →3)bGalNAc(1→4)bGlcA(1→ + GalNAc: 6-O-SO3
- —

Heparan sulfate/heparin →4)bGlcNAc(1→4)aGlcA(1→ + GlcNAc: 3-O-SO3
-

6-O-SO3
-

GlcA/IdoA: 2-O-SO3
-

Deacetylation,
N-sulfation

GlcNAc, N-acetyl-D-glucosamine; GalNAc, N-acetyl-D-galactosamine; Gal, D-galactose; GlcA, D-glucuronic acid; IdoA, L-iduronic acid.

Table 2. Important proteoglycans of cell surfaces and extracellular matrices

Proteoglycan Location Glycosaminoglycan side chains Full-time expression

Cell
surface

Basement
membrane

Extracellular
matrix

Heparan
sulfate

Chondroitin
sulfate

Syndecan + + + +

Glypican + + +

Agrin + + + +

Perlecan + + + +

Type XVIII collagen + + + +

CD44 + +

Betaglycan + + +
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regions for heparin and monosulfated GAGs like chondroitin
sulfate and dermatan sulfate. Nevertheless, depending on the
structure of the GAGs not only different binding constants were
determined, but also differences in the involved IL-8 amino acid
residues were observed. For example, using NMR spectroscopy,
an interaction of chondroitin-6-sulfate with the residues R60,
K67, R68 of IL-8 was demonstrated, while this was not the case
in the interaction of IL-8 with chondroitin-4-sulfate.28

Although an interaction of hyaluronan with IL-8 was demon-
strated in diverse binding studies,28,54 no specific binding sites
could be determined by means of NMR spectroscopy.28

According to computational prognoses, it is assumed that in
case of monomeric IL-8, binding of GAGs occurs parallel to the
C-terminal a-helix under involvement of residues 18–23 of the
N-terminal loop.28,52 However, the orientation of GAG molecules
in an IL-8 dimer is controversial. For instance, it is supposed that,
by a perpendicular orientation of GAGs to the helix axis, the two
IL-8 monomers are bridged with each other.27,53 This conflicts
with the assumption that longer GAGs bind dimeric IL-8 in a
horseshoe fashion, in which respective GAG residues are again
aligned in parallel to the a-helix.28,52,55

Published studies have shown that the interaction of GAGs
with a protein can be improved by sulfation.27,28,50 However, in
addition to the overall number of sulfate groups, the relative
positions of sulfate groups also play an essential role.50,55 Hence,
the interaction between GAGs and IL-8 is not only a purely
electrostatically driven process, but steric interactions as well as
the formation of hydrogen bonds are also crucial for its specificity.

Interaction of IL-8 with artificially modified hyaluronan.
Hyaluronan is released in large amounts from different cells at
infected and/or injured sites in response to various pro-
inflammatory stimuli. This long, unbranched and non-sulfated
polysaccharide enlarges the space between cells and matrix com-
ponents in tissues. This provides better conditions for penetration
of immune cells, and pathogenic and injured material will be fixed
for a given time allowing their removal by phagocytes. However,
high molecular weight hyaluronan features predominantly
immunosuppressive and anti-inflammatory activities even at sites
of inflammation and was shown to promote healing.56-58

Although hyaluronan does not contain sulfated residues, the
future application of artificially modified hyaluronan species
in three-dimensional scaffolds, in novel tissue replacement
approaches and in pads for treatment of chronic wounds is an
important tool in regenerative medicine. A crucial chemical
modification of hyaluronan is the incorporation of sulfate
groups providing the molecule with cytokine, chemokine and
growth factor binding capabilities. Specific interaction of sulfated
hyaluronan with human bone morphogenetic protein-4 and
transforming growth factor-β1 has been demonstrated.59,60 We
tested the adsorption of IL-8 to sulfated hyaluronans that were
immobilized on a collagen matrix. Indeed, we detected substantial
adsorption of IL-8 to the matrices only when they contained
sulfated hyaluronan derivatives (Fig. 2A). In our assay we used
two different hyaluronan derivatives (Fig. 2B), one sulfated in the
C-6' position (low sulfated hyaluronan) and one sulfated in the
C-6' position and additionally in the C-4' and/or C-2 position

(highly sulfated hyaluronan).59,61 In these samples, average degree
of sulfation per dianhydro sugar unit was 1.0 and 3.1 for the low
and high sulfated hyaluronan, respectively. Intriguingly, IL-8
adsorption to highly sulfated hyaluronan was significantly higher
than to the low sulfated form indicating a role for 4-O-sulfation
and/or 2-O-sulfation in the binding of IL-8 to artificially
modified hyaluronan.

