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Abstract: Phytopathogens, such as biotrophs, hemibiotrophs and necrotrophs, pose serious stress on
the development of their host plants, compromising their yields. Plants are in constant interaction
with such phytopathogens and hence are vulnerable to their attack. In order to counter these attacks,
plants need to develop immunity against them. Consequently, plants have developed strategies of
recognizing and countering pathogenesis through pattern-triggered immunity (PTI) and effector-
triggered immunity (ETI). Pathogen perception and surveillance is mediated through receptor
proteins that trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM)
surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which trigger a
complex set of mechanisms through the pattern recognition receptors (PRRs) and resistance (R) genes.
These interactions lead to the stimulation of cytoplasmic kinases by many phosphorylating proteins
that may also be transcription factors. Furthermore, phytohormones, such as salicylic acid, jasmonic
acid and ethylene, are also effective in triggering defense responses. Closure of stomata, limiting
the transfer of nutrients through apoplast and symplastic movements, production of antimicrobial
compounds, programmed cell death (PCD) are some of the primary defense-related mechanisms.
The current article highlights the molecular processes involved in plant innate immunity (PII) and
discusses the most recent and plausible scientific interventions that could be useful in augmenting
PII.

Keywords: plant immunity; defensive pathways; signaling mechanisms; PTI; ETI; phytohormones

1. Introduction

The interaction between the plants and the microbes antedate history, and they face
each other constantly for various purposes, such as in the form of biocontrol agents [1],
arbuscular mycorrhiza [2,3] and as many other mutual beneficiaries or pathogens since
their origin. Several of these microorganisms cause various diseases in different crop
plants creating havoc and enormous economic loss by compromising crop productivity
and yield [4,5]. This field of plant microbes and their interactions with the plants has been
an interesting emerging area of research currently. Concomitantly, this information provide
useful insights on the emergence of diseases, the occurrence of genetic changes, and under-
lying defensive mechanisms in both plants and microbes and their effective management
practices [4,5]. The current review provides an overview of the existing state of knowledge
in the area of plant innate immunity (PII) and updates on the recent information that have
been added to the various aspects of PII currently discussed. Furthermore, the importance
of signaling pathways and their downstream effectors associated with PII in the light of
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recent research is discussed that is supposed to unfold vistas for new research designs for
effective management of plant diseases suited for commercial utilization.

An attack by microbial pathogens, pests and tissue and cellular damage in plants,
generally is detected by cell-surface receptors through the evolutionarily conserved innate
immune system. According to Jones and Dangi [6], these microbial pathogens capable of
impairing plant growth and reproduction respond to infection using a two-branched innate
immune system that firstly recognizes and responds to molecules common to many classes
of microbes, including non-pathogens and secondly, to pathogen virulence factors, either
directly or through their effects on host targets. The plant immune systems (PII) and the
associated pathogen molecules provide enormous insights into molecular recognition, cell
biology and evolution across the biological kingdom. Their details are currently highlighted
in the following sections.

2. Pattern-Triggered Immunity (PTI)

Pattern-triggered immunity (PTI) is the first layer in the immune response. In this
process, the pattern recognition receptors recognize the conserved molecular patterns like
lipopolysaccharides, peptidoglycans, chitin, flagellin, EF-Tu, DNA and ergosterol known as
pathogen-associated molecular patterns (PAMPs) or microbe-associated molecular patterns
(MAMPs), which aids in the hydrolysis and activation of signaling pathways including
production of reactive oxygen species (ROS), MAP kinase activation and transcriptional
induction of pathogen-responsive genes. Several excellent reviews of MAMPs are avail-
able [7–10]. The microbial and pathogen-associated molecular patterns are slow processes
as they evolve over a considerable period [6]. One key aspect of the definition of PAMPs and
MAMPs is that they are conserved and widely distributed within a class of microbes [11].
Sometimes, as a result of pathogen attack, the plants recognize that their peptides are
continuously synthesized. These are released into the extracellular space, including plant
apoplast, from their normal location due to damage (trauma), and these molecules are
referred to as damage-associated molecular patterns (DAMPs) [12–14]. The MAMPs are
derived from microorganisms, while DAMPs are host cell-derived and both initiate and per-
petuate innate immune responses [14]. Of the DAMPs, the largest and best-characterized
are polypeptides/peptides produced from larger precursor proteins that include three
families discovered by Ryan and his colleagues during their study to identify systemin—a
term “used to describe polypeptide defense signals that are produced by the plant in
response to physical damage and induce defense genes, either locally or systemically [15].
An 18 amino acid (aa) polypeptide was isolated from a tomato seedling that was shown
to induce the synthesis of wound-inducible proteinase inhibitor proteins [16]. Located in
vascular parenchyma cells, the tomato systemin is generated by wound-induced processing
of a 200 aa prohormone prosystemin and induces the neighboring companion cells and
sieve elements of the vascular bundle to synthesize jasmonic acid (JA), that activates the
expression of proteinase inhibitor genes [17]. A third family of peptide-based DAMPs,
discovered in Arabidopsis, are 23 aa plant elicitor peptides (Peps) that are derived from a
92 aa precursor [18]. The receptors identified are known as AtPeps, which induce a variety
of innate immune responses and enhanced resistance, and a form of precursor ProPep3
PROPEP3 was recently shown to be released into the extracellular space upon infection of
Arabidopsis with hemibiotrophic Pseudomonas syringae [19]. A maize ortholog, ZmPep1, was
subsequently identified and shown to enhance resistance to microbial pathogens [20].

