

Extensive cargo identification reveals distinct biological roles of the 12 importin pathways

Makoto Kimura^{1*}, Yuriko Morinaka¹, Kenichiro Imai^{2,3}, Shingo Kose¹, Paul Horton^{2,3}, Naoko Imamoto^{1*}

¹Cellular Dynamics Laboratory, RIKEN, Wako, Japan; ²Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; ³Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract Vast numbers of proteins are transported into and out of the nuclei by approximately 20 species of importin- β family nucleocytoplasmic transport receptors. However, the significance of the multiple parallel transport pathways that the receptors constitute is poorly understood because only limited numbers of cargo proteins have been reported. Here, we identified cargo proteins specific to the 12 species of human import receptors with a high-throughput method that employs stable isotope labeling with amino acids in cell culture, an in vitro reconstituted transport system, and quantitative mass spectrometry. The identified cargoes illuminated the manner of cargo protein. Cargoes of the same receptor are functionally related to one another, and the predominant protein groups in the cargo cohorts differ among the receptors. Thus, the receptors are linked to distinct biological processes by the nature of their cargoes. DOI: 10.7554/eLife.21184.001

*For correspondence: makimura@ riken.jp (MK); nimamoto@riken.jp (NI)

Competing interests: The authors declare that no competing interests exist.

Funding: See page 23

Received: 02 September 2016 Accepted: 17 January 2017 Published: 24 January 2017

Reviewing editor: Karsten Weis, ETH Zurich, Switzerland

© Copyright Kimura et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the

original author and source are

credited.

Introduction

In interphase cells, proteins and RNAs migrate into and out of the nuclei through the central channels of the nuclear pore complexes (NPC) embedded in the nuclear envelope. These nuclear pores are lined with FG-repeat domains that constitute a permeability barrier, and only macromolecules that reversibly interact with the FG-repeats can permeate this barrier (Schmidt and Görlich, 2016). One such group of proteins, the importin $(Imp)-\beta$ family proteins, are nucleocytoplasmic transport receptors (NTRs) that primarily carry nuclear proteins and small RNAs as their cargoes through the nuclear pores, although non-importin family NTRs also act depending on the cargo and physiological conditions (Kose et al., 2012; Lu et al., 2014; Weberruss et al., 2013). The human genome encodes 20 species of Imp- β family NTRs, of which 10 [Imp- β , transportin (Trn)-1, -2, -SR (-3), Imp-4, -5 (RanBP5), -7, -8, -9, and -11] are nuclear import receptors, 7 [exportin (Exp)-1 (CRM1), -2 (CAS/ CSE1L), -5, -6, -7, -t, and RanBP17] are export receptors, 2 (Imp-13 and Exp-4) are bi-directional receptors, and the function of RanBP6 is undetermined (Kimura and Imamoto, 2014). These NTRs constitute multiple parallel transport pathways. The basic mechanism of directional transport was elucidated in the early years (Görlich and Kutay, 1999), but even today, the number of NTR-specific cargoes that has been reported is surprisingly small, hindering a biological understanding of the nucleocytoplasmic transport system.

NTRs are thought to transport specific cohorts of cargoes by binding to specific sites on those cargoes (*Chook and Süel, 2011*), but the consensus structures of the NTR-binding sites have been established for only a few NTRs (*Soniat and Chook, 2015*) as follows: the classical nuclear

CC

localization signal (cNLS) for the Imp-α family adapters, which connects Imp-β and cargoes (Lange et al., 2007); PY-NLS for Trn-1 and -2 (Lee et al., 2006; Süel et al., 2008); the nuclear export signal (NES) for Exp-1 (Hutten and Kehlenbach, 2007); the SR-rich domain that binds to Trn-SR (Kataoka et al., 1999; Maertens et al., 2014); and Lys-rich NLS (IK-NLS) for yeast Kap121p (Imp-5 homolog; Kobayashi and Matsuura, 2013; Kobayashi et al., 2015). The β-like importin-binding (BIB) domain is another NTR-binding site (Jäkel and Görlich, 1998), but its consensus sequence and NTR specificity remain obscure. Among the NTRs, Imp-β exclusively uses one of the seven species of the Imp-α family of proteins as an adapter for cargo binding, and many Imp-α/β cargoes have been reported, although Imp-β also directly binds to cargoes (Goldfarb et al., 2004). Among the import receptors, Trn-1 and its closest homolog Trn-2 have the second-highest number of cargoes reported thus far, and the PY-NLS motif has been defined, although in some cases the motif is difficult to recognize because of sequence diversity and structural disorder is another requisite (Soniat and Chook, 2015, 2016). For the cargoes of other NTRs, the consensus structures of NTR-binding sites have hardly been derived because only limited numbers of cargoes have been reported, including Imp-β-direct cargoes.

There are many reports on the differential spatiotemporal expression of Imp- β family NTRs, including tissue specificities in humans (Quan et al., 2008), developmental or spermatogenic stage specificities in mice (Major et al., 2011; Quan et al., 2008), and tissue or response specificities in plants (Huang et al., 2010). Expression regulation is not only transcriptional but also miRNA-mediated (Li et al., 2013; Szczyrba et al., 2013) or locally translationally mediated (Perry and Fainzilber, 2009). Additionally, the NTRs are functionally regulated by protein modifications (Wang et al., 2009), inhibitory factors (Lieu et al., 2014), and specific anchorings (Makhnevych et al., 2003). These nucleocytoplasmic transport regulations must significantly influence cellular physiology, and their significance may be elucidated if the affected cargoes can be specified. Indeed, in previous studies, NTR regulations have been linked to cellular responses through the functions of specific cargoes. For example, in prostate cancer cells treated with a cinnamaldehyde derivative, the expression of Imp-7 and the transcription factor Egr1 are induced, and the Egr1 imported by Imp-7 activates apoptotic gene transcription (Kang et al., 2013). In another example, when the nuclear import of some ribosomal proteins (RPs) is inhibited by the repression of Imp-7 expression, other unassembled RPs restrain the negative regulator of p53 Mdm2 and thereby activate p53 to inhibit cell growth (Golomb et al., 2012). Additionally, the inhibition of Trn-2 by the caspase-generated HuR (ELAVL1) fragment is crucial for the cytoplasmic retention of full-length HuR, which induces myogenesis (Beauchamp et al., 2010) or staurosporine-induced apoptosis (von Roretz et al., 2011). In many other studies, mutations of particular NTR genes in model organisms, including yeast, flies, and plants, have resulted in defects in specific biological processes (Kimura and Imamoto, 2014). Thus, each NTR has its own inherent biological significance. However, the details of the molecular processes are largely uncharacterized because the responsible cargoes have not been identified. If we could identify more cargoes, further studies of cellular regulation by nucleocytoplasmic transport would be possible.

We previously established a method for identifying the cargoes of a nuclear import receptor called SILAC-Tp (*Kimura et al., 2013a, 2013b, 2014*). SILAC-Tp employs stable isotope labeling with amino acids in cell culture (SILAC) (*Ong et al., 2002*), an in vitro reconstituted nuclear transport system (*Adam et al., 1990*), and quantitative mass spectrometry. A recent advancement of the Orbitrap mass spectrometer drastically increased the identified and quantified protein numbers, and this advancement has been successfully applied to other cargo identification methods (*Kırlı et al., 2015*; *Thakar et al., 2013*). Here, we utilized this advancement for the SILAC-Tp method and identified import cargoes of all 12 NTRs, of which 10 are import and two are bi-directional receptors. Our results illustrate the basic framework and the biological significance of the nucleocytoplasmic transport pathways.

Results and discussion

SILAC-Tp effectively identifies cargoes

SILAC-Tp employs an in vitro nuclear transport system, and all 12 NTRs import their reported specific cargoes in this system (*Figure 1—figure supplement 1C*). The transport system consists of permeabilized HeLa cells labeled with 'heavy' amino acids by SILAC, unlabeled HeLa nuclear extract depleted of Imp- β family NTRs and RCC1, unlabeled HeLa cytosolic extract depleted of Imp- β family NTRs, one species of recombinant NTR, p10/NTF2, and an ATP regeneration system. Unlabeled 'light' proteins in the nuclear extract are imported into the nuclei of the permeabilized cells. Simultaneously, a control reaction without the NTR is performed. Next, the proteins are extracted from the nuclei and identified and quantified by LC-MS/MS. The recipient nuclei contain both the imported and endogenous proteins, and the ratio of the imported to the endogenous fraction of a protein is calculated as the unlabeled/labeled or light/heavy (L/H) ratio. The quotient of the L/H ratios with the NTR (+NTR) and without it (control), that is, (L/H_{+NTR})/(L/H_{Ctl}), of a protein is defined as the +NTR/ Ctl value and is used as the index for cargo potentiality.

In one run of SILAC-Tp (control or +NTR), approximately 2500 to 4000 proteins were identified, and the L/H ratios of 1700 to 3100 proteins were quantified. To calculate the +NTR/Ctl value, one protein has to be quantified in both the control and +NTR reactions, and we discarded L/H_{+NTR} values that lacked the counterpart L/H_{Ctl} values. We performed three replicates of SILAC-Tp for each of the 12 NTRs. In the three replicates, 1235 to 1671 proteins were assigned with +NTR/Ctl values three times, and 364 to 502 proteins were assigned only twice (*Supplementary file 1*). We did not consider proteins with single +NTR/Ctl values, although a protein with only a single but high +NTR/Ctl value may still be a cargo (see below). To normalize the index values of the three replicates, the Z-scores of the log₂(+NTR/Ctl) were calculated within each replicate (*Figure 1—figure supplement 2A and B*). Ranking the proteins that have three +NTR/Ctl values by the median of the three Z-scores may reasonably sort the candidate cargoes. However, if the lower Z-score of a protein with only two +NTR/Ctl values is higher than the median Z-scores of those candidate cargoes, the protein may also be a candidate cargo. Thus, we ranked the proteins by the second (the lower of the two or the middle of the three) Z-scores, and termed the result the 2nd-Z-ranking (*Supplementary file 1*).

To define the border that separates candidate cargoes from other proteins in the 2nd-Z-ranking, we first reviewed the distribution of reported Trn-1 cargoes in the Trn-1 2nd-Z-ranking because many Trn-1 cargoes have been reported. For an unbiased evaluation, we employed the lists of cargoes consolidated by other researchers (Chook and Süel, 2011). Twenty-seven reported cargoes were included in the 2nd-Z-ranking (totaling 1649 proteins; Supplementary file 1, Trn-1 'Report and feature'). We calculated the reported cargo rates (to serve as a proxy for precision), recall, and Fisher's exact test p-values for rank cutoffs in increments of 1%. Computing reported cargo rate requires deciding which candidate cargoes should be considered as false positives. Since a gold standard set of definitely non-cargo proteins is not available, it is not clear which previously unreported cargoes should be counted as false positives, and which, if any, should be discarded as unclear. Therefore, we estimated reported cargo rates in two ways: (i) treating all the 1622 proteins not reported as cargoes as negative examples (Figure 1-figure supplement 3A and Figure 1-source data 1A); and (ii) discarding proteins with undetermined or nuclear subcellular localization according to Uniprot annotation, and treating the remaining 259 non-nuclear proteins as negative examples (Figure 1figure supplement 3A and Figure 1-source data 1B). In the former case, the reported cargo rate corresponds to a lower bound on the precision, and even in the latter case, the reported cargo rates are expected to underestimate precision, because almost certainly some of the proteins that we exclude as unclear are in fact true cargoes.

To select cargoes with high sensitivity, we employed the cutoff of 15% that yields a high recall of 0.741 (*Figure 1—figure supplement 3B* and *Figure 1—source data 1A and 1B*; recall is not affected by the assumptions of negative examples). Among the 27 reported cargoes, 20 cargoes were ranked in the top 15% (247 proteins; $p=5.39 \times 10^{-12}$ by Fisher's exact test), and the others were dispersed in the lower ranks (*Figures 1A* and *2A*; *Figure 1—figure supplement 2C and E*).

We examined the direct binding of Trn-1 to a subset of proteins in the 2nd-Z-ranking using a bead halo assay (*Patel and Rexach, 2008*) (*Supplementary file 2*) in which the binding of GFP-fusion proteins to GST-Trn-1 on glutathione-Sepharose beads was observed by fluorescence microscopy. If RanGTP (a Q69L GTP-fixed mutant) (*Bischoff and Ponstingl, 1995*) inhibits the protein–Trn-1 binding, the functionality of the binding is verified. For all the bead halo assays in this work, we principally selected well-characterized proteins that have not been reported as cargoes from (i) proteins ranked high (within the top 15% in the 2nd-Z-ranking or 4% in the 3rd-Z-ranking, see below), around presumptive cutoffs (within about top 15–25% in the 2nd-Z-ranking), or lower and (ii) highly ranked proteins that are suspected as indirect cargoes or false positives based on their well-known

Figure 1. SILAC-Tp effectively sorts Trn-1 cargoes. (A) Z-scores in the Trn-1 2nd- and 3rd-Z-rankings. The second (left) and third (right) Z-scores are presented for the top 250 proteins in the Trn-1 2nd- and 3rd-Z-rankings, respectively. The total number of ranked (quantified) proteins and the number *Figure 1 continued on next page*

Figure 1 continued

of previously reported cargoes included in the ranking are indicated at the bottom. The magenta bars represent previously reported cargoes. The blue and dark gray bars represent the proteins that did and did not bind directly to Trn-1, respectively, in the bead halo assays (*Supplementary file 2*). Identical proteins marked by the colors are connected by lines. Proteins that carry PY-NLS motifs are indicated by green bars. (B) Distribution of PY-NLS motif-containing proteins in the rankings. The percentage of the proteins carrying PY-NLS motifs in 50 consecutively aligned proteins is presented along with the 2nd- and 3rd-Z-rankings (left and right, respectively). For example, the top 50 proteins in the 2nd-Z-ranking include 19 (38%) PY-NLS motif-containing proteins, and thus the value at position 1 is 38%. Two types of PY-NLS motifs, basic and hydrophobic, are defined as presented at the bottom.