Evidence for Biological Relevance
of the IL-8/glycosaminoglycan Interactions

Internalization of IL-8. At the site of infection, IL-8 is produced
by extravascular cells as well as stimulated endothelial cells. After
binding to heparin sulfate chains and to DARC at the abluminal
surface of the endothelium, this cytokine is internalized and
transcytozed to the vessel lumen.34,62 The immobilization of IL-8
on the cellular glycocalyx modulates the PMN recruitment.63

Figure 2. (A) Adsorption of human macrophage-derived IL-8 to modified
hyaluronan containing different levels of sulfation. For adsorption of IL-8,
native and differentially sulfated hyaluronan (kindly provided by
Dr Moeller, INNOVENT e.V. Jena, Germany) immobilized on a collagen
matrix were incubated with supernatants of LPS stimulated human
monocyte-derived macrophages containing 138 ± 46 ng/ml IL-8. Tissue
culture polystyrene was used as control substrate. After 24 h at 37°C,
the supernatants were harvested and amounts of IL-8 determined by
ELISA. Level of adsorbed IL-8 was calculated from the difference of
the IL-8 amount determined in supernatants from the control substrate
and of the IL-8 amount determined in supernatants from the different
hyaluronan matrices, respectively. All data are mean (± SD) of three
independent experiments. *p , 0.05; **p , 0.005 (t-test); (B) chemical
structures of native HA and sulfated HA derivatives.59 coll I, collagen I;
HA, hyaluronan; lsHA, low sulfated HA; hsHA, high sulfated HA
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However, the relevance of this immobilization is still a matter
of controversy.

Effects of glycosaminoglycans on IL-8-mediated chemotaxis
of PMNs. Several studies support the hypothesis that binding of
IL-8 to surface endothelial GAGs is a crucial prerequisite for
PMN attraction. A shortened IL-8 mutant, where the C-terminal
GAG-binding domain has been deleted, failed to attract PMNs
with the same extent as native IL-8 in vitro and in vivo.62 In
another study, IL-8 variants containing alanine mutations in
GAG binding domains were instilled into the lungs of mice that
led to higher plasma concentrations accompanied by an increased
PMN infiltration.64 The high plasma levels of this mutant IL-8
may be caused by its inability to bind to matrix components.

Divergent results were also obtained when chemotaxis of
PMNs was assessed in vitro in Boyden chamber assays where
two medium-filled chambers are separated by a porous filter
membrane. In general, cells are allowed to migrate from the upper
to the lower compartment containing chemotactic stimuli. In this
experimental setting, the chemotactic activity of PMNs toward
IL-8 was determined to occur at low nanomolar concentrations
(ED50 = 0.4 ± 0.1 nM).21,50 To achieve a more physiological
situation, GAGs have to be included into the experimental setup.
Two different strategies can be followed: GAGs can be added
either to the cell suspension in the upper chamber or to IL-8 in
the lower chamber. Co-incubation of IL-8 with heparin or
dextran sulfate decreased the chemotaxis of PMNs,50,65 while co-
incubation with heparan sulfate either enhanced chemotaxis66 or
did not exert any effect.65 When heparin, chondroitin sulfate or
hyaluronan were co-incubated with PMNs, the migratory activity
was unaffected.50 While native hyaluronan had no impact on
IL-8-induced PMN migration, both, low and high sulfated
hyaluronan markedly reduced the chemotactic activity of PMNs
upon co-incubation with IL-8 in the Boyden chamber assay (data
not shown). These reports imply that investigating chemotaxis
in vitro and interpreting the data demands great caution. Addition
of GAGs to IL-8 potentially induces the formation of protein-
GAG-aggregates that reduce the available amount of IL-8 to build
up a chemotactic gradient and thereby hampers migration.28

However, in vivo all three components (PMNs, IL-8 and GAGs)
are present together and, thus, IL-8 may still stimulate chemo-
taxis. Moreover, due to dynamic equilibria between GAG-bound
and soluble IL-8 as well as between monomers and dimers,
different forms of IL-8 exist that may modulate PMN recruitment
profiles spatiotemporal.20