Extracellular ATP (eATP) comprises yet another class of plant DAMPs found in both
plants and animals. Deciphering plasma membrane-localized receptors, eATPs were
ascribed to signaling functions. Based on the observations on the dorn1 [20] mutant and
wound-inducible genes, eATPs have been designated as a plant DAMP [21]. Additionally,
eATP is found to induce typical innate immune responses that include cytosolic Ca2+ influx,
MAPK activation, and induction of some dense-associated genes that are involved in the
biosynthesis of JA and ethylene [21]. However, it is unclear yet whether it contributes to
resistance to pathogens.
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A constitutive basal immunity present in plants is triggered by the pathogens, thus
providing complete or incomplete resistance to them against those phytopathogens [14].
The plants have two protective physical barriers called the cuticle and cell wall, and addi-
tionally, the production of various antimicrobial compounds act as a control measure. Even
though the cuticle protects against phytopathogens and pests, some fungi are able to pene-
trate, while the cell wall aids in protecting against various abiotic and biotic stresses [22].
There are many ways through which the phytopathogens get into the plant system and
cause damage to them, such as through natural openings like stomata, lenticels, hydath-
odes and nectarthodes, or through wounds and cuts that occurred as a result of herbivory,
rains/storms or human interventions [22]. Therefore, the plants recruit many cell-surface
and intracellular immune receptors to perceive a variety of immunogenic signals associated
with pathogen infection and followed by the activation of defensive signaling cascades [23].

2.1. Bacteria

Flagellin is the most studied protein subunit, constituting the bacterial flagellum and
its receptor is a leucine-rich repeat that behaves like kinases (LRR-RLKs) FLAGELLIN
SENSING 2 in Arabidopsis. The N terminal of the flagellin contains a 22-amino acid con-
served region, which initiates and elicits flagellin sensing responses thereon [24]. Recently,
it has been reported that glycosidase β-galactosidase 1 (BGAL1) acts on the glycosylated
flagellin having a terminal modified viosamine, as normally flagellin is glycosylated, act-
ing upstream of proteases in the plant apoplast, which is the site for invading bacteria’s
released immunogenic peptides [25]. Therefore, bacterial strains like Pseudomonas syringae
produce unrecognizable glycans called BGAL1-insensitive, which surpass the detection by
the FLS2 [24–27].

Similarly, another LRR-RLK, bacterial elongation factor Tu (EF-Tu) receptor (EFR)
detects the 18-amino acid region of the EF-Tu also initiates the signaling cascade. Upon
recognition, they instantaneously heterodimerize with the LRR-RLK family coreceptor
BAK1 [5,28]. Rapidly phosphorylation of the receptor-like cytoplasmic kinase (RLCK) BIK1
and its homolog PBL1, which is associated constitutively with FLS2/EFR, and BAK1 occurs
and is thereby released from the receptor complexes upon MAMP perception [28,29]. This
BIK1 then directly phosphorylates the plasma membrane NADPH oxidase RBOHD (respi-
ratory burst oxidase homologue protein D), resulting in the production of reactive oxygen
species (ROS) and aids in stomatal immunity which along with calcium signaling-mediated
RBOHD regulation. This production of ROS is crucial for the establishment of a successful
immune response against pathogens. The RBOHD is regulated by ubiquitination and C-
terminal phosphorylation. It was recently reported that when AVRPPHB Susceptible1
(PBS1)-like kinase 13 (PBL13) receptor-like cytoplasmic kinase phosphorylates at the C
terminal of the RBOHD at positions S862 and T912, it provides stability and affects its
activity [5,28,30,31].

The effectors of bacterial pathogens generally target the kinases of the plants namely
RLK and RLCK. For instance, type III effectors of Pseudomonas syringae including AvrPto,
AvrPtoB, HopF2, and HopB1 target BAK1 while effectors of Xanthomonas oryzae Xoo2875
targets the BAK1 homolog of Oryza sativa (OsBAK1). The formation of the FLS2-BAK1
complex is interrupted by the AvrPto and AvrPtoB as they bind to BAK1. Similarly,
P. syringae AvrPphB and X. campestris AvrAC target BIK1. This AvrPphB is a cysteine
protease that degrades PBS1-like kinases, like BIK1 while the uridylyl transferase AvrAC
phosphorylates for the activation loop of BIK1. This shows that inhibiting the kinases of
the plants is beneficial and advantageous to bacterial pathogens [32].