DOI: 10.7554/eLife.21184.002

The following source data and figure supplements are available for figure 1:

Source data 1. Statistical analysis of reported cargoes in the Trn-1 2nd- and 3rd-Z-ranking.

DOI: 10.7554/eLife.21184.003

Figure supplement 1. SILAC-Tp experimental system.

DOI: 10.7554/eLife.21184.004

Figure supplement 2. Trn-1 cargoes are effectively sorted by the second or third Z-scores in three replicates of SILAC-Tp.

DOI: 10.7554/eLife.21184.005

Figure supplement 3. Reported cargo rates and recall of the Trn-1 2nd- and 3rd-Z-ranking.

DOI: 10.7554/eLife.21184.006

features, for example, S100A6 or EEF1A2 (see the legend of **Supplementary file 2**). The negative rate of the bead halo assays should be higher than the true overall false-positive rate of the SILAC-Tp, because proteins in (ii) are selected preferentially. Seventeen novel candidate cargoes in the top 266 (top 16%) bound to Trn-1, and RanGTP inhibited the binding (*Figure 1A*; *Supplementary file 1*, Trn-1 'Direct binding'; *Supplementary file 2*). Although the assays were not comprehensive, many of the highly ranked proteins are *bona fide* Trn-1 cargoes. The highly ranked proteins that did not bind to Trn-1 in the assays are still candidate indirect cargoes that may form complexes with other proteins that directly bind to Trn-1 (see the case of POLE3 for Imp-13 below). As an example of a protein with only a single but high Z-score (+NTR/Ctl value), DIMT1 bound to Trn-1 (DHRS4 with Imp- β is another example), but we did not consider such proteins.

Because many reported Trn-1 cargoes carry PY-NLSs, we examined the distribution of PY-NLS motif-containing proteins in the 2nd-Z-ranking (*Figure 1B*). The percentages of PY-NLS motif-containing proteins within a window width of 50 positions were higher in the range of the top 200, indicating a higher rate of PY-NLS motif-containing proteins within the top 250 (top 15%). The reported Trn-1 cargoes were similarly distributed in the Trn-2 2nd-Z-ranking (*Supplementary file 1*, Trn-2 'Report or feature'). Because Trn-1 and -2 share nearly the same reported cargoes (*Twyffels et al., 2014*), this result demonstrates the reproducibility of the SILAC-Tp method. Based on these evaluations, we assumed that the proteins in the top 15% (247 proteins) of the 2nd-Z-ranking are candidate cargoes with high sensitivity (0.741) and termed them the 2nd-Z-15% cargoes.

Next, we examined whether the cutoff employed for Trn-1 is applicable to Imp-13 and Trn-SR whose 2nd-Z-rankings include several reported cargoes. The Imp-13 2nd-Z-ranking (totaling 2060 proteins) includes eight reported cargoes (Supplementary file 1, Imp-13), and seven of these are ranked in the top 244 (top 12%; p=2.83 \times 10⁻⁷; Figure 2B; Figure 2—figure supplements 1A and 2A). In bead halo assays for a subset of the ranked proteins, 24 novel candidate cargoes in the top 326 (top 16%) bound directly to Imp-13, and RanGTP inhibited the binding (Figure 2-figure supplement 2A; Supplementary file 1, Imp-13; Supplementary file 2). One component of a reported cargo complex, that is, POLE3, did not bind to Imp-13, but its binding partner CHRAC1 (Walker et al., 2009) did. Thus, the binding partners of the direct cargoes are also ranked high. Many reported Trn-SR cargoes are SR-domain proteins (Chook and Süel, 2011), and they can be grouped into either SR-rich splicing factors (SFs) or other SR-domain proteins. The Trn-SR 2nd-Zranking (totaling 2021 proteins) contains three reported cargoes (Supplementary file 1, Trn-SR), and they are ranked in the top 55 (top 3%; p=1.91 \times 10⁻⁵; Figure 2C; Figure 2—figure supplement 2B). The 2nd-Z-ranking contains seven SR-rich SFs other than the reported SFs, and five of these are ranked in the top 90 (top 4%; p=7.61 \times 10⁻¹⁸). The 2nd-Z-ranking also contains another four proteins that are annotated with 'RS-domain' in UniProt, and three of these are ranked in the top 202 (top 10%; p=3.65 \times 10⁻³). Finally, in bead halo assays for a subset, 11 novel candidate cargoes in

Figure 2. Trn-1, Imp-13, and Trn-SR cargo rankings. (A–C) The top 100 proteins in the Trn-1 (A), Imp-13 (B), and Trn-SR (C) 2nd- and 3rd-Z-rankings (left and right, respectively). Magenta, reported cargoes; blue, proteins bound directly to the NTR in the bead halo assays (*Supplementary file 2*); orange in (C), SR-rich SFs that have not been reported; and green in (C), other RS (SR)-domain proteins. Identical proteins marked by the colors are connected by lines.

Figure 2 continued on next page

Figure 2 continued

DOI: 10.7554/eLife.21184.007

The following figure supplements are available for figure 2:

Figure supplement 1. Imp-13 cargoes are effectively sorted by the second or third Z-scores in three replicates of SILAC-Tp.

DOI: 10.7554/eLife.21184.008

Figure supplement 2. SILAC-Tp effectively sorts Imp-13 and Trn-SR cargoes. DOI: 10.7554/eLife.21184.009

Figure supplement 3. Imp- β cargo ranking and Z-scores in the 2nd- and 3rd-Z-rankings. DOI: 10.7554/eLife.21184.010

the top 237 (top 12%) bound directly to Trn-SR, and RanGTP inhibited the binding (*Figure 2—figure supplement 2B*; *Supplementary file 1*, Trn-SR; *Supplementary file 2*). Hence, the 2nd-Z-15% cargoes could also be defined for Imp-13 (309 proteins) and Trn-SR (302 proteins), and we applied this cutoff to the other NTRs that have few reported cargoes. The 2nd-Z-15% cargoes of the 12 NTRs are presented in *Supplementary file 3*. Some of the 2nd-Z-15% cargoes with low numbers of L/H counts showed deviation in Z-scores or L/H ratios in the three replicates of SILAC-Tp (*Supplementary file 1*), and an example of their quantitation qualities is presented in *Supplementary file 4*.

Exceptionally, Imp- β uses Imp- α as an adaptor for cargo binding, and the cytosolic extract used for the transport system contained endogenous Imp- α . Four Imp- α s were found in the Imp- β 2nd-Zranking (totaling 2027 proteins), and three of these are in the 2nd-Z-15% cargoes (p=1.19 × 10⁻²; **Supplementary file 1**, Imp- β ; **Supplementary file 3**). Thus, the Imp- β candidate cargoes must include both Imp- β -direct and Imp- α -dependent cargoes. Indeed, 31 proteins in the top 276 (top 14%) bound directly to Imp- α , - β , or both in the bead halo assays (**Supplementary file 1**, Imp- β ; **Figure 2—figure supplement 3**; **Supplementary file 2**). The border for the Imp- β candidate cargoes can be relaxed because Imp- β imports more cargoes than other NTRs with the help of Imp- α . Indeed, in the bead halo assays, many proteins in the top 35% of the 2nd-Z-ranking bound to Imp- α , although most of the proteins that bound directly to Imp- β were ranked in the top 259 (13%). Here, we employed the Imp- β 2nd-Z-15% cargoes (303 proteins) to enable equal comparisons with the cargoes of other NTRs.

Cargo selection with higher specificity

Deviation of the LC-MS/MS quantification within the three replicates complicates cargo selection. However, the Z-scores of the highly ranked reported cargoes were reasonably high in all the three replicates possibly because many of the reported cargoes are abundant proteins that seldom produce outliers in quantification (Figure 1-figure supplement 2; Figure 2-figure supplement 1). To select proteins that have high Z-scores in all the three replicates, we next ranked the proteins that had three +NTR/Ctl values by the third (lowest) Z-scores (3rd-Z-ranking). The reported cargo rates, recall, and p-values were calculated in 1% rank increments under two assumptions similarly to the case of 2nd-Z-ranking (Figure 1-figure supplement 3A and B and Figure 1-source data 1C and 1D). The reported cargo rate calculated under the assumption that proteins annotated with non-nuclear localization (178 proteins) are negative examples is as high as 0.85 at the cutoff of top 4% (Figure 1-figure supplement 3A and Figure 1-source data 1D). The Trn-1 3rd-Z-ranking (totaling 1235 proteins) included 25 reported cargoes, and 17 of these were ranked in the top 37 (top 3%; p=1.67 \times 10⁻²²; Figures 1A and 2A; Figure 1—figure supplement 2D and F; Supplementary file 1). Seven proteins in the top 47 (top 4%) were novel Trn-1-direct cargoes that were verified in the bead halo assays (Figures 1A and 2A; Supplementary files 1 and 2). The percentage of PY-NLS motif-containing proteins within a window width of 50 positions was highest at the first position (Figure 1B), indicating that PY-NLS motif-containing proteins are concentrated in the top 50 (top 4%). Thus, most of the proteins that ranked in the top 4% (49 proteins) of the 3rd-Zranking are highly reliable cargoes, and we termed these proteins the 3rd-Z-4% cargoes. In a comparison between the Trn-1 2nd-Z-15% and 3rd-Z-4% cargoes, most of the 3rd-Z-4% cargoes were also 2nd-Z-15% cargoes (Figure 1A). Some reported or newly identified cargoes in the 2nd-Z-15% cargoes were ranked lower in the 3rd-Z-ranking due to the deviations in the third Z-scores.

In the Imp-13 3rd-Z-ranking (totaling 1671 proteins), seven proteins were reported cargoes, and six of these were ranked in the top 58 (top 3%; $p=9.20 \times 10^{-9}$; *Figure 2B*; *Figure 2—figure supplements 1B* and 2A; *Supplementary file 1*). Additionally, the 3rd-Z-4% cargoes (66 proteins) included eight novel cargoes that directly bound to Imp-13 (*Figure 2B*; *Figure 2—figure supplement 2A*; *Supplementary files 1* and 2). In the Trn-SR 3rd-Z-ranking (totaling 1591 proteins), both of the two reported cargoes were ranked in the top 18 (top 1%; $p=1.21 \times 10^{-4}$), four of the five other SR-rich SFs were in the top 45 (top 3%; $p=2.74 \times 10^{-6}$), one of the three SR-domain proteins (other than the SR-rich SFs) was ranked 63rd (top 4%; p=0.11), and six novel cargoes within the top 4% (63 proteins) bound directly to Trn-SR (*Figure 2C*; *Figure 2—figure supplement 2B*; *Supplementary files 1* and *2*). In cases of both Imp-13 and Trn-SR, the proteins were replaced between the 2nd- and 3rd-Z-rankings in a manner similar to the case for Trn-1. We concluded that the 3rd-Z-4% criteria is highly specific including few false positives, albeit at the cost of losing many genuine cargoes. Hence, we employed the 3rd-Z-4% cargoes mainly for the characterization of the identified cargoes, whereas the 2nd-Z-ranking was used for the evaluation of the import efficiencies of the expected cargoes. The 3rd-Z-4% cargoes of the 12 NTRs are presented in *Figure 3*.

Redundancy in the import pathways

A total of 468 proteins were identified as 3rd-Z-4% cargoes of the 12 NTRs, and 332 of these are unique to one NTR, which clearly reflects the division of roles among the NTRs (Supplementary file 5B). Another 136 proteins were shared by two to seven NTRs, and the mean number of shared cargoes between two NTRs was 4.8. In the maximum-likelihood phylogenetic tree of the 12 NTRs (Figure 4A), Trn-1 and -2 (84% sequence identity) are paired most closely, and Imp-7 and -8 (65% identity) are the second-most closely paired. These paired NTRs share 28 and 19 cargoes, respectively, and they are paired similarly in a hierarchical clustering based on the cargo profiles (Figure 4B and C). The other NTRs that were paired weakly in the phylogenetic tree, namely, Imp-13 and Trn-SR (23% identity), Imp-4 and -5 (22% identity), and Imp-9 and -11 (19% identity), did not form the same pairs when clustering by their cargoes. Thus, the NTR-cargo interactions are conserved only within the highly homologous NTRs. The 2nd-Z-15% cargoes included as many as 1416 proteins in total, 827 of which are shared by two to 12 NTRs, and 589 are unique to one NTR (Supplementary file 5A and 5D). Imp-7 and -8 share the largest number (162) among the 2nd-Z-15% cargoes, but Trn-1 and -2 share no more than the other pairs. Of the 247 Trn-1 and 246 Trn-2 2nd-Z-15% cargoes, 69 are shared, and 36 of these are ranked within the top 50 in either ranking. Thus, Trn-1 and -2 still share many highly ranked cargoes but few lower ranked cargoes within the top 15%. The import efficiency of a cargo may differ between Trn-1 and -2, and only one of Trn-1 or -2 may import inefficient cargoes that are ranked lower.