Effects of IL-8 on integrin functions. During the recruitment
of PMNs from blood to inflammatory sites, IL-8 acts in concert
with selectins and integrins. The ligation of IL-8 to its G-protein
coupled receptors CXCR1 and CXCR2 initiates a signaling
cascade in PMNs that passes, among others, through the activa-
tion of phospholipase C and an inositol 1,4,5-triphosphate-
mediated calcium release from internal stores.67 For instance, IL-8
can induce the recruitment of secretory vesicles and to a minor
extent of gelatinase granules to the plasma membrane, which both
contain the integrin aMβ2 (CD11b/CD18).68 In this way, the
cell surface is furnished with additional adhesive proteins required
for a firm attachment to the vessel wall.63,69

Interleukin-8 is also involved in integrin activation.70 In
addition to CD11b/CD18, the integrin aLβ2 (CD11a/CD18)
plays a central role in neutrophil migration. During IL-8-
stimulated chemotaxis, CD11a/CD18 is bound to the lamel-
lipodium, while CD11b/CD18 is redistributed to the rear of
activated neutrophils.71 This suggests that clustering is a possible
mechanism by which IL-8 induces enhanced integrin activity.
Another study indicates that CD11a/CD18 is required for the
directional migration, whereas CD11b/CD18 mediates cell
movement during IL-8 activation.72

Effects of IL-8 on oxidative activity of PMNs. Upon reaching
the site of infection, PMNs use several mechanisms to extermin-
ate invading pathogens. Phagocytosis, secretion of hydrolyzing
enzymes, microbicidal proteins and myeloperoxidase from azuro-
philic granules into the phagosoms as well as the production of
reactive oxygen species (ROS) belong to their cytotoxic arsenal.
To minimize severe collateral damage, those mechanisms have to
be activated temporally and spatially restricted.

Interleukin-8 mediates substantial production of ROS in
PMNs only at micromolar concentrations as evaluated by con-
version of the non-fluorescent dihydrorhodamine 123 into a
fluorescent product.50 This concentration range is about three
orders of magnitude higher than that of IL-8-induced chemotactic
movement. Thus, the main function of IL-8 is to direct PMNs
to inflammatory loci and to cause a priming of these cells.
Subsequently, full activation of PMNs performing microbicidal
functions is achieved by other stimulating agents such as bacterial
products (e.g., formylated tripeptides or lipopolysaccharides),
components of the complement system and others.

With respect to the influence of GAGs on the ROS produc-
tion induced by IL-8 only a few information are available. We
recently published a study that investigated the relevance of
heparin, chondroitin sulfate and hyaluronan for this mechanism.
Intriguingly, heparin and chondroitin sulfate enhanced the
respiratory activity of PMNs when used in combination with
IL-8, while hyaluronan was ineffective.50 Hence, IL-8-mediated
stimulation of PMN defense mechanisms necessitates recon-
sideration, whereby the influence of IL-8/GAG binding has to be
taken into account for a proper understanding of the system.

Conclusions

Interleukin-8 is an important chemokine directing polymorpho-
nuclear leukocytes to inflammatory sites. Thereby it interacts
closely with sulfated polysaccharides of proteoglycans of cell
surfaces and the extracellular matrix, whereby this interaction may
be disturbed by enzymatic digestion of polysaccharides.26,28,36,73-75

Although many details of the interplay between IL-8 with its
receptors and proteoglycans are well known, we are far from
understanding this role of interaction in biological processes
in vivo. This is, among others, caused by the complex set of
modifications that modify IL-8 and GAGs. On the one hand,
different forms of IL-8 exist due to processing and citrullination.
On the other hand, the large, natural heterogeneity of postsyn-
thetic modifications in heparan sulfate chains yields an enormous
diversity of sulfation and charge distribution in the proteoglycan
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layer already at short distances. Proteoglycan digesting enzymes
that are present during inflammation further modulate the
characteristics of the layer. Taken together, this makes it
problematic to evaluate the significance of the IL-8-GAG-
interaction in vivo.

In vitro experiments revealed the importance of 6-O-sulfation
for binding of IL-8 to GAGs. However, it remains unknown
which particular patterns of sulfation and dynamic alterations
in these patterns contribute to the regulation of IL-8 functions
in vivo.

The creation of artificially modified matrices is a fundamental
tool in regenerative medicine to improve wound healing and
immunological safety of graft materials. Thus, it is highly

important to know how these materials interact with cytokines
and immune cells. As shown on selected examples, the intro-
duction of sulfate groups into a hyaluronan matrix significantly
improves its binding of IL-8.

Thus, in immune responses IL-8 is a necessary component to
direct immune cells to infected/injured sites. Hence, it is a high
challenge to gain insight into further unknown details of
functional and regulatory aspects of this chemokine.
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