2.2. Fungi

Irieda and co-workers (2019) [32] reported a novel core effector PAMP, which is highly
conserved in the filamentous fungi, named necrosis-inducing secreted protein 1 (NIS1).
This effector targets the RLK (BAK1) and RLCK (BIK1) kinases and thereby induces PTI
signaling in the plants. This effector was first reported [33] from the Nicotiana benthamiana,
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as it caused cell death due to the pathogen, cucumber anthracnose fungus, Colletotrichum
orbiculare. This is involved in the suppression of multiple PTI responses in the Nicotiana
benthamiana by suppressing oxidative burst and hypersensitive responses followed by the
pathogen signatures. Similarly, the fungus, Magnaporthe oryzea NIS1 (acquired through
horizontal transfer) also suppresses some responses of PTI whereas the homolog of NIS1
in Colletotrichum tofieldiae (a root endophyte) shows similar responses by suppressing
oxidative burst in Nicotiana benthamiana. The NIS1 is conserved in the Ascomycota and
Basidiomycota and suggests that it is inherited and sustained through generations. Recently,
it was reported [34] that the moss, Physcomitrella patens is able to detect chitin and thereby
activates RLK-CERK1 (chitin elicitor receptor kinase 1; chitin receptor in moss) responses.
Thus, the RLK-dependent PAMP recognition is inherited ancestrally in plants [32].

The rice chitin elicitor-binding protein (CEBiP) contains extracellular LysM motifs
for binding chitin, but an intracellular kinase domain is absent. With the help of RNAi,
it was shown that CEBiP is required for chitin-induced defenses in rice. The CERK1 of
Arabidopsis contains three LysM motifs in the extracellular domain and an intracellular
Ser/Thr kinase domain is required for perception of chitin and bind directly to chitin
in vitro. It is anticipated that CERK1 forms a heterodimer with CEBiP to bind chitin.
Surprisingly, it was found that CERK1 plays an important role in disease resistance to P.
syringae bacteria raising the possibility that it also mediates the perception of an unknown
bacterial PAMP [35–39].

2.3. Virus

Virus-derived nucleic acids (VDNA) may also activate PAMP recognition receptors
and VDNA-PAMPs have been reported to elicit the Nuclear Shuttle Protein-Interacting
Kinase 1 (NIK1)-mediated antiviral signaling pathway that transduces an antiviral signal
to suppress global host translation [40]. The classical plant PTI similarly restricts virus
infection as compared to non-viral pathogens, such as first undergoing the preactivation
of PTI with non-viral PAMPs conferring resistance to virus infection, indicating that PTI-
induced immune responses confer protection against viruses [41], and second, suppressing
PTI by the pathogens in order to successfully colonize a host [40].

3. Effector-Triggered Immunity (ETI)

During the process of evolution, plants have developed R (resistance) proteins that
can identify some of the many effectors produced by the pathogens in order to activate the
defense mechanisms. Table 1 lists some of the major effectors produced by pathogens and
their R genes. The foundation stone was laid by the concept given by Flor (1971) [42] for
the determination of receptor–effector recognition [43]. The Flor concept for gene-for-gene
hypothesis states that for each resistance gene in the host, there is a corresponding gene for
avirulence in the pathogen conferring resistance and vice versa [42]. The effectors which are
recognized by the R proteins are termed avirulence (Avr) proteins, and the pathogen that
contains this is called an avirulent pathogen. These R proteins are primarily intracellular
nucleotide binding-leucine rich repeat (NB-LRR) proteins and can be categorized based on
the presence of variable N terminal coiled-coil and toll/interleukin 1 receptor-like protein
families (CC or TIR NB-LRR) [44]. The coiled-coil NB-LRR (CNL) are found generally
in both monocot and dicot whereas, the latter on TIR NB-LRR (TNL) is found only in
the dicots [39]. Both pattern recognition receptors and NLRs, initiates the downstream
signaling networks thereby leading to the expression of defense-related genes, production
of reactive oxygen species (ROS) and callose deposition [45].
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Table 1. Different effectors produced by pathogens and their R genes.