Division of roles among the NTRs

Because NTR-dependent transport is regulated, a cargo cohort of an NTR must be imported simultaneously and act cooperatively. To explore the roles of the NTR cargoes, the 3rd-Z-4% and 2nd-Z-15% cargoes of each NTR were analyzed for enrichment of Gene Ontology (GO) terms (Gene Ontology Consortium, 2015) using g:Profiler (Reimand et al., 2016). For all the combinations of a GO term and an NTR, the number of cargoes annotated with the term and the significance (p-values according to g:SCS) of the term enrichment are listed (Supplementary files 6B, 6C, 7, and 3). Depending on the hierarchy of the GO terms, the terms are significantly annotated (p<0.05) to the cargo cohorts of none to 12 of the NTRs. Broader terms with smaller term depths are linked to more NTRs, whereas more defined terms with larger term depths are linked to fewer NTRs. Indeed, all 12 of the NTRs are linked to many broad terms, although the cargo numbers and the significances vary widely. Because similar terms were listed redundantly, we selected representative GO terms from those enriched significantly (p<0.05) for the 3rd-Z-4% cargoes of the 12 NTRs and tabulated the correspondences between the cargoes and the annotated terms (Supplementary file 9). To compare the GO terms that are specifically linked to each NTR, we listed the terms that are enriched significantly for the cargoes of four or fewer NTRs (Figures 5 and 6). Here, again we extracted the representative terms to decrease the size of the list. The selected terms for the 3rd-Z-4% cargoes plainly exhibit the roles of the cargo cohorts. For example, significant numbers of Imp-4, -7 and Exp-4 cargoes are annotated with DNA recombination or DNA conformation (geometric) change

Figure 3. 3rd-Z-4% cargoes of the 12 NTRs. The 3rd-Z-4% cargoes of each NTR are listed by the gene names in the 3rd-Z-rank orders. The ranks by the second Z-scores are also shown. The 3rd-Z-4% and 2nd-Z-15% cargoes are indicated by cyan in the rank columns. Colors in the gene name columns: magenta, reported cargoes; blue, cargoes bound directly to the NTR in the bead halo assays (*Supplementary file 2*); light blue, cargoes bound directly to the NTR; and yellow, Imp- α . For the 2nd-Z-15% cargoes, see *Supplementary file 3*. DOI: 10.7554/eLife.21184.011

Figure 4. Phylogenetic tree and cargo profile hierarchical clustering of the Imp- β family import receptors. (A) Phylogenetic tree of the 12 Imp- β family import receptors with the bootstrap values. Scale bar indicates substitutions per site. (B) A hierarchical clustering dendrogram of the same NTRs (except Imp- β) based on the similarities of their 3rd-Z-4% cargo profiles. Imp- β was excluded because Imp- α connects to Imp- β and many of the identified cargoes. The scale indicates the intercluster distance. (C) The numbers of 3rd-Z-4% cargoes shared by two NTRs. For the 2nd-Z-15% cargoes, see *Supplementary file 5A*. DOI: 10.7554/eLife.21184.012

(Figure 5; Supplementary file 9), which are terms for biological processes (BPs). These cargoes are also annotated with chromatin, which is a term for cellular component (CC; Figure 6A; Supplementary file 9), and DNA binding, which is for molecular function (MF; Figure 6B; Supplementary file 9), all related to DNA recombination and DNA conformation change. For another example, the Trn-SR cargoes are significantly annotated with a range of terms for BPs that are related to cell division or nuclear division and terms for CCs that include condensed chromosome, kinetochore, spindle, and centrosome. Similarly, most of the examined NTRs are linked to terms for BPs via the 3rd-Z-4% cargoes (Figure 5) as follows: Imp- β , -4, -7, and Trn-SR are linked to chromatin or chromosome organization; Imp- β , -4, and -13 are linked to DNA repair; Imp- β is linked to mRNA capping; Trn-SR and Exp-4 are linked to mRNA polyadenylation; Trn-1 and -2 are linked to mRNA stabilization; Trn-2, -SR, Imp-5, -9, and Exp-4 are linked to ribosome biogenesis or rRNA processing; Trn-SR is linked to protein folding, modification, ubiquitination, and catabolic process; and Imp-4 and -7 are linked to apoptosis. The NTRs are also consistently linked to the terms for CCs and MFs (*Figure 6*) as follows: Trn-SR, Imp-5, -9, and Exp-4 are linked to Cajal body; Imp- β is linked to cap-binding complex; and Trn-SR is linked to pre-mRNA binding, snoRNA binding, and RNA helicase activity.

Unit Unit <th< th=""><th>Term ID</th><th>Torm Nome</th><th>Imp-β</th><th>Trn-1</th><th>Tr</th><th>n-2</th><th>Trn-S</th><th>R</th><th>Imp-4</th><th>Imp</th><th>-5</th><th>Imp-7</th><th>Imp-8</th><th>Imp-</th><th>9</th><th>Imp-11</th><th>Imp-13</th><th>Exp-4</th><th>Total</th></th<>	Term ID	Torm Nome	Imp-β	Trn-1	Tr	n-2	Trn-S	R	Imp-4	Imp	-5	Imp-7	Imp-8	Imp-	9	Imp-11	Imp-13	Exp-4	Total
0.0000000 DMA Methodic Process 86.0 1 0 0 0 <th< th=""><th>Termino</th><th>Term Name</th><th>p #</th><th>p</th><th># p</th><th>#</th><th>p</th><th>#</th><th>p #</th><th>р</th><th>#</th><th>p #</th><th>p #</th><th>р</th><th>#</th><th>p #</th><th>p #</th><th>p #</th><th>No.</th></th<>	Termino	Term Name	p #	p	# p	#	p	#	p #	р	#	p #	p #	р	#	p #	p #	p #	No.
G. 0000000 DMA. Becominants	GO:0006259	DNA Metabolic Process	8E-06 1	1 0.199	6	1 2	0.146	7	0.002 8	1	4	0.632 6	1	2 0.34	6	1 2	2E-04 10	8E-06 1	0 978
Cal Cal <thcal< th=""> <thcal< th=""> <thcal< th=""></thcal<></thcal<></thcal<>	GO:0006310	DNA Recombination	0.503	4 1	1		1	2	0.008 5	1	1	0.019 5	1	2 1	1	1 1	1 3	80.008	5 298
Open Time Open Time <t< td=""><td>GO:0006323</td><td>DNA Packaging</td><td>1</td><td>3 1</td><td>1</td><td></td><td>1</td><td>2</td><td>0.039 4</td><td></td><td></td><td>0.003 5</td><td>1</td><td>2 1</td><td>1</td><td>1 1</td><td> 11</td><td>1</td><td>1 200</td></t<>	GO:0006323	DNA Packaging	1	3 1	1		1	2	0.039 4			0.003 5	1	2 1	1	1 1	11	1	1 200
BMA Geometric Charange Dial 1 2 Dial 0.00000000000000000000000000000000000	GO:0071103	DNA Conformation Change	0.312	4 1	1		1	2	1E-04 6	i		4E-04 6	0.244	4 1	1	1 1	11	1	1 263
Constrained Mattermande (DAM Merhydined) Model 2 Part Part Part Part Part Part Part Part	GO:0032392	DNA Geometric Change	1	2					4E-04 4			0.061 3	1	2					63
Control Contro Control Control <th< td=""><td>GO:0010216</td><td>Maintenance of DNA Methylation</td><td>0.031</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td></th<>	GO:0010216	Maintenance of DNA Methylation	0.031	2															6
Concernance	GO:0000737	DNA Catabolic Process, Endonucleolytic							0.002 3			0.436 2	2	1	1				23
Control Number description	GO:0006281	DNA Repair	0.002	7 1	3		1	2	0.007 6	1	1	1 4	1	1 1	3	1 2	0.043 6	0.111	5 519
Base-Schelon (Pagar) Base Schelon (Pagar) Base Sche	GO:0006289	Nucleotide-Excision Repair	0.475	3					0.005 4			1 1				1 1	0.017 4	1	1 116
Channelse Contrain Powerstein Edd 7 1 1 3 3 3 3 3 3 3 3 1 <t< td=""><td>GO:0006284</td><td>Base-Excision Repair</td><td>0.043</td><td>3</td><td></td><td></td><td> 1</td><td>1</td><td>1 2</td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>52</td></t<>	GO:0006284	Base-Excision Repair	0.043	3			1	1	1 2			1 1							52
G C	GO:0006325	Chromatin Organization	6E-07 1	1 1	3	1 3	0.313	6	0.062 6	1	5	1 4	1	1 0.943	5	14	0.374 6	5 1	4 768
GOUDDESS Chronisel ModRissen Course Course Course Course	GO:0031497	Chromatin Assembly	1	3 1	1		1	1	0.017 4			0.035 4	1	1 1	1	1 1	11	1	1 162
Charactering Constraint Const	GO:0016568	Chromatin Modification	2E-05	<mark>9</mark> 1	2	1 1	0.967	5	1 3	0.967	5	1 1	1	1 1	2	1 3	1 5	5 1	4 614
Hetercharants Hetercharants Control Contro Contro Control	GO:0006338	Chromatin Remodeling	0.037	4 1	2				11	1	1	1 1	1	1		1 1	1 2	2 1	1 152
C00001276 Chromosome Capacitation de11 1 1 de12 2 1	GO:0070828	Heterochromatin Organization	7E-04	3					1 1										14
Character Constraint Constraint <thconstraint< th=""> Constraint Constrain</thconstraint<>	GO:0051276	Chromosome Organization	4E-11 1	<mark>6</mark> 1	5	1 4	3E-06	12	2E-06 11	0.348	7	0.021 8	1	4 0.723	6	14	0.43 7	0.497	6 1126
GLOCODESS Image: Marging and the Marging and Share Application of the Marging and	GO:0032200	Telomere Organization	0.031	4 1	2	1 1	1	3	11	1	1	1 1	1	1		1 1	11	0.414	3 145
Caconsesso Sincarg IEGS 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1	GO:0006368	Transcription Elongation from RNA Polymerase	1E-04	5		1 1	1	2	0.118 3					1	2	1 1	1 2	2 1	1 95
Concesse	GO-0016458	Gene Silencing	1E-05	7 1	2	1 2	1	2	1 1 1	1	2	1 3	1 1	0 1	3	1 1		1	1 244
COUCUMENT COUCUMENT <t< td=""><td>GO:0034660</td><td>ncBNA Metabolic Process</td><td>3E-06</td><td>980 0</td><td>7</td><td>1 /</td><td>0 312</td><td>5</td><td>1 1 2</td><td>0.023</td><td>6</td><td>1 3</td><td></td><td>3 0 107</td><td>5</td><td>1 2</td><td>0.358 5</td><td></td><td>1 480</td></t<>	GO:0034660	ncBNA Metabolic Process	3E-06	980 0	7	1 /	0 312	5	1 1 2	0.023	6	1 3		3 0 107	5	1 2	0.358 5		1 480
Concernal and PAA Cagning Ref 2 2 1 0.017 3 0.012 3 0.012 3 0.012 3 0.012 3 0.012 3 0.012 3 0.012 3 0.012 3 0.012 3 0.012 3 0.012 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 3 0.007 4 0.007 3 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4 0.007 4	GO:0034470	noPNA Proposing	0.046	5 0 241	4 0.20	174	0.012	5		0.020	5	1 1	1 1	0.107	5	1 2	0.054	0.272	4 221
Correction Correction <thcorrection< th=""> Correction Correcti</thcorrection<>	GO:0006270	7 Mothylauanosino mPNA Capping	6= 12	7 0.241	4 0.30	<i>//</i> 4	0.054	5	0.616 2	0.034	5		· · ·	0.010	5	1 2	0.954 4	0.272	4 331
Correction No. Sectors Sectors <th< td=""><td>GO:0000370</td><td></td><td>1</td><td>2</td><td></td><td>1 1</td><td></td><td></td><td>0.010 2</td><td></td><td></td><td>0.017 3</td><td></td><td>0.012</td><td>3</td><td></td><td> 1 1</td><td></td><td>41</td></th<>	GO:0000370		1	2		1 1			0.010 2			0.017 3		0.012	3		1 1		41
Construction Construction<	GO:0000380	mBNA 3'-Splice Site Recognition	'	-						1		3E-05		0.012	0		''	1	4
Concentration Concentr	GO:0006379	mBNA Polyadenylation				1 1	0.019	3	1 1	1		02-00 0	1	1				0.007	2 27
Number Number<	GO:0000378	pre-mRNA Cleavage Required for	0.021	2			0.018	3		1			'	'I				0.007	<mark>۲</mark> ۵/
G0:000044 Number inscription and Laboxic Process 1 1 1 0 0.454 3 6 0.000 0 0.002 3 0.002 3 0.101 1 1 0 0.003 3 0.002 3 0.11 1 1 0 0.003 3 1 1 1 1 0 0.003 3 1 0.003 3 1 0.003 4 0.003 4 0.003 4 0.003 4 0.004 4 <th< td=""><td>00.0090709</td><td>Polyadenylation</td><td>0.031</td><td>=</td><td></td><td></td><td></td><td></td><td> </td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td> ° </td></th<>	00.0090709	Polyadenylation	0.031	=						1			1						°
CO-DNASS IPINA Sublication I <td>GO:0000184</td> <td>Nuclear-Transcribed mRNA Catabolic Process,</td> <td>1</td> <td>2 1</td> <td>2 0.00</td> <td>6 4</td> <td></td> <td></td> <td> </td> <td> 1</td> <td>1</td> <td></td> <td>0.454</td> <td>3 3E-10</td> <td>8</td> <td>0.008 4</td> <td>0.021 4</td> <td>•</td> <td>123</td>	GO:0000184	Nuclear-Transcribed mRNA Catabolic Process,	1	2 1	2 0.00	6 4				1	1		0.454	3 3E-10	8	0.008 4	0.021 4	•	123
Construct Final According Sincere Unwinding Note a N	GO:0048255	mRNA Stabilization	1	1 0.005	3 0.00	16 2			1 1 1	4	1		1	1	1			1	1 2/
Construction Construction<	GO:0010501	RNA Secondary Structure Unwinding	'	0.000	5 0.00	.5 3	0.022	2	''	0.022	1		0.022	2 4	2	1 0			2 15
CO-000528 First AP-Drossing issue Co-01	GO:0010301	Ribesomo Riogonosis	0 202	1 0 061	1 0.00	12 5		6	1 0	0.002	4		0.023		2	01 4	0.26	0.072	4 225
CO-0022273 Ribosomal Lange Suburit Biogenesis 1 1 0.000 2 0.000 2 1 0.000 2 0.000 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 1 1 0.016 0 0.02 1 1 0 1 0 0.016 0 0.02 1 1 0 1 <th1< th=""> 1<!--</td--><td>GO:00042234</td><td></td><td>0.203</td><td>0.004</td><td>2 0 55</td><td>7 2</td><td>0.001</td><td>5</td><td>1 1</td><td>0.230</td><td>4</td><td></td><td>0.150</td><td></td><td>4</td><td>1 2</td><td>0.20 4</td><td>0.073</td><td>4 200</td></th1<>	GO:00042234		0.203	0.004	2 0 55	7 2	0.001	5	1 1	0.230	4		0.150		4	1 2	0.20 4	0.073	4 200
Concert Totale data Totale data <thtotale data<="" th=""> <thtotale data<="" th=""> <th< td=""><td>GO.0006364</td><td>Dibacamal Large Subunit Diagonasia</td><td></td><td>2 0.450</td><td>3 0.55</td><td>1 0</td><td>0.001</td><td>0</td><td></td><td>0.047</td><td>4</td><td></td><td>0.094</td><td></td><td>4</td><td>1 1</td><td>1 1</td><td>0.014</td><td>4 155</td></th<></thtotale></thtotale>	GO.0006364	Dibacamal Large Subunit Diagonasia		2 0.450	3 0.55	1 0	0.001	0		0.047	4		0.094		4	1 1	1 1	0.014	4 155
CO-000414 Translational Initiation 1 2 1 0 1 1 1 2 1 <th1< th=""> 1 1 <t< td=""><td>GO:0042273</td><td>Translation</td><td></td><td>1 0 0 0 0 0</td><td></td><td></td><td></td><td>2</td><td>1 1</td><td></td><td>1</td><td>0.005 5</td><td></td><td></td><td>3</td><td>1 1</td><td></td><td></td><td>43</td></t<></th1<>	GO:0042273	Translation		1 0 0 0 0 0				2	1 1		1	0.005 5			3	1 1			43
CO-000414 Transitional Elementation 1 2 1	GO.0006412	Translational Initiation		0.000	1 0 00	14 0 NG E		1		1 4	4	0.695 5	22-00 1		9	1 4	0.001 0		077
Concernel Laboration of Long Long <thlong< th=""> Lon</thlong<>	GO.0006413		· ·	2 1	0.00	0 0	'	'	''		2		0.014		0	0.076 4			2/3
Concentry Initialization formation Initialization formation Initialization formation Initialization	GO.0006414	Translational Elongation			0.00	02 4					2				0	0.070 4	1 1 0		170
Clouders/ Barbergersen Folder Fo	GO:0006415	Preteia Seldina			1 0.02	8 4	0.010	-			-	0.100		3 62-09	8	0.973 3			1 040
Clouding Distribution relational function BE-04 7 0.003 6 0.068 5 0.017 6 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	GO:0006457	Chaparana Madiated Brotain Folding		1 '	'		0.012	0	1 1	' '	'	0.102 4			4	1 2	' 4		1 240
GLO.0003 Expression Could all Expression Could all Could all <thcould all<="" th=""> <thcould all<="" th=""> <th< td=""><td>GO.0001077</td><td>Posttranscriptional Regulation of Gene</td><td>0E 04</td><td>7 0 002</td><td>0.06</td><td>-0 E</td><td>0.017</td><td>2</td><td>1 3</td><td></td><td>2</td><td>0.032 3</td><td>0.01</td><td></td><td>- 1</td><td></td><td>0.077 5</td><td></td><td>1 31</td></th<></thcould></thcould>	GO.0001077	Posttranscriptional Regulation of Gene	0E 04	7 0 002	0.06	-0 E	0.017	2	1 3		2	0.032 3	0.01		- 1		0.077 5		1 31
GC:0049412 Macromolecule Modification 0.024 15 1 1 5 2E-04 16 0.17 1 1 1 0 0.037 1	190.0010000	Expression	0⊑-04	/ 0.003	0.00	00 0	0.017	0	1.3	'l '	3	1.0	0.01		'		0.277 5	0.902	4 454
GC:003611 Protein Modification Process 1	GO:0043412	Macromolecule Modification	0.024 1	5 1	7	1 5	2E-04	18	0.617 11	1	10	0.807 12	2 1	7 1	6	19	0.832 13	0.617 1	1 4139
GC:00168567 Protein Ubiquitination 1	GO:0036211	Protein Modification Process	11	1 1	6	1 4	0.004	16	0.42 11	1	9	0.538 12	1	6 1	6	19	0.542 13	3 1	9 3959
GC:0018205 PeptidyL-lysine Modification Proteacomal Usage-Dependent Proteacomal Usage-Dependent	GO:0016567	Protein Ubiquitination	1	1		1 1	0.036	7	1 3	1	1	1 2	2			1 1	11	1	1 784
GC/0031145 Anaphase Promoling Complex Dependent Process 1 1 3 1 1 0005 8 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 <td>GO:0018205</td> <td>Peptidyl-Lysine Modification</td> <td>0.007</td> <td><mark>6</mark>1</td> <td>1</td> <td>1 1</td> <td>1</td> <td>2</td> <td>1 2</td> <td></td> <td></td> <td>1 1</td> <td></td> <td> 1</td> <td>2</td> <td>1 1</td> <td>0.149 5</td> <td>5 1</td> <td>1 398</td>	GO:0018205	Peptidyl-Lysine Modification	0.007	<mark>6</mark> 1	1	1 1	1	2	1 2			1 1		1	2	1 1	0.149 5	5 1	1 398