Pathogen Avr Proteins R Genes Host Plant References

Bacterial effectors and R genes

Pseudomonas syringae
and Erwinia amylovora

AvrB
AvrC

AvrRpm1
AvrPpiA1
AvrPpiB1
AvrPphD

AvrRps4 (AvrPpiE)
AvrPto

Rpg1-b, Rpg2
Rpm1
Rpg3
Rpm1
Rpm1

R2
R3
R5

Soybean
Arabidopsis thaliana (A.

thaliana)
Soybean

A. thaliana
A. thaliana

Pea
Pea
Pea

[46–48]
[46,49–53]

[54,55]
[56]

[46,51,57–59]
[54,60–62]

[46,53,63–66]
[62,67–70]

AvrPtoB
AvrRpt2
AvrRps4

AvrD
HopPtoD2

AvrE
AvrF

HopAR1
(AvrPphB)

HopX (AvrPphE)
AvrPphF
AvrPphA
virPphA

Rps4
Pto (and PRF)
Pto (and PRF)

Rps2
Rps2
Rps4
Rpg4

-
DspA (dspEF)

Rps5 (and Pbs1)
R3
R2
R1

A. thaliana
Tomato
Tomato
Soybean

A. thaliana
A. thaliana
Soybean

-
-

A. thaliana
Bean
Bean
Bean

Xanthomonas axonopodis AvrBs1

Bs1 Pepper [62,71,72]
Xv3
Bs3
Bs4
Rxv

Tomato
Pepper
Tomato

Bean

Xanthomonas oryzae

AvrXa3
AvrXa5
AvrXa7

AvrXa10
AvrXa21
AvrXa27

Xa3
Xa5
Xa7
Xa10
Xa21
Xa27

Rice
Rice
Rice
Rice
Rice
Rice

[73–75]
[62,76,77]

-
-
-
-

Xanthomonas campestris Hax3
Hax4

Bs4
Bs4

Tomato -
-

Xanthomonas campestris
AvrB6
pthN

pthN2

B1 Cotton [62,75,78]
- [79]

Xanthomonas oryzae AvrRxo1 Rxo1 Corn -

Xanthomonas citri pthA - - [62,80]

Xanthomonas campestris

XopD
AvrBsT
AvrXv4
AvrBs2

-
BsT
Xv4
Bs2

-
A. thaliana

Tomato
Pepper

[46,53,81]
[46,53]

[46,53,82]
[62,83]

Ralstonia solanacearum PopP2 Rrs1-R A. thaliana [84]
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Table 1. Cont.

Pathogen Avr Proteins R Genes Host Plant References

Fungal and oomycetes effectors and R genes

Cladosporium fulvum

Avr2 Cf-2 Tomato [46,85,86]
Avr4 [46,87,88]

Avr4E
Avr9
Ecp1
Ecp2
Ecp4
Ecp5

Hcr9-4E
Cf-9

Cf-ECP1
-
-
-

[89]
[90–92]

[91]
[91,93]

[94]
[95]

Ecp6
Ecp7

Leptosphaeria maculans

AvrLm1 Rlm1 Oilseed rape [96,97]
AvrLm6

AvrLm4-7
Rlm6

Rlm4 and Rlm7
[97,98]

[97]

Fusarium oxysporum

Avr1 (Six4) I (I-1) Tomato [99]
Avr2 (Six3) I-2 [100]

Six2
Avr3 (Six1)

-
I-3

Magnaporthe oryzae

Avr-Pita
Avr-Pita2
Avr-Pita3

Pi-ta
Pi-ta

-

Rice
Rice
Rice

[46,101,102]
[103–105]
[106–109]

Pwl1, Pwl2, Pwl3, Pwl4
Ace1

Avr1-CO39
AvrPiz-t
AvrPia
AvrPii

Avr-Pik/km/kp

Avirulence
towards weeping

lovegrass
Pi33

Pi-CO39(t)
Piz-t
Pia
Pii

Pik, Pik-m and
Pik-p

Rice
Rice
Rice
Rice
Rice
Rice
Rice

Magnaporthe grisea AVR2-YAMO,
PWL2, PWL1 -

Rice (Yashiro-mochi
cultivar)Weeping

lovegrass

[104,105,110]

Rhynchosporium secalis
Nip1 Rrs-1 Barley [111,112]
Nip2
Nip3

-
-

Blumeria graminis Avra10
Avrk1

Mla10
Mlk1

Barley
Barley

[113]

Melampsora lini

AvrL567 L5, L6 and L7 Flax [114,115]
AvrM

AvrP123
AvrP4

M
P, P1, P2 and P3

P4

Flax
Flax
Flax

Hyaloperonospora
parasitica

Atr1NdWsB Rpp1Nd and
Rpp1-WsB A. thaliana [116]

Atr13 Rpp13
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Table 1. Cont.

Pathogen Avr Proteins R Genes Host Plant References

Phytophthora sojae

Avr1b-1
Avr1a
Avr3a
Avr3c
Pep-13

Rps1b
Rps1a
Rps3a
Rps3c

-

Soybean
- [46,117,118]

Phytophthora infestans

Avr3a
Avr4
EPI10
EPI11
inf1

R3a
R4
-
-
-

Potato
Tomato

Nicotiana benthamiana
-
-

[119–122]

Phytophthora parasitica para1 - - [123,124]

Viral effector genes and R genes

Turnip crinckle virus
Cucumber mosaic

virus (CMV)
Potato virus X (PVX)

Paprika & pepper
mild mottle virus

Pepper mild mottle
Virus

Tobacco mosaic virus

Coat protein

Hrt
Rcy1 [125]

Nx, Rx1, Rx2
L2,

L3, L4

N’

A. thaliana
A. thaliana

Potato
Pepper
Tobacco

Beet necrotic yellow
vein virus P25 protein Rz-1 Beet [125]

CMV
TMV

RNA-dependent RNA
polymerase

RT4-4, Cry
Tm-1

French bean
Tomato [125]

PVX
TMV Movement protein Nb

Tm-2, Tm-22
Potato

Tomato [125]

The initial step in signal transduction in the ETI is the recognition and identification
of Avr and R proteins which often crosstalk with the PTI. For instance, the R protein of
Arabidopsis, RRS1-R interacts with the effector protein, PopP2 (TIR NB-LRR) type effector
with an extension of WRKY at the C-terminal when released by the bacterium, Ralstonia
solanacearum. This RRS1-R- PopP2 complex is then translocated into the nucleus for the
regulation of other downstream pathways [44]. An avirulent bacterium, P. syringae (Pst)
DC3000 (avrRpt2), activates the resistance to P. syringae 2 (RPS2)-dependent ETI in wild-
type plants, whereas it is not effective to two Arabidopsis PRR and co-receptor mutants,
namely fls2 efr cerk1 (fec) and bak1 bkk1 cerk1 (bbc) [45], showing that the PRR and co-
receptors play an important role in ETI signaling.

Plant DAMPs were identified in Arabidopsis as HMGB protein AtHMGB3 [8]. In
general, all plants have HMGB1-related proteins and Arabidopsis possess 15 genes that
encode HMG-box domain-containing proteins [126]. They have been subdivided into
four groups: (i) HMGB-type proteins, (ii) A/T-rich interaction domain (ARID)-HMG
proteins, (iii) 3xHMG proteins that contain three HMG boxes, and (iv) the structure-
specific recognition protein 1 (SSRP1) [126]. Based on their nuclear location and domain
structure, the eight HMGB-type proteins (HMGB1/2/3/4/5/6/12/14) are thought to
function as architectural chromosomal proteins, similar to mammalian HMGB1. Notably,
AtHMGB2/3/4, the HMGB type proteins, are present in the cytoplasm and as well as the
nucleus [126,127]. The cytoplasmic function of these proteins is not yet known. However,
the cytoplasmic subpopulations should have greater access to the extracellular space
(apoplast) after cellular damage as compared to the AtHMGBs located exclusively in
the nucleus [126,127], since they are not bound to DNA and need only cross the plasma
membrane to enter the apoplast. The subpopulation of AtHMGB3 raised the possibility
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that this protein serves a similar function as that of DAMP since recombinant AtHMGB3
was infiltrated into Arabidopsis leaves and exhibited DAMP-like activities similar to those of
AtPep1, upon treatment with either protein induced MAPK activation, callose deposition,
defense-related gene expression, and enhanced resistance to necrotrophic Botrytis cinerea [8].

Large scale changes in gene expression are found in Arabidopsis thaliana by MAPK
activation [128]. The chromatin remodeling in Arabidopsis thaliana upon challenge with a
synthetically produced 22 amino-acid long flagellin peptide (flg22) that mimics the response
to bacterial pathogens. Flg22 is recognized in Arabidopsis by the plasma membrane leucine-
rich repeat-receptor kinase (LRR-RK) FLS2 and activates two MAPK signaling pathways
that initiate an array of defense responses, including the production of several hormones,
reactive oxygen species, and the induction of a large set of defense genes, processes
generally referred to as MAMP-triggered immunity (MTI) [128].

The second kind of immunity is referred to as effector-triggered immunity (ETI),
which is conceived by nucleotide-binding oligomerization domain (NOD)-like receptors
(NLRs) and resistance (R) genes, which detects the effector molecules produced by the
microorganisms [128]. The genetic and molecular evidence suggested that functional
NLR pairs exist, and processes like NLR self-association and heteromeric NLR assemblies
are key in the triggering of downstream signaling pathways [129]. Furthermore, the
versatility and impact of cooperating NLR pairs combined with pathogen sensing are linked
to the initiation of defense signaling in both plant and animal immunity, and different
NLR receptor molecular configurations provide opportunities for fine-tuning resistance
pathways and augmenting the host’s pathogen recognition spectrum to keep pace with
rapidly evolving microbial populations [129]. The concept of R genes emanated from Flor’s
hypothesis of gene for gene in the case of pathogen-host virulence factors [42]. Furthermore,
he suggested that specific sensors for microbial molecules are present in their hosts and did
not rule out variability in these R genes being present in only a few plant varieties, and also
many R genes do not confer broad-spectrum resistance, specifying resistance to only some
races of a particular pathogen species. These are active primarily inside the cell, using
the polymorphic NB-LRR protein products encoded by R genes. They are named after
their characteristic nucleotide-binding (NB) and leucine-rich repeat (LRR) domains [130].
NB-LRR proteins are broadly related to animal CATERPILLER/NOD/NLR proteins and
STAND ATPases [6]. Pathogen effectors from diverse kingdoms are recognized by NB-LRR
proteins and activate similar defense responses. Interestingly, NB-LRR-mediated disease
resistance is effective against pathogens that can grow only on living host tissue (obligate
biotrophs), or hemibiotrophic pathogens, but not against necrotrophic pathogens [131].