Catabase Catabase Protein	GO:0031145	Anaphase-Promoting Complex-Dependent					4E-04	5	1 2			1 2							120
GO.0030163 Protein Catabolic Process 1		Catabolic Process																	
GC:0007049 Cell Cycle SE:05 13 1 4 1 3 0.004 1	GO:0030163	Protein Catabolic Process	1	1 1	3	1 1	0.005	8	14	1	2	1 2				1 5	1 3	3 1	1 827
GO:000278 Mitotic Cell Cycle 2E-04 10 1 3 1 1 0.025 3 1	GO:0007049	Cell Cycle	5E-05 1	3 1	4	1 3	0.004	11	0.15 8	1	6	1 7	1 1	7 1	2	1 4	1 6	0.15	8 1796
GC:0051301 Cell Division 1 <td>GO:0000278</td> <td>Mitotic Cell Cycle</td> <td>2E-04 1</td> <td>0 1</td> <td>3</td> <td>1 1</td> <td>0.025</td> <td>8</td> <td>0.033 7</td> <td>1</td> <td>3</td> <td>1 5</td> <td>1</td> <td>5 1</td> <td>1</td> <td>1 3</td> <td>1 4</td> <td>1</td> <td>2 1038</td>	GO:0000278	Mitotic Cell Cycle	2E-04 1	0 1	3	1 1	0.025	8	0.033 7	1	3	1 5	1	5 1	1	1 3	1 4	1	2 1038
GC:0000075 Cell Cycle Checkpoint FE-04 4 1 1 1 1 3	GO:0051301	Cell Division	1	4 1	1	1 1	0.001	8	1 4	1	2	1 2	1	1		1 1	1 2	1	1 672
GC.00071173 Spindle Assembly Checkpoint (G0:000709) Matephase Transition of Motole Cell Cycle (G0:000709) Image Transition of Motole Cell Cycle (G0:00079) Image Transition of Motole Cell Cycle (G0:000797)	GO:0000075	Cell Cycle Checkpoint					5E-04	6	1 3	1	1	1 3						1	1 249
GO:0007091 Metaphase/Anaphase Transition of Mitolic Cell Cycle 1 3 1 1 0.024 5 0.141 4 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1	GO:0071173	Spindle Assembly Checkpoint					4E-04	4	1 2			1 2							46
GO.0007059 Chromosome Segregation 1 3 1 1 0.042 5 0.044 7 1 4 1 1 1 2 1 1 1 2 1 <td>GO:0007091</td> <td>Metaphase/Anaphase Transition of Mitotic Cell Cycle</td> <td></td> <td></td> <td></td> <td></td> <td>1E-03</td> <td>4</td> <td>1 2</td> <td></td> <td></td> <td>1 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>59</td>	GO:0007091	Metaphase/Anaphase Transition of Mitotic Cell Cycle					1E-03	4	1 2			1 2							59
GO.000280 GO.0007077 Mitotic Nuclear Division 0.042 (0.028) 6 (0.028) 1 (0.028) 1 (0.011) 1 (0.028) 1 (0.028) 1 (0.003) 1 (0.001) 1 (0.011) 1 (0.011) 1 (0.028) 1 (0.001) 1 (0.001) 1 (0.011) 1 (0.011) 1 (0.011) 1 (0.011) 1 (0.011) 1 (0.001) 1 (0.011) 1 (0.0020) 1 (0.001) 1 (0.0020) <t< td=""><td>GO:0007059</td><td>Chromosome Segregation</td><td>1</td><td>3 1</td><td>1</td><td></td><td>0.024</td><td>5</td><td>0.141 4</td><td>1</td><td>1</td><td>1 2</td><td>1</td><td>1</td><td></td><td></td><td>1 2</td><td>1</td><td>1 279</td></t<>	GO:0007059	Chromosome Segregation	1	3 1	1		0.024	5	0.141 4	1	1	1 2	1	1			1 2	1	1 279
GC:0007077 Mitotic Nuclear Envelope Disassembly 0.026 3 1 1 2 1 <th1< th=""> 1 1</th1<>	GO:0000280	Nuclear Division	0.042	6 1	1		0.004	7	1 4	1	1	1 2		1		1 1	1 3	ها	550
GO:0048856 Anatomical Structure Development 1 1 0 0.009 17 3E-06 22 1 1 1 0 0.329 13 527 GO:0048836 Cellular Development 1 1 0.224 12 1 1 1 1 1 1 0 0.034 14 1 13 1 1 1 0.003 15 1 10 0.034 14 1 3 1 1 0 0.034 14 1 13 1 1 1 1 0 0.034 14 1	GO:0007077	Mitotic Nuclear Envelope Disassembly	0.026	3	1		1	2	1 1	ı .		1 1	1	1	1			1	44
G0:0048731 System Development 1 1 0.224 12 1	GO:0048856	Anatomical Structure Development	11	2 0.057 .	4 0.10	2 14	0.503	15	1 10	1	11	0.009 17	3E-06 2	2 1	12	1E-05 20	0.231 16	0.329 1	3 5272
GO:0048869 Cellular Developmental Process 1 8 0.461 11 0.735 11 1 12 0.025 13 1 6 1 11 7E-05 18 1 7 0.002 15 1 10 0.127 12 11 0.127 12 11 0.020 15 1 10 0.069 12 20 1 1 12 0.031 1 1 12 15 1 <	GO:0048731	System Development	1 1 1	1 0.224	2	1 11	1	13	1 8	i	10	0.107 14	0.035 1	5 1	10	0.034 14	1 13	1 1	0 4482
G0:0030154 Cell Differentiation 1 8 1 <t< td=""><td>GO:0048869</td><td>Cellular Developmental Process</td><td>1</td><td>8 0.461</td><td>11 0.73</td><td>35 11</td><td>1</td><td>12</td><td>0.025 13</td><td>1</td><td>6</td><td>1 11</td><td>7E-05 1</td><td>8 1</td><td>7</td><td>0.002 15</td><td>1 11</td><td>0.127 1</td><td>2 4112</td></t<>	GO:0048869	Cellular Developmental Process	1	8 0.461	11 0.73	35 11	1	12	0.025 13	1	6	1 11	7E-05 1	8 1	7	0.002 15	1 11	0.127 1	2 4112
G0:0001649 Osteoblast Differentiation 1 3 1	GO:0030154	Cell Differentiation	1	8 1	0	1 10	1	12	0.336 11	1	6	1 11	2E-04 1	7 1	7	0.001 15	1 10	0.069 1	2 3859
GO:0003012 GO:0012501 Muscle System Process 1 </td <td>GO:0001649</td> <td>Osteoblast Differentiation</td> <td>1</td> <td>3</td> <td></td> <td></td> <td>1</td> <td>2</td> <td>1 2</td> <td>1</td> <td>2</td> <td></td> <td>1</td> <td>1 1</td> <td>2</td> <td></td> <td>1 1</td> <td>0.046</td> <td>4 209</td>	GO:0001649	Osteoblast Differentiation	1	3			1	2	1 2	1	2		1	1 1	2		1 1	0.046	4 209
G0:0012501 Programmed Cell Death 1 8 1 3 1 1 0.326 9 0.034 9 1 8 0.033 1 0.179 9 0.384 8 1 3 1 5 1 7 192 G0:0097194 Execution Phase of Apoptoisis 1 <td>GO:0003012</td> <td>Muscle System Process</td> <td>1</td> <td>1 1</td> <td>1</td> <td>1 2</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>_</td> <td>1 3</td> <td>1</td> <td>il i</td> <td>2</td> <td>1 2</td> <td> 1 1</td> <td>0.031</td> <td>5 398</td>	GO:0003012	Muscle System Process	1	1 1	1	1 2	1	1			_	1 3	1	il i	2	1 2	1 1	0.031	5 398
GO:0007194 Execution Phase of Apoptoisis 1	GO:0012501	Programmed Cell Death	1	8 1	3	1 1	0.326	9	0.034 9	1	8	0.003 11	0 179	9 0 384	8	1 3	1 5	1	7 1921
GC:0030262 Apoptotic Nuclear Changes	GO:0097194	Execution Phase of Apoptosis	l i	1	-		1	1	0.122 3		-	0.004 4	1	2 1	2			1	1 96
GC:0006309 Apoptotic DNA Fragmentation 1 5 7E-04 3 0.264 2 1 1 1 1 1 4 98 GC:0006970 Response to Blockic Stimulus 0.037 7 1 4 1 5 1 2 1 1 1 1 1 1 4 98 GC:0006979 Response to Oxidative Stress 0 0.037 7 1 4 1 3 1 2 1 1 1 1 1 4 98 GC:0006979 Response to Oxidative Stress 1 9 0.13 1 2 1 1 1 1 1 4 98 GC:0101070 Response to Oxidative Stress 1 9 0.13 1 4 1 3 1 2 0.3 1 2 1 4 1 3 1 2 1 1 1 1 4 1 3 1 2 1 1 1 1 4 1 3 1 <t< td=""><td>GO:0030262</td><td>Apoptotic Nuclear Changes</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.004 3</td><td></td><td></td><td>0.006 3</td><td>1</td><td>1 1</td><td>1</td><td></td><td></td><td></td><td>30</td></t<>	GO:0030262	Apoptotic Nuclear Changes							0.004 3			0.006 3	1	1 1	1				30
GO:0009607 Response to Biotic Stimulus 1 5 1 4 1 3 1 5 1 2 1 3 0.008 8 0.008 7 1 2 1 1 3 1 4 98 G0:0006974 Cellular Response to DNA Damage Stimulus 0.037 7 1 4 1 3 1 5 1 1 4 1 3 0.05 6 0.007 7 81 GO:0006979 Response to Oxidative Stress 1 3 1 2 1 1 6 1 9 0.103 10 0.842 9 1 6 1 9 0.024 1 1 0.007 12 1 1 4 1 3 1 2 1 1 4 1 3 1 2 1 1 1 4 1 3 1 2 1 1 1 4 1 3 1 2 1 1 1 1 4 4 3	GO:0006309	Apoptotic DNA Fragmentation							7E-04 3			0.264 2	2	1	1				18
GO:0006974 Cellular Response to DNA Damage Stimulus 0.037 7 1 4 1 5 3E-05 9 1 3 1 5 1 1 4 1 3 0.5 6 0.007 7 7 1 4 1 5 3E-05 9 1 3 1 5 1 1 4 1 3 0.5 6 0.007 7 8 GO:0006697 Response to Oxidative Stress 1 3 1 2 1 1 6 1 9 0.103 10 0.842 9 1 1 1 1 1 4 0.033 5 40 GO:0014070 Response to Nitrogen Compound 1 1 1 4 1 3 1 2 0.382 6 1 5 1 3 1 4 1 5 0.06 10 0.077 8 1 4 1 5 1 5 1 3 1 4 1 5 1 1 1 <td>GO:0009607</td> <td>Response to Biotic Stimulus</td> <td>1</td> <td>5 1</td> <td>4</td> <td>1 3</td> <td>1</td> <td>5</td> <td>1 2</td> <td>1</td> <td>3</td> <td>0.008 8</td> <td>0.089</td> <td>7 1</td> <td>2</td> <td>1 1</td> <td>1 3</td> <td>1</td> <td>4 984</td>	GO:0009607	Response to Biotic Stimulus	1	5 1	4	1 3	1	5	1 2	1	3	0.008 8	0.089	7 1	2	1 1	1 3	1	4 984
GO:0006979 Response to Oxidative Stress 1 1 2 1 2 1 2 1 <th1< th=""> 1 1</th1<>	GO:0006974	Cellular Response to DNA Damage Stimulus	0.037	7 1	4	2	1	5	3E-05	1	3	1 5	1	1 i	4	1 3	0.5 6	0.007	7 811
GC:0070887 Cellular Response to Chemical Stimulus 1 9 0.103 10 0.842 9 1 1 9 0.12 1 1 9 0.12 1 1 9 0.12 1 1 9 0.12 1 <th1< th=""> 1 1</th1<>	GO:0006979	Response to Oxidative Stress		1	3	1 2	1	2	1 1	1 .	5	1 2	1	2	1	1 1	1 4	0.033	5 401
GO:0014070 Response to Organic Cyclic Compound 1 2 1 4 1 3 1 4 1 3 1 2 0.32 6 1 3 1 6 0.00 1 4 1 3 1 2 0.32 6 1 3 1 6 1 3 1 4 1 3 1 4 1 3 1 2 0.32 6 1 3 1 4 1 3 1 4 1 3 1 4 1 5 1 5 1 6 0.019 8 1 2 1 3 1 4 1 5 1 5 0.06 1 0 0.019 8 1 2 1 <th1< th=""> 1 1</th1<>	GO:0070887	Cellular Response to Chemical Stimulus	1	9 0.103 ·	0 0.84	2 9	1	10	1 6	1	9	0.124 11	0.16 1	1 0.007	12	2E-06 16	1 9	0.003 1	2 2852
GO:1901698 Response to Nitrogen Compound 1	GO:0014070	Response to Organic Cyclic Compound	1	2 1	4	1 3	1	4	1 3	1	2	0.382 F	1	5 1	3	1E-04 9	1 4	1	4 890
GO:1901700 Response to Oxygen-Containing Compound 1 3 1 5 1 6 1 4 1 5 0.006 10 0.058 9 1 6 0.021 9 1 4 0.086 8 166 GO:010038 Response to Metal Ion 1 1 0.014 5 1 3 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GO:1901698	Response to Nitrogen Compound	i 1	1 1	3	1 4	1	5		i	5	1 6	0.019	B 1	2	1 3	1 1	1	5 1087
GO:0010038 Response to Metal Ion 1 0.014 5 1 3 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 <th1< th=""> 1 1</th1<>	GO:1901700	Response to Oxygen-Containing Compound	1	3 1	5	1 6	1	6	1 4	1	5	0.006 10	0.058	9 1	6	0.021 9	1 4	0.086	8 1660
GO:0006952 Defense Response 1 4 1 2 1 3 1 7 1 5 0.018 9 1 3 1 1 1 6 1 8 0.002 1 1 0.003 13 1 5 1 7 1 6 1 1 1 1 1 1 1 1 1 1	GO:0010038	Response to Metal Ion	1	1 0.014	5	1 3	1	2	1 1	ı .	5	1 1	1	2 1	2	1 2	1 2	1	2 349
GO:0002376 Immune System Process 1 6 1 6 0.002 12 1 6 0.003 10 11 10 11	GO:0006952	Defense Besponse	1 1	4 1	2	1 3	1	3	1 7	1	5	0.018 10	0.144	9 1	3	1 3	1 1 3	1 1	6 1867
GO:0032606 Type I Interferon Production 1 1 1 0.006 4 0.013 4 1 2 1 1 1 1 1 1 1 0.006 4 0.013 4 1 2 1 1 1 1 1 1 0.006 4 0.013 4 1 2 1 1 1 1 1 1 0 0.009 9 1 9 0.036 1 1 1 1 1 1 0 0.009 9 1 9 0.036 1 1 1 1 1 1 0 0.009 9 1 9 0.036 1	GO:0002376	Immune System Process	1	6 1	3	1 4	1	6	0.002 12	i 1	6	0.069 11	0.003 1	3 1	5	1 7	1 1 6	s 1	8 2673
GO:0007165 Signal Transduction 1 1 1 1 0 0.09 1 9 0.479 16 0.036 17 1E-04 21 1 9 0.244 14 56 GO:0007155 Cell Communication 1 12 1 10 0.009 19 1 0.479 16 0.036 17 1E-04 21 1 9 0.009 17 1 13 0.244 14 56 642 No. in Top 4% 63 49 50 63 49 62 58 60 53 52 66 49	GO:0032606	Type I Interferon Production	l i	il '	1		l i	1	0.006 4	· ·	J	0.013 4	1	2	ĭ	1 1			1 127
GO:0007154 Cell Communication 1 <th1< th=""> 1<!--</td--><td>GO:0007165</td><td>Signal Transduction</td><td>1 1</td><td>il 1</td><td>0</td><td>1 10</td><td>0,000</td><td>19</td><td>1 0</td><td>0 470</td><td>16</td><td>0.036 17</td><td>1E-04 2</td><td>1 1</td><td>٩</td><td>0.009 17</td><td>1 1 2</td><td>0 244 1</td><td>4 5865</td></th1<>	GO:0007165	Signal Transduction	1 1	il 1	0	1 10	0,000	19	1 0	0 470	16	0.036 17	1E-04 2	1 1	٩	0.009 17	1 1 2	0 244 1	4 5865
No. in Top 4% 63 49 50 63 49 62 58 60 53 52 66 49	GO:0007154	Cell Communication	1 1	2 1	2	1 10	0.008	20	1 11	0.119	18	0.03 18	2E-05 2	3 1	10	0.001 19	0.215 19	0.165 1	5 6420
	1.0.0007104	No. in Top 4%	6	3 4	19	50	0.000	63	40	0.110	62	58	6		53	52	66	6 4	9
					-				1		52	50	. 0	-1		52		1	-

Figure 5. GO term (Biological Process) enrichments of the 3rd-Z-4% cargoes. The 3rd-Z-4% cargoes were analyzed for GO term (term type, Biological Process) enrichment. The significantly enriched terms (p<0.05, cyan) in the 3rd-Z-4% cargoes of four or fewer NTRs were selected, and a representative term for each group of highly similar is presented with their p-values and the numbers (#) of cargoes annotated with them. Total No. denotes the number of proteins annotated with each term in the database. Related terms are bundled in the same color. This table was extracted from *Figure 5 continued on next page*

Figure 5 continued

Supplementary file 6B. All the GO terms annotated to the 3rd-Z-4% cargoes are listed in Supplementary file 7. The correspondence between each 3rd-Z-4% cargo and GO term is summarized in Supplementary file 9. For the 2nd-Z-15% cargoes, see Supplementary files 6A, 8, and 10. DOI: 10.7554/eLife.21184.013

Nearly twice as many GO terms were annotated to the 2nd-Z-15% cargoes. The correspondences between the 2nd-Z-15% cargoes of the 12 NTRs and selected representative GO terms enriched significantly for them are tabulated in Supplementary file 10. The excerpted list of terms enriched significantly for the cargoes of four or fewer NTRs contains terms partially different from those in Figures 5 and 6 (Supplementary file 6A), but many of the NTRs are still linked to terms similar to those of the 3rd-Z-4% cargoes. For example, Imp- β and Trn-SR are linked to terms related to cell or nuclear division by the 3rd-Z-4% cargoes (Figure 5) and to partially different terms that are still related to cell or nuclear division by the 2nd-Z-15% cargoes (Supplementary file 6A). Additionally, Imp-4 is linked to terms related to DNA structure regulation, DNA repair, and apoptosis in both lists. Similarly, most of the examined NTRs are linked in both lists to similar terms that are related to any of the following: chromatin organization, chromosome organization, DNA repair, ribosome biogenesis, protein modification, cell division, nuclear division, and apoptosis. Thus, we regard the 3rd-Z-4% list as a core table of the cargo roles. Naturally, the 2nd-Z-15% cargoes linked the NTRs to additional terms (Supplementary file 6A) as follows: Imp- β , -4, and Trn-SR are linked to DNA-dependent DNA replication; Trn-1 and Imp-7 are linked to gene silencing by RNA; Imp- β , -7, and -13 are linked to rRNA transcription; Imp- β and Trn-SR are linked to protein methylation; Trn-SR is linked to protein peptidyl-prolyl isomerization; Trn-2, Imp-4, and -8 are linked to circadian rhythm; Imp- β , -4, -13, and Trn-SR are linked to terms for CCs and MFs that are related to RNA polymerase (RNAP) II transcription; and subsets of the NTRs are linked to varying terms that are related to differentiation, development, and response. As an important result, we have illustrated the general framework of the division of roles among the NTRs for the first time, in which one NTR is linked to many BPs and conversely each broadly defined BP is supported by many NTRs, but each closely defined BP is supported by a restricted number of NTRs. One typical example is the allocation of mRNA processing factors (see below).

Allocation of mRNA processing factors to the NTRs

Some of the GO terms related to mRNA processing were specifically linked to four or fewer NTRs by the 3rd-Z-4% and 2nd-Z-15% cargoes (Figure 5; Supplementary file 6A). However, many other terms related to mRNA processing were linked to more NTRs, and conversely, all the NTRs were implicated in mRNA processing. The 2nd- and 3rd-Z-rankings for the 12 NTRs included 275 and 242 proteins, respectively, that were annotated with mRNA processing (Supplementary file 6B and 6C). To see the allocation of these proteins to the NTRs, the ranks of these proteins are arranged in a table (Supplementary file 11A). The 2nd- and 3rd-Z-rankings revealed similar results. As summarized for the 2nd-Z-ranking (Figure 7), particular groups of the mRNA-processing factors are allocated to specific NTRs, showing that each NTR is linked to distinct reactions in mRNA processing: the proteins related to mRNA capping are allocated to Imp- β almost exclusively; hnRNP A0 is allocated to Trn-1, -2, Imp-4, -11, and others; hnRNP A1, A2B1, A3, D, F, H1–3, and M are allocated to Trn-1 and -2, and additionally Imp-9 and Exp-4; hnRNP U-like 1 are allocated to Imp-7, -8, and -9; SR-rich SFs are primarily allocated to Trn-SR and secondarily to Imp-7, -8, and -9; SFs 3A and B are allocated to Imp-4, -7, -8, -9, -11, and Exp-4; PQ-rich SF is allocated to Imp-4, -7, -8, and Exp-4; snRNP A-C is allocated to Imp-4, -7, -8, and Exp-4; exon junction complex (EJC) components are exclusively allocated to Imp-11 and -13; cleavage and polyadenylation specificity factor (CPSF) 1 is allocated to Imp-7 and -9; CPSF5 (NUDT21), 6, and 7 are less specifically allocated to other NTRs; general transcription factor IIF is allocated to Imp- β , -4, and Trn-SR; and RNAP II associating factors are allocated to Trn-SR and separately to other NTRs. Thus, the NTRs import distinctive subsets of mRNA processing factors. In the 2nd-Z-ranking, the SR-rich SFs were not allocated to Imp-5, but they were identified as the Imp-5 3rd-Z-4% cargoes. Thus, subsets of proteins involved in a broadly defined BP, for example, mRNA processing, are allocated to different NTRs, in a manner representative of role division among the NTRs.