It has already been discussed earlier that the virulence strategy of plant cells leads to
the synthesis of intracellular resistance (R) proteins, which specifically recognize pathogen
effectors of avirulence (Avr) factors and activate ETI. Crucial amongst the ETI triggers
are the genes that respond to viral infections in plants. One major component is the
cell wall in plants, whose modifications occur in plants during viral infection, is poorly
understood at present. A comprehensive study describes the expression of the potato
expansin A3 (StEXPA3) and potato extensin 4 (StEXT4) genes in Potato Virus Y NTN
(PVYNTN)-susceptible and -resistant potato plant interactions [132]. Furthermore, this
study indicated that intracellular distribution and abundance of StEXPAs and HRGPs can
be differentially regulated, which depends on different types of PVYNTN–potato plant
interactions and further confirmed the involvement of apoplast and symplast activation
as a defense response mechanism [132]. In a heterogeneous mixture of cells at different
stages of infection in plants, the relationships between virus accumulation at the given sites
and the accompanying host responses pertaining to altered host gene expressions are not
well understood currently. However, a significant study pertaining to this revealed that
there was substantive altered expression profiles across gradients of virus accumulation
within the spanning groups of cells at different stages of infection [133]. Otulak-Kozieł
provided novel insight into cell wall reorganization during PVYNTN infection as a response
to biotic stress factors and indicated in situ distribution of the hemicellulosic cell wall
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matrix components for hypersensitive and susceptible potato–PVYNTN interactions [132].
They further described that the hypersensitive reaction led to activation of XTH-Xet5 in the
areas of xyloglucan endo-transglycosylase (XET) synthesis, followed by its active transport
to cytoplasm, cell wall and vacuoles [134]. Additional studies by Chen et al. (2017) [135]
suggested that genes participating in stress responses, transcription, transport and cell wall
were found to have changed expression during the PVY infection stage. Their contention is
that the signaling and transcription related genes were almost up-regulated at 12 h, 1 or
2 days, while stress response genes were almost up-regulated at a later stage [135]. In
essence, the plant immune system is recognized as a complex network wherein the cell
wall and its essential protein components play a significant role in cell wall remodeling.
Important progress made in research on plant virus impact on cell wall remodeling of
insusceptible and resistant plants, demonstrate that the components of cell wall metabolism
can affect the spread of the virus as well as activate the apoplast- and symplast-based
defense mechanisms [136]. The cell wall-based multi-complex network can be extensively
elucidated employing some sophisticated advanced tools, such as atomic force microscopy,
computer-based simulations of mechanical properties of their components, electronic
tomography for their mutants and many others [136].

4. PTI—ETI Mutualism

PTI recognizes conserved patterns, whereas ETI involves the detection of polymor-
phic effector molecules released from the pathogens into the plant cells [137]. Gener-
ally, low-level basal immunity is conferred by the PTI, which is effective against non-
adapted pathogens, whereas ETI is more robust immunity to host-adapted pathogens.
The pathogens generally employ varied strategies to invade their hosts, therefore, PTI is
a common form of immunity in all the plants, which is then followed by the ETI upon
recognition of effectors. Recently, it was reported that for effective responses of ETI, PTI
should be present. For instance, P. syringae strain lacking phytotoxic coronatine and all
effectors except AvrRpt2 induced resistance in WT Arabidopsis, but not in lines that lacks
multiple PRRs/co-receptors. Similarly, it was reported that AvrRps4-induced resistance is
lost in a PTI-deficient genotype [138]. These interesting results suggested that PTI must
be functional for effective ETI responses. In the case of PTI, for the production of ROS,
phosphorylation of cytoplasmic receptor kinase BIK1 and NADPH oxidase (RBOHD) phos-
phorylation through BIK1 [45,138,139]. The main features include that ETI increases the
levels of protein of PTI signaling components, molecular mechanisms remain unelucidated,
ETI requires PTI to provide complete resistance and PTI enhances the output of ETI by
restricting pathogen proliferation through hypersensitive responses.