Term ID	Term Name	Imp-β	Trn-1	Trn-2	Trn-SR	Imp-4	Imp-5	Imp-7	Imp-8	Imp-9	Imp-11	Imp-13	Exp-4	Total No.
GO:0008622	Epsilon DNA Polymerase Complex	P "	P "	P "	P "	P "	P "	P "	P "	P "	P "	0.024 2	P "	5
GO:0044452	Nucleolar Part	1 2	1 1	0.033 3	0.076 3	1 1	0.076 3		1 2			1 1	3E-04 4	60
GO:0015030	Cajal Body	1 1			6E-04 4		6E-04 4		1 1	0.024 3	12		0.019 3	52
GO:0042382	Paraspeckles		1 1			1 1				0.01 0		1 1	2E-05 3	6
GO:0034399	Nuclear Periphery		1 2			0.249 3				0.31 3		1 2	0.006 4	122
GO:0005635	Chromatin	2E-05 8	0 724 4			1E-04 7	1 3	1 1 2		0.073 5	1 2	0.1/2 5		410
GO:0000791	Fuchromatin	0.012 0	0.724 4	''		1 1	1.5		' 4	0.075 3	1 2	1 0	1 1	31
GO:0098687	Chromosomal Region	1 3	1 2		2E-06 8	1 1	1 3	1 3	1 1	0.000 0	1 1	1 3	1 3	301
GO:0000793	Condensed Chromosome	1 3	1 1		0.004 5	0.032 4	1 1	0.067 4				1 1		191
GO:0000776	Kinetochore				0.015 4	1 1	1 1	1 2				12		116
GO:0005819	Spindle	1 3	1 1		4E-05 7	1 1	0.455 4	1 2			1 2	1 2		279
GO:0005813	Centrosome BNA Polymerase II Transcription Factor	0.000			0.001 /	1 2			1 2		1 1	1 2	1 0	4/6
GO:0090575	Complex	0.006 4	12	12		1 2	1 1 1		1 1 1			0.008 4	12	96
GO:0016602	CCAAT-Binding Factor Complex						1 1		1 1			0.014 2		4
GO:0005845	mRNA Cap Binding Complex	1E-06 4												12
GO:0005732	Small Nucleolar Ribonucleoprotein Complex	1 1	1 1		1 1		0.441 2	15 10 11	1 1				0.001 3	20
GO:0030532	Small Nuclear Ribonucleoprotein Complex						1 2	1E-19 11 2E 20 11	0.054 3	4E-00 5				52
GO:0005684	12-Type Spliceosomal Complex			'''			0.008 3	5E-10 6	0.007 3	22-00 5	1 1			29
GO:0089701	U2AF				1 1 1		0.002 2		0.002 2		0.001 2		lii	2
GO:0005849	mRNA Cleavage Factor Complex				1 1		1 1		1 1				3E-04 3	14
GO:0044391	Ribosomal Subunit			0.019 4		1 1	1 1		1 3	3E-09 8	0.727 3	1 2		162
GO:0031428	Box C/D snoRNP Complex		1 1	1 1			1 1		1 1				0.018 2	6
GO:0005856	Cytoskeleton	0.293 9	1 5	1 3	2E-04 13	15	1 7	1 4	1 6	15	0.001 11	0.014 11	14	1949
GO:0010494	Cytoplasmic Stress Granule	1 1	1 1	1 1	1 2				0.008 3	05.00.0				32
GO:0044445	Cytosolic Part Mitechandrian	0.600 0	1 5	0.048 4	1 4	1 2		05 04 11	1 3	2E-08 8	1 3	1 2	0 100 0	205
GO:0005783	Endonlasmic Beticulum	1 2	1 3	1 4	1 1	1 5	1 3	1 6	8E-04 11	1 1	1 2	0.900 0	1 5	1623
GO:0005768	Endosome		1 1	1 2	1 4	1 3	1 4	1 3	2E-08 12	ii	1 2	1 1	1 3	779
GO:0005794	Golgi Apparatus		1 2	1 2	1 3	1 5	1 2	1 2	2E-04 11	1 3	1 3	1 5	1 2	1436
GO:0031410	Cytoplasmic Vesicle	1 1	1 2	1 2	1 4	1 5	1 3	1 4	3E-07 13	14	12	1 1	1 5	1232
GO:0005925	Focal Adhesion	1 2	1 1	1 2		1 1	1 4	1 1	0.004 6	0.002 6	0.039 5	0.008 6	12	383
GO:0005905	Coated Pit		1 1			1 2		1 1	1 2	1 1	1 1	1 1	0.033 3	62
GO:0043209	Myelin Sneath	1 1	40	50		1 2	1 3	0.047 4	12	1 2	0.032 4	1 1	1 1	1/5
	140. 111 100 478	00			63	1 49	1 62	58	60	53	52	66	49	
P			1 40	1 50	63	49	62	58	60	53	52	66	49	
			1 40	50	63	49	62	58	60	53	52	66	49	<u> </u>
<u>ت</u>			1 10	50	63	49	62	58	60	53	52	66	49	
Term ID	Term Name	Imp-β	Trn-1	Trn-2	Trn-SR	49 Imp-4	62 Imp-5	58	60	53	52 Imp-11	66 Imp-13	49 Exp-4	Total
Term ID	Term Name	Imp-β	Trn-1	Trn-2	Trn-SR	49 Imp-4 p #	62 Imp-5 p #	58 Imp-7 p #	60 Imp-8 p #	53 Imp-9 p #	52 Imp-11 p #	66 Imp-13 p #	49 Exp-4 p #	Total No.
Term ID GO:0034061	Term Name	Imp-β p # 0.008 3	Trn-1	Trn-2	Trn-SR	49	62	Imp-7	imp-8	53	52 Imp-11 p #	66 Imp-13 p # 1 2	Exp-4	Total No. 30
Term ID GO:0034061 GO:0003690	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Circle Stranded DNA Binding	Imp-β p # 0.008 3 0.023 1	Trn-1	Trn-2	Trn-SR p # 1 1 1 2 1 1	49 Imp-4 p # 0.62 5	62 Imp-5 p # 1 5	Imp-7 <i>p</i> # 0.153 6 0.164 2	60	53	52 Imp-11 p #	66 Imp-13 p # 1 2 1 2	49 Exp-4 p # 0.62 5	Total No. 30 752
Term ID GO:0034061 GO:0003690 GO:0003697 GO:0098847	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA	Imp-β p # 0.008 3 0.023 7 1 1	Trn-1 p # 0.001 4 0.039 2	Trn-2 p # 1 4 1 2 0.046 2	Trn-SR p # 1 1 1 2 1 1	49 Imp-4 p # 0.62 5 1 2	62 Imp-5 p # 1 5	58 Imp-7 p # 0.153 6 0.164 3	60 Imp-8 p # 1 3 1 2	53 Imp-9 <i>p</i> # 1 4 1 1	52 Imp-11 p # 1 2	66 Imp-13 p # 1 2 1 2	49 Exp-4 p # 0.62 5 1 2 1 1	Total No. 30 752 88 9
Term ID GO:0034061 GO:0003690 GO:0003697 GO:0098847	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding	Imp-β p # 0.008 3 0.023 7 1 1	Trn-1 <i>p</i> # 1 4 0.001 4 0.039 2	Trn-2 p # 1 4 1 2 0.046 2	Trn-SR p # 1 1 1 2 1 1	49 Imp-4 p # 0.62 5 1 2	62	Imp-7 p # 0.153 6 0.164 3	60 Imp-8 p # 1 3 1 2	53 Imp-9 p # 1 4 1 1	52 Imp-11 p # 1 2	66 Imp-13 p # 1 2 1 2	49 Exp-4 p # 0.62 5 1 2 1 1	Total No. 30 752 88 9
Term ID GO:0034061 GO:0003690 GO:0003697 GO:0098847 GO:0008301	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending	Imp-β p # 0.008 3 0.023 7 1 1	Trn-1 <i>p</i> # 1 4 0.001 4 0.039 2	Trn-2 p # 1 4 1 2 0.046 2	Trn-SR p # 1 1 1 2 1 1	49 imp-4 p # 0.62 5 1 2 0.001 3	imp-5 p # 1 5	Imp-7 <i>p</i> # 0.153 6 0.164 3 0.002 3	60	53	52 Imp-11 p # 1 2	66 Imp-13 p # 1 2 1 2	49 Exp-4 p # 0.62 5 1 2 1 1 1 1	Total No. 30 752 88 9 20
Term ID GO:0034061 GO:0003690 GO:0003697 GO:0098847 GO:008301 GO:0043566 CO:0008301	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Sendens Structure Binding	Imp-β p # 0.008 3 0.023 7 1 1 0.289 3	Trn-1 p # 1 4 0.001 4 0.039 2 1 1	Trn-2 p # 1 4 1 2 0.046 2	Trn-SR p # 1 1 1 2 1 1 1 1	imp-4 p # 0.62 5 1 2 0.001 3 0.002 4 75 04 2	imp-5 p # 1 5	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.226 3 0.201 2	Imp-8 p # 1 3 1 2	Imp-9 p # 1 4 1 1 0.162 3	52 Imp-11 p # 1 2	66 Imp-13 p # 1 2 1 2	49 Exp-4 p # 0.62 5 1 2 1 1 1 1	Total No. 30 752 88 9 20 98
GC:0034061 GC:0034061 GC:0003690 GC:0003697 GC:0098847 GC:0008301 GC:00043566 GC:0000217	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Every May Lunctoo DNA Binding	Imp-β p # 0.023 7 1 1 0.289 3	Trn-1 p # 1 4 0.001 4 0.039 2 1 1	Trn-2 p # 1 4 1 2 0.046 2	Trn-SR p # 1 1 1 2 1 1 1 1 1 1	49 imp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 7E-04 3	imp-5 p # 1 5	Imp-7 p # 0.153 6 0.164 3 0.226 3 0.226 3 0.001 3 05 6	imp-8 p # 1 3 1 2	53 Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1	52 Imp-11 p # 1 2	66 Imp-13 p # 1 2 1 2	49 Exp-4 p # 0.62 5 1 2 1 1 1 1	Total No. 30 752 88 9 20 98 18
CO:0034061 GO:0034061 GO:0003697 GO:0098847 GO:0043566 GO:0043566 GO:000217 GO:00040217 GO:000040	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Supersoluted DNA Binding	Imp-β p # 0.008 3 0.023 7 1 1 0.289 3	Trn-1 p # 0.001 4 0.039 2 1 1	Trn-2 p # 1 4 1 2 0.046 2	Trn-SR	Imp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2	Imp-5 <i>p</i> # 1 5	Imp-7 p # 0.153 6 0.164 3 0.226 3 0.001 3 9E-05 3 0.011 2	Imp-8 <i>p</i> # 1 3 1 2	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1	52	66 Imp-13 p # 1 2 1 2	Exp-4 p # 0.62 5 1 2 1 1 1 1 1 1	Total No. 30 752 88 9 20 98 18 8 8
Term ID GO:0034061 GO:003690 GO:003697 GO:0008697 GO:0008807 GO:0008001 GO:00043566 GO:000217 GO:0002160 GO:0003682 GO:0003682	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Supercoiled DNA Binding Chromatin Binding	Imp-β p # 0.003 7 1 1 0.289 3 8E-11 12	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 1 3	Trn-2 p # 1 4 1 2 0.046 2	Trn-SR p # 1 1 1 2 1 1 1 1 1 2 1 1	49 1mp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5	1 2	Imp-7 p # 0.153 6 0.164 3 0.226 3 0.001 3 9E-05 3 0.011 2 1 2	1 3 1 3	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1E-05 8	52 Imp-11 p # 1 2	66 mp-13 p # 1 2 1 2	Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4	Total No. 30 752 88 9 20 98 18 8 8 4 457
Term ID GO:0034061 GO:0003690 GO:0003897 GO:009847 GO:0008301 GO:000400 GO:000400 GO:00037100 GO:000362	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Supercoiled DNA Binding Chromatin Binding Telomeric DNA Binding	Imp-β p # 0.008 3 0.023 7 1 1 0.289 3 8E-11 12	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 1 3 0.003 3	Trn-2 p # 1 4 1 2 0.046 2 0.046 2	Trn-SR p # 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49 10.62 5 1 2 0.001 3 0.002 4 7E-04 3 0.007 2 0.007 2 0.061 5	1 2	Imp-7 p # 0.153 6 0.164 3 0.226 3 0.001 3 0.001 3 0.011 2 1 2	1 3 1 3	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1	52 Imp-11 p # 1 2 1 1	66 mp-13 p # 1 2 1 2 1 2 1 4	49 Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1	Total No. 30 752 88 9 20 98 18 8 8 4 457 30
Term ID GO:0034061 GO:0003690 GO:0003897 GO:008807 GO:0043566 GO:00043566 GO:0004376 GO:0004362 GO:0004362 GO:0004362 GO:0004364	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding	Imp-β p # 0.008 3 0.023 7 1 1 0.289 3 8E-11 12 1 3	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 1 3 0.003 3 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.004 3 1 2	Trn-SR	49 1mp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2	62 Imp-5 p # 1 5 1 2 1 2 1 2	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.001 3 9E-05 3 0.011 2 1 2 1 2	1 3 0.91 3	imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 0.162 3 0.162 3 0.162 3 0.162 3 0.162 3 0.162 3 0.162 3 0.162 3 0.162 3 0.0162 4	1 1 1	66 mp-13 p # 1 2 1 2 1 4 1 4 1 2	Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.924 4 1 1 0.514 3	Total No. 30 752 88 9 20 98 18 8 45 30 30 156
Term ID GO:0034061 GO:0003690 GO:0008877 GO:0008807 GO:0008301 GO:000217 GO:0000217 GO:0000217 GO:0000217 GO:0000217 GO:0000217 GO:000217 GO:0000217 GO:000017 GO:000017 GO:0000100 GO:0002162 GO:0001047 GO:0009888 GO:0009888 GO:0009888 GO:0001047 GO:0009888 GO:0009888	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Bending, Bending DNA Secondary Structure Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Supercoiled DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Transcription Factor Activity, Protein Binding	Imp-β p # 0.008 3 0.023 7 1 1 0.289 3 BE-11 12 1 3 3E-04 8	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 1 3 0.003 3 1 1 0.012 6	Trn-2 p # 1 4 1 2 0.046 2 0.046 3 1 2 0.004 3 1 2 0.227 5	Trn-SR p # 1 1 1 2 1 4 1 2 0.006 7	49 1mp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1	1 2 1 2 1 2 1 2	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.001 3 9E-05 3 0.011 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 3 0.91 3 1 2	imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1E-05 8 0.019 4 1 1 1 1	52 Imp-11 p # 1 2 1 1 1 3	66 Imp-13 p # 1 2 1 2 1 4 1 4 1 2 1 4	Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.924 4 1 1 0.514 3 1 2	Total No. 300 98 9 20 98 8 8 4 457 300 1566 587
Term ID GO:0034061 GO:0003690 GO:0008697 GO:0098847 GO:0098847 GO:0004206 GO:0004207 GO:0004207 GO:0004206 GO:0004206 GO:0004207 GO:0004207 GO:0004206 GO:0004207 GO:0004207 GO:00042162 GO:00001247 GO:00001247 GO:00003882 GO:0003882 GO:0003727	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Chromatin Binding Core Promoter Binding Transcription Factor Activity, Protein Binding Single-Stranded RNA Binding	Imp-β # ρ # 0.008 3 0.023 7 1 1 0.289 3 8E-11 12 1 3 3E-04 8 1 2	Trn-1 p # 1 4 0.039 2 1 1 3 0.033 3 1 1 0.012 6 2E-08 6	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 3 1 2 0.227 5 4E-04 4	Trm-SR p # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1	49 10001 3 0.02 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.001 3 9E-05 3 0.011 2 1 2 1 2 1 1 1 1	1 3 1 3 0.91 3 1 2	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 Imp-11 p # 1 2 1 1 1 3 1 2	66 Imp-13 p # 1 2 1 2 1 2 1 4 1 4 1 2 1 4	49 Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.514 3 1 2 1 2 1 2 1 2 1 1 0.514 3 1 2 1 2 1 2 1 3 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1	Total No. 300 752 88 9 20 98 18 8 4 457 30 156 587 62
Term ID GO:0034061 GO:0003690 GO:0003897 GO:0008301 GO:000420 GO:000420 GO:000420 GO:000420 GO:000420 GO:00042162 GO:0003727 GO:0003727 GO:0003727	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Transcription Factor Activity, Protein Binding Pre-mRNA Binding	Imp-β # p # 0.008 3 0.023 7 1 1 0.289 3 BE-11 12 1 3 3E-04 8 1 2	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 0.033 3 0.003 3 1 1 0.012 6 2E-08 6 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 3 0.27 5 4E-04 4 1 1	Trn-SR p # 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1	49 10.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 5E-05 3 0.007 2 0.0061 5 1 2 1 1 1 1	62 1 mp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.026 3 0.001 3 9E-05 3 0.011 2 1 2 1 2 1 2 1 1 1 1	60 Imp-8 p # 1 3 1 2 1 3 0.91 3 1 2 1 2 1 2 1 2 1 2 1 1	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4	52 1000 10	66 Imp-13 p # 1 2 1 2 1 2 1 4 1 4 1 2 1 4 1 1	Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.514 3 1 2 1 2 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 4 1 2 1 1 0.514 4 1 1 0.514 4 1 2 1 1 0.514 4 1 2 1 1 0.514 4 1 2 1 1 0.514 4 1 1 0.514 4 1 2 1 1 0.514 4 1 2 1 1 0.514 3 1 2 1 1 0.514 3 1 2 1 1 0.514 3 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 1 0	Total No. 30 752 88 9 20 98 18 8 4 4 57 30 156 587 62 23
Term ID GO:0034061 GO:0003690 GO:0003897 GO:008817 GO:0008301 GO:000217 GO:000217 GO:000217 GO:000217 GO:0004366 GO:000400 GO:000400 GO:000400 GO:0004162 GO:0001047 GO:0001047 GO:0003727 GO:0003727 GO:0003728 GO:00071208 GO:00071208	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Secondary Structure Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Supercoiled DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Transcription Factor Activity, Protein Binding Single-Stranded RNA Binding Histone Pre-mRNA Binding Histone Pre-mRNA Binding	Imp-β # p # 0.008 3 0.0289 3 8E-11 12 1 3 3E-04 8 1 2	Trn-1 p # 1 4 0.039 2 1 1 0.033 3 1 1 0.012 6 2E-08 6 1 2	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.027 5 4E-04 4 1 1	Trn-SR p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.004 3	49 10.62 0.62 5 1 2 0.001 3 0.002 4 7 5 0.001 3 5 0.007 2 0.001 5 1 2 0.001 5 1 1 1 1 1 1 1 1 1 1 1 1 1	62 1 mp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.001 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2	1 3 0.91 3 0.91 3 1 2 1 3 0.91 3 1 2 1 2 1 1	imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Imp-11 p # 1 2 1 1 1 3 1 2 1 1 3 1 2 1 1 1 3 1 2 1 1 1 3 1 2 1 1 1 1 3	66 mp-13 p # 1 2 1 2 1 4 1 4 1 4 1 4 1 4 1 1	Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.514 3 1 2 1 2 1 2 1 1	Total No. 30 752 88 9 9 20 98 18 8 4 457 30 156 587 62 23 4
Term ID GO:0034061 GO:0003697 GO:0003697 GO:0008847 GO:0008847 GO:0008827 GO:0003692 GO:0003692 GO:0003692 GO:0003692 GO:00037100 GO:0003727 GO:001275 GO:0003700	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Telomeric DNA Binding Pre-mRNA Binding Pre-mRNA DCP Binding mRNA 3'-UTR Binding	Imp-β p # 0.008 3 0.023 7 1 1 0.289 3 BE-11 12 3 3E-04 1 2 1 1	Trn-1 p # 1 4 0.039 2 1 1 1 3 0.033 3 1 1 0.112 6 2E-08 6 1 1 0.015 3 0.001 5 3	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.004 3 1 2 0.227 5 4E-04 4 1 1 0.028 3 0.002 4	Trn-SR p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.004 3	49 1mp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1	62 Imp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.001 3 9E-05 3 0.011 2 1 2 1 1 0.011 2 1 1 0.011 1 1 1 1 1 1 1 1 1	Imp-8 p # 1 3 1 2 1 3 0.91 3 1 2 1 1 0.91 3 1 2 1 1 0.422 7	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4	52 imp-11 p # 1 2 1 1 1 3 1 2 1 1 1 2	66 mp-13 p # 1 2 1 2 1 2 1 4 1 4 1 4 1 1	49 Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.924 4 1 1 0.924 3 1 2 1 2 1 2 1 2 1 2 1 1 0.924 4 1 1 0.924 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total No. 30 752 88 9 20 98 18 8 4 457 300 156 587 622 233 4 4 920