5. Signaling of Phytohormones
5.1. Brassinosteroids

Brassinosteroid (BR) is an endogenous plant hormone found almost in all organs of
plants including seeds, fruits, young vegetative tissues and pollen grains and play roles
in the proliferation and expansion of cells. It is reported that BRs function in providing
resistance against both biotic and abiotic stresses. Disease resistance was conferred to rice
and tobacco after the application with BR [140,141]. Similarly, when BR is applied to barley
exogenously, it provided resistance against diseases caused by many species of Fusarium.
Brassinosteroid-insensitive 1 (BRI1) is a cell surface localized LRR serine/threonine (S/T)
kinase that perceives the signals in plants. The binding results in the dissociation of BRI1
from the negative regulator BIK1, and activates the co-receptor BRI1-associated receptor
kinase 1 (BAK1) and it heterodimerizes with BRI1, leading to the phosphorylation of the
BRI1-interacting signaling kinase (BSK1), and thereby the activation of the BSU1 (protein
phosphatase) [141,142]. The signal is then transmitted in the cytoplasm and inhibits
brassinosteroid-insensitive 2 (BIN2), a protein kinase, which acts as a negative regulator
of the BR biosynthetic pathway and activates the transcription of factors like BZR1 and
BES1/BZR2. These transcription factors activate the BR-responsive genes by their promoter
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in the nucleus. Further, the BAK1 is involved in the regulation of microbe-induced cell
death and also interacts with various PRRs and is a part of PAMP-triggered immunity
(PTI) [141]. Thus, how BR plays many roles during PAMPs from its perception, activation
of stress-related genes and production of secondary metabolites.

5.2. Ethylene

Ethylene is involved in various roles in plants like in the growth, development, and
providing tolerance to many biotic stresses. It is also involved in the regulation of fertiliza-
tion, senescence, fruit ripening, and organ abscission. Its perception and signal transduction
are conserved among the plants, which show its relevance in their development and sur-
vival. The autocatalytic mechanism of ethylene synthesis has induced the ethylene itself
during stress. The production of ethylene is regulated by MAPK phosphorylation events.

5.3. Abscisic Acid

ABA plays a crucial role in germination, dormancy and seed development and is also
involved in biotic and abiotic stresses. It works antagonistically with salicylic acid (SA),
ethylene (ET) and jasmonates (JA). It promotes the closure of stomata during stress and
enhances the ability in providing resistance through callose deposition. On the other hand,
it increases the chances of infection through the exogenous application. For instance, it
increased the virulence of P. syringae pv. tomato on Arabidopsis plants. It suppressed the
accumulation of defense-related genes like PDF1.2 (plant defensin 1.2), CHI (basic chitinase),
HEL (hevein-like protein), and LEC (lectin-like protein), thereby increased susceptibility in
Arabidopsis against the Fusarium oxysporum, which causes wilt, and against bacterium,
Erwinia chrysanthemi, which causes agents of bacterial wilt infections [141]. Induction of
HR-like defense responses occurred at the site of Peronospora parasitica inoculation in the
ABA-deficient mutant (aba1-1) of Arabidopsis, while another mutant of Arabidopsis (aba3-1)
failed to close stomata upon the perception of elicitor molecules. Thus, ABA is involved in
closing of stomata during stress [141].

6. Protein Kinase Signaling Impacts Chromatin Reprogramming in Plant Defense
Mechanism

Histone acetylation and deacetylation control MAMP-triggered gene expression, and
the histone deacetylase HD2B is known to implicate in the reprogramming of defense
gene expression and innate immunity [143]. The MAP kinase MPK3 is reported to directly
interact with and phosphorylate HD2B, thereby regulating the intra-nuclear compartmen-
talization and function of the histone deacetylase [128]. To date, a good number of histone
modifiers are known (Table 2) that are involved in plant innate immunity. Furthermore,
an example of salicylic acid (SA) signaling can be added to the list that plays an essen-
tial role in plant pathogen resistance and is controlled partially by the HDAC SIRTUIN2
(SRT2), which represses the expression of several SA biosynthetic genes such as PAD4
and SID2 [144]. Here, srt2 mutant Arabidopsis plants were reported to be more resistant to
pathogen infection than WT control plants, whereas an SRT2 over-expressing line was more
susceptible. In addition, it was reported in Arabidopsis that mutations in the HDAC HDA19
result in enhanced basal expression of several biotic responsive genes [145] and improved
tolerance to P. syringae [143]. Moreover, the rice HDAC HDT701 negatively regulates innate
immunity by directly binding and modulating the histone H4 acetylation levels of PRR
and defense-related genes [146]. The molecular mechanisms of histone modifications (i.e.,
methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute
to plant immunity against pathogens are interesting areas from a research standpoint and
hence needs more elaborate studies pertaining to the subject.
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Table 2. Shows various histone PTM modifying enzymes conferring sensitivity or resistance to the
hosts of pathogens as a result of their actions.

Enzymes Function References

Histone deacetylase (HDAC)

Increases sensitivity to Alternaria
brassicicola and brings about changes

in expression of jasmonic acid (JA)
and ethylene-regulated genes

[145,147]

Negatively regulates plant basal
defense against the pathogen
Pseudomonas syringae DC3000

[148,149]

Negatively regulates the plant basal
defense in rice [150]

Histone methyltransferase Controls SA/JA pathway genes [150]

Faster hypersensitive responses (HRs)
to both mutant (hrpA) and

pathogenic (DC3000) strains of P.
syringaeand increased resistance

against DC3000

[150,151]

Histone demethylase Controls systemic acquired resistance
(SAR) induction [152,153]

Enhances rice resistance to the
bacterial blight disease pathogen

Xanthomonas oryzae
[154]

Histone ubiquitination Increases sensitivity to B. cinerea and
A. brassicicola [155]

Chromatin remodelling factors
Increases resistance to Pst DC3000 in
mos1/snc1 background, regulates the

expression of R gene SNC1
[156]

Enhances resistance to Pst DC3000,
upregulates the expression of

SA-marker genes
[157]

Increases sensitivity to B. cinerea,
down-regulates expression of ET/JA

pathway genes (PDF1.2, VSP2,
and Myc2)

[158]

7. Chromatin Structure and Modifications

Nucleosome is the packaging structure of the chromosome, which is endowed with
a repeated unit of chromatin containing 147 base pairs (bp) of DNA wrapped around
a histone octamer, which in turn consists of two copies of the following core histones:
H2A, H2B, H3, and H4 and the higher-order chromatin structure formation. Remodeling
is achieved by the linker histone, H1, which associates with DNA between two nucleo-
somes [159]. The globular nucleosome core having the histone tails may undergo diverse
post-translational modifications (PTMs), i.e., acetylation, methylation, phosphorylation,
ubiquitination, sumoylation, carbonylation, and glycosylation, and through these modifi-
cations, can directly affect chromatin structure or can recruit specific “readers or effectors”,
to elicit gene regulation during their expression. This is achieved primarily by altering
nucleosome stability and positioning, which affect the accessibility for regulatory proteins
or protein complexes involved in transcription, DNA replication, and repair [160,161].
Generally, histone acetyltransferases (HATs) mediate transcriptional activation by histone
acetylation, while histone deacetylases (HDACs) reverses this process by effecting histone
deacetylation [162,163]. Depending on the context of targets, histone methylation and/or
ubiquitination can either be an active or repressive marker for transcription in plant-based
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immunity triggers [164]. Generally, tri-methylations of H3K4 and H3K36 (H3K4me3 and
H3K36me3) and mono-ubiquitination of H2B (H2Bub) are supposed to induce gene ex-
pressions [164,165], histone methylation of H3K27me3 triggers gene repressions, while
H3K9me2 and H4K20me1 are abundant at constitutive heterochromatin and silenced
transposons [164,166].

In addition to histone modification, ATP-dependent chromatin-remodeling enzymes
are known to use the energy of ATP hydrolysis to remodel chromatin structure by modify-
ing the DNA and histone interactions to dissociate nucleosomes, move histone octamers,
and catalyze the incorporation of specific histone variants. ATP-dependent chromatin-
remodeling enzymes thus play crucial roles in nucleosome assembly/disassembly and
allow the transcriptional machinery to access the DNA [167].

Histone modifications and ATP-dependent chromatin remodeling have only recently
attracted attention as potential transcriptional regulators in plant innate immunity. Table 2
summarizes some of such genes and their actions by activation of histone-modifying
enzymes leading to an increased or decreased sensitivity in host plants towards pathogens.

8. Conclusions and Recommendations

Phytopathogens during their constant interaction with host plants pose a serious threat
to their very existence. In order to counter these attacks, the plants develop immunity
against them through well-worn strategies, viz., recognizing the pathogens through specific
signals and countering pathogenesis through PTI and ETI. During this process, activation
of specific receptor proteins plays a key role in pathogen perception and surveillance that
trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM)
surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which
trigger a complex set of mechanisms through the pattern recognition receptors (PRRs)
and resistance (R) genes. These interactions lead to the stimulation of cytoplasmic kinases
by many phosphorylating proteins that may also be transcription factors. This entire
process is under the control of phytohormones, such as salicylic acid, jasmonic acid and
ethylene that are important mediators of defense responses. Histone modifications and
their impact on PII is a newly emerging area and hence needs a better understanding. PTMs
are smart processes that establish communications between pathogens and plants and
alter cell signaling at multiple nodes for the quick reprogramming of the plant for defense
responses [168]. Detection of these processes will accelerate our understanding of the
regulatory mechanism of plant immunity mediated by PTMs, understanding the molecular
processes involved in PII at the cellular and nuclear levels and will thus allow us to design
and devise proper scientific interventions that could be useful in augmenting PII under
experimental conditions. A field-based survey on these designs is highly recommended for
high throughput industrial recommendations and replications of the trials for commercial
exploitation.
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