Term ID GO:0034061 GO:0003690 GO:0003697 GO:0098847 GO:0098847 GO:000400 GO:000400 GO:0097100 GO:0003622 GO:0001047 GO:00003727 GO:003700 GO:003700 GO:003703 GO:0001707	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Chromatin Binding Transcription Factor Activity, Protein Binding Transcription Factor Activity, Protein Binding Pre-mRNA Binding Histone Pre-mRNA DCP Binding MINA 3-UTR Binding AU-rich Element Binding	Imp-β # p # 0.023 7 1 1 0.289 3 BE-11 12 1 3 3E-04 8 1 2 1 1	Tm-1 p # 1 4 0.039 2 1 1 0.039 3 1 1 0.012 6 2E-08 6 1 1 0.015 3 0.001 3 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.046 3 1 2 0.227 5 4E-04 4 1 1 0.018 3 0.002 3 1 1	Trn-SR p # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.006 7 1 1 0.004 3	49 10.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Imp-7 p # 0.153 6 0.164 3 0.226 3 0.001 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2 1 2 1 1 0.011 2 1 1 0.011 2	1 3 1 3 1 3 0.91 3 1 2 1 3 0.91 3 1 2 1 1 1 1 0.432 2	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1E-05 8 0.019 4 1 4 1 1	52 imp-11 p # 1 2 1 1 1 3 1 2 1 1	66 imp-13 p # 1 2 1 2 1 2 1 4 1 4 1 1 1 1	49 Exp-4 p # 0.62 5 1 2 1 1 0.62 5 1 2 1 1 0.924 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total No. 300 752 88 9 20 9 88 8 4 4 57 30 156 587 62 23 4 49 23 34
Term ID GO:0034061 GO:0003690 GO:0003897 GO:0008301 GO:000420 GO:000420 GO:000420 GO:00042162 GO:0003727 GO:0003727 GO:003700 GO:00171208 GO:0017091 GO:0017091 GO:0017091 GO:00176514	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Transcription Factor Activity, Protein Binding Single-Stranded RNA Binding Pre-mRNA Binding Histone Pre-mRNA DCP Binding MUTR Binding AU-rich Element Binding SonRNA Sitem-Loop Binding	Imp-β # p # 0.008 3 0.023 7 1 1 0.289 3 BE-11 12 1 3 3E-04 8 1 2 1 1 1 1	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 0.033 3 1 1 0.012 6 2E-08 6 1 1 0.015 3 0.001 3 0.001 3 0.001 3 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 3 0.227 5 4E-04 4 1 1 0.018 3 0.002 3 1 1	Trn-SR p # 1 1 1 1 2 1 1 1 1	49 10.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 5E-05 3 0.007 2 0.0061 5 1 2 1 1 1 1	62 1 mp-5 7 # 1 5 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1	Imp-7 p # 0.153 6 0.153 6 0.266 3 0.002 3 0.011 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.002 2	60 Imp-8 p # 1 3 1 2 1 3 0.91 3 1 2 1 2 1 2 1 2 1 1 0.432 2 1 1	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 1 1 1 1 1 1 1 1 1 1 1 1 1	66 mp-13 p # 1 2 1 2 1 4 1 4 1 4 1 1 1 1	49 Exp-4 p # 0.62 5 1 2 1 1 1 1 0.524 4 1 1 0.514 3 1 2 1 2 1 2 1 1 0.514 3 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 2 1 1 0.514 3 1 2 1 1 0.514 4 1 1 0.514 3 1 2 1 1 0.514 4 1 1 0.514 4 1 1 0.514 3 1 2 1 1 0.514 4 1 1 0.514 3 1 2 1 1 1 1 0.514 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total No. 300 752 88 9 9 200 98 8 4 4 457 300 1566 587 62 233 4 49 233 34
Term ID GO:0034061 GO:0003697 GO:0003697 GO:0008847 GO:0004217 GO:0003682 GO:0003682 GO:0003682 GO:0003682 GO:00042162 GO:00042162 GO:00042162 GO:00047162 GO:0001477 GO:0001720 GO:000171208 GO:0017091 GO:0017091 GO:0017091 GO:0035614 GO:00040404	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Secondary Structure Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Transcription Factor Activity, Protein Binding Figure-Stranded RNA Binding Pre-mRNA Binding Pre-mRNA DCP Binding mRNA 3'-UTR Binding SunRA Stem-Loop Binding snRNA Stem-Loop Binding ShP-D-Spendent RNA Helicase Activity	Imp-β # p # 0.008 3 0.0289 3 8E-11 12 1 3 3E-04 8 1 1 1 1	Trn-1 p # 1 4 0.039 2 1 1 0.039 2 1 1 0.03 3 1 1 0.012 6 2E-08 6 1 1 0.015 3 0.001 3 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.046 2 0.046 2 0.046 4 1 1 0.018 3 0.008 3 1 1	Trn-SR p i 1 2 0.006 7 1 1 1 1 1 1 0.004 3 3 1 1 1 1 1 1 1 1 1 1 0.004 3 3 1	49 10001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1 1 1	62 1mp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 1 1 1 0.102 3	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.023 3 0.001 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 3E-07 5 0.002 2	Imp-8 p # 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 0.432 2 1 1 0.001 4	imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.019 4 1 1 1 1 0.05 3	52 Imp-11 p # 1 2 1 1 1 3 1 2 1 1 1 2 1 1	66 mp-13 p # 1 2 1 2 1 4 1 4 1 2 1 4 1 1 1 1 1 1 1 1	Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.514 3 1 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1	Total No. 300 752 88 9 9 20 98 18 8 4 457 300 156 587 62 23 4 4 49 334 2 23 34 23 23 24 23 23 24 20 20 20 20 20 20 20 20 20 20 20 20 20
Term ID GO:0034061 GO:0003697 GO:0008847 GO:0008817 GO:00080217 GO:0004206 GO:0003682 GO:0004206 GO:0004206 GO:0004206 GO:0004206 GO:0004206 GO:0004207 GO:0004208 GO:0004208 GO:0004208 GO:0004208 GO:0004208 GO:0001727 GO:0003730 GO:0003730 GO:0017091 GO:0017069 GO:0035614 GO:00040515	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Seguence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Telomeric DNA Binding Pre-mRNA Binding Nranscription Factor Activity, Protein Binding Single-Stranded RNA Binding Pre-mRNA Binding Single-Stranded RNA Binding Single-Stranded RNA DCP Binding mRNA 3'-UTR Binding AU-rich Element Binding snRNA Binding snRNA Stem-Loop Binding ATP-Dependent RNA Helicase Activity snoRNA Binding	Imp-β p # 0.0023 7 0.2239 3 0.289 3 8E-11 12 1 3 3E-04 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trn-1 p # 1 4 0.039 2 1 1 0.039 3 1 1 0.02 6 2E-08 6 1 1 0.015 3 0.001 3 1 1 0.015 3 0.001 3 1 1 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.046 3 1 2 0.227 5 4E-04 4 1 1 0.018 3 0.002 3 1 1 1 1	Trn-SR p # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.006 3 1 1 0.004 3 1 1 0.005 3	49 1100-4 120-	62 Imp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 1 0.102 3 1 1	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.001 3 9E-05 3 0.011 2 1 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 1 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.002 2	Imp-8 p # 1 3 1 2 1 3 0.91 3 1 2 1 1 0.471 2	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1E-05 8 0.019 4 1 4 1 1 0.019 4 1 1 0.05 3	52 Imp-11 p # 1 2 1 1 1 3 1 2 1 1 1 2	66 Imp-13 p # 1 2 1 2 1 4 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1	49 Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.924 4 1 1 0.514 3 1 2 1 2 1 2 1 1 0.924 4 1 1 0.924 4 1 1 0.924 4 1 1 0.924 4 1 2 1 2 1 2 1 1 0.924 4 1 1 0.924 4 1 2 1 2 1 2 1 1 0.924 4 1 2 1 2 1 2 1 1 0.924 4 1 2 1 2 1 2 1 2 1 1 0.924 4 1 2 1 2 1 2 1 2 1 1 0.924 4 1 2 1 2 1 2 1 2 1 2 1 1 0.924 4 1 2 1 2 1 2 1 2 1 2 1 1 0.924 4 1 2 1 2 1 2 1 2 1 2 1 1 0.924 4 1 1 0.924 4 1 1 0.924 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Total No. 300 752 88 9 200 9 200 8 88 8 8 8 8 8 8 8 8 8 8 4 457 300 1567 62 233 4 4 49 233 4 4 23 66 62 41
Term ID GO:0034061 GO:0003690 GO:0008301 GO:0098847 GO:0008301 GO:000400 GO:000400 GO:000400 GO:0003727 GO:0003727 GO:0003727 GO:0003700 GO:0003727 GO:0003701 GO:0017091 GO:0017091 GO:0017091 GO:0035614 GO:00035614 GO:00035618 GO:003051082	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Chromatin Binding Teanscription Factor Activity, Protein Binding Transcription Factor Activity, Protein Binding Pre-mRNA Binding Histone Pre-mRNA DCP Binding Mistone Pre-mRNA DCP Binding snRNA 3'-UTR Binding AU-rich Element Binding snRNA Stem-Loop Binding ATP-Dependent RNA Helicase Activity snoRNA Binding Unfolded Protein Binding	Imp-β # p # 0.008 3 0.023 7 1 1 0.289 3 BE-11 12 1 3 3E-04 8 1 2 1 1 1 1 1 1 1 1	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 0.039 3 1 1 0.012 6 2E-08 6 1 1 0.015 3 0.001 3 1 1 1 1 1 1 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.027 5 4E-04 4 1 1 0.018 3 0.002 3 1 1 1 1	Trn-SR p # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.004 3 1 1 2E-07 6 0.005 3 0.009 4	49 10.62 5 1 2 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1 1 1 1 1	62 1 mp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1	Imp-7 p # 0.153 6 0.164 3 0.226 3 0.002 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.002 2 1 2 1 2 1 1 3E-07 5 0.002 2 1 2	60 1mp-8 p # 1 3 1 2 1 3 0.91 3 1 2 1 2 1 2 1 1 0.91 3 1 2 1 1 0.91 3 1 2 1 1 0.91 3 1 2 1 1 1 1 0.91 3 1 2 1 1 1 1	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.019 4 1 1 0.05 3 1 2	52 Imp-11 p # 1 2 1 1 1 3 1 2 1 1 1 2 1 1 1 2 1 1	66 1mp-13 p # 1 2 1 2 1 2 1 4 1 1 1 1 1 1 1 1 1 1	49 p # 0.62 5 1 2 1 1 0.1 1 0.514 3 1 2 1 1 0.514 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 <td>Total No. 300 752 88 9 98 18 4 457 300 1566 5877 223 4 9 233 4 49 233 344 22 666 244 102 102</td>	Total No. 300 752 88 9 98 18 4 457 300 1566 5877 223 4 9 233 4 49 233 344 22 666 244 102 102
Term ID G0:0034061 GO:0003690 GO:0003897 GO:0008301 GO:0008301 GO:000420 GO:000420 GO:00042162 GO:0003727 GO:0003727 GO:0003727 GO:0003727 GO:0003729 GO:0017091 GO:0017091 GO:0017091 GO:0005614 GO:00030515 GO:001789 GO:00178789	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Secondary Structure Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Tenscription Factor Activity, Protein Binding Pre-mRNA Binding Histone Pre-mRNA DCP Binding Histone Pre-mRNA DCP Binding MRNA 3'-UTR Binding SnRNA Binding SnRNA Stem-Loop Binding AtP-Dependent RNA Helicase Activity snoRNA Binding Unfolded Protein Binding SUMO Transferase Activity	Imp-β p # 0.008 3 0.023 7 1 1 1 1 0.289 3 8 1 2 1 3 3 8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trn-1 p # 1 4 0.039 2 1 1 0.039 2 1 1 0.039 3 1 1 0.012 6 2E-08 6 1 1 0.015 3 0.001 3 1 1 1 1 1 1 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.027 5 4E-04 4 1 1 0.018 3 0.002 3 1 1 1 1 1 1	Trn-SR p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.004 3 0.005 3 0.009 4	49 mp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1 1 1 1 1	Imp-5 p # 1 5 1 2 1 2 1 2 1 2 1 1 0.102 3 1 1	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.226 3 0.001 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2 1 1 3E-07 5 0.002 2 1 2 1 2	Imp-8 p # 1 3 1 3 1 3 0.91 3 1 2 1 1 0.432 2 1 1 0.432 2 1 1 0.432 2 1 1 0.432 2 1 1 0.432 2 1 1	imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.019 4 1 1 0.01 4 1 1 1 2	Imp-11 p # 1 2 1 1 1 3 2 1 1 1 2 1 1 1 1	66 Imp-13 p # 1 2 1 2 1 4 1 4 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 2 1 2 1 1 0.514 3 1 2 1 2 1 1 1 2 1 1 1 2 1 2 1 1 1 1	Total No. 30 752 88 9 200 98 18 4 457 300 156 587 62 23 34 2 366 24 102 111
Term ID GO:0034061 GO:0003697 GO:0003697 GO:0008847 GO:0004217 GO:0003692 GO:0003692 GO:0003692 GO:0003692 GO:0003692 GO:0003682 GO:0003682 GO:0003700 GO:0003727 GO:0003727 GO:0003730 GO:0017091 GO:0017091 GO:0017069 GO:0035614 GO:00030515 GO:0019789 GO:0019789 GO:0019901	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending DNA Sendary Structure Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Chromatin Binding Telomeric DNA Binding Core Promoter Binding Transcription Factor Activity, Protein Binding Single-Stranded RNA Binding Pre-mRNA DCP Binding Mistone Pre-mRNA DCP Binding snRNA Similing snRNA Similing AU-rich Element Binding SinGley At Dop Binding ATP-Dependent RNA Helicase Activity SunONIA Binding Unfolded Protein Binding SUMO Transferase Activity Protein Kinase Binding	Imp-β # p # 0.008 3 0.0289 3 8E-11 12 1 3 3E-04 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trn-1 p # 1 4 0.039 2 1 1 1 3 0.039 3 1 1 0.012 6 2E-08 6 1 1 0.015 3 0.001 3 1 1 1 1 1 1 1 2	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.046 3 0.227 5 4E-04 4 1 1 0.018 3 0.002 3 1 1 1 1 1 1 1 3	Trn-SR p # 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0.006 7 1 1 0.006 3 0.007 3 1 1 2E-07 6 0.009 4 0.046 6	49 1mp-4 p # 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1 1 1 1 1 1 2	62 mp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 3	Imp-7 p # 0.153 6 0.164 3 0.002 3 0.026 3 0.001 3 0.011 2 1 2 1 1 0.011 2 1 1 0.001 3 0.011 2 1 1 0.001 2 1 1 0.002 2 1 1 3E-07 5 0.002 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Imp-8 p # 1 3 1 3 1 3 0.91 3 1 2 1 1 0.471 2 1 1 1 1 0.471 2 1 1 1 3	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.019 4 1 1 0.05 3 1 2 1 1	52 imp-11 p # 1 2 1 1 1 3 1 2 1 1 1 2 1 1 1 3	66 Imp-13 p # 1 2 1 2 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 4E-04 3 1 4	49 Exp-4 p # 0.62 5 1 2 1 1 1 1 1 1 0.924 4 1 1 0.924 4 1 1 0.924 1 1 1 0.924 1 1 1 0.924 1 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1	Total No. 300 752 88 9 20 98 18 4 457 300 1566 587 62 233 34 42 66 24 102 11543
Term ID GO:0034061 GO:0003690 GO:0003697 GO:0008301 GO:004266 GO:000420 GO:000420 GO:000420 GO:000420 GO:000420 GO:000420 GO:000420 GO:000420 GO:00042162 GO:0001047 GO:0001727 GO:003720 GO:003700 GO:0017089 GO:0035614 GO:0004015 GO:00019789 GO:0019789 GO:0019709 GO:0017099 GO:0017099 GO:0019789 GO:001981 GO:0003884	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Core Promoter Binding Transcription Factor Activity, Protein Binding Pre-mRNA Binding Pre-mRNA DCP Binding MIStone Pre-mRNA DCP Binding Single-Stranded RNA Binding Pre-mRNA DCP Binding Single-Stranded RNA Binding Single-Stranded RNA Binding Pre-mRNA Binding Histone Pre-mRNA DCP Binding Single-Stranded RNA Binding Unch Element Binding SingNA 3'-UTR Binding SingNA Stem-Loop Binding SingNA Stem-Loop Binding Unfolded Protein Binding SuMO Transferase Activity Protein Kinase Binding Acepl-CoA C-Acyltransferase Activity	Imp-β # p # 0.023 7 1 1 0.289 3 BE-11 12 1 3 3E-04 8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tm-1 p # 1 4 0.039 2 1 1 0.039 2 1 1 0.039 2 1 1 0.039 3 1 1 0.012 6 1 1 0.012 6 1 1 0.015 3 1 1 1 1 1 1 1 1 1 1 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.004 3 1 2 0.027 5 4E-04 4 1 1 0.018 3 0.022 3 1 1 1 1 1 3	Trn-SR p # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.004 3 0.005 3 0.009 4 0.046 6	49 1002 4 1200 4 1100 4 10	62 1mp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 1 1 1 0.102 3 1 1 1 1 1 1 1 1 1 3	Imp-7 p # 0.153 6 0.153 6 0.266 3 0.002 3 0.011 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.002 2 1 1 0.002 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	60 Imp-8 p # 1 3 1 2 1 3 0.91 3 1 2 1 1 0.91 3 1 2 1 1 0.91 4 0.432 2 1 1 0.001 4 0.432 2 1 1 1 3 0.91 3 1 2 1 3 1 3 1 2 1 3 1 3 1 2 1 3 1 3 1 2 1 3 1 3 1 2 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1	Imp-9 p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.019 4 1 1 0.05 3 1 2 1 1 0.051 3 1 2 1 1	52 imp-11 p # 1 2 1 1 1 3 1 2 1 1 1 3 1 2 1 1 1 3 1 3 1 2 1 1 1 3 1 2 1 1 1 3 1 2 1 1 1 3 1 2 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1	66 imp-13 p # 1 2 1 2 1 2 1 2 1 4 1 1 1 1 1 1 1 1 1 1 4E-04 3 1 4	49 Exp-4 p # 0.62 5 1 2 1 1 1 1 0.924 4 1 1 1 2 1 2 1 1 1 1 0.924 4 1 1 1 2 1 2 1 1 1 2 1 1 1 1 0.924 4 1 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 2	Total No. 300 752 88 9 98 18 4 457 300 1566 587 622 233 34 2 66 24 102 111 543
Term ID GO:0034061 GO:0003690 GO:0003897 GO:0008301 GO:0008301 GO:000400 GO:000400 GO:000400 GO:0003727 GO:0003727 GO:0003727 GO:0003727 GO:0003701 GO:0003729 GO:0017091 GO:0017091 GO:0017091 GO:0017091 GO:0017091 GO:0003614 GO:0003727 GO:0017091 GO:0017082 GO:0017083 GO:0017083 GO:0017083 GO:0017083 GO:0017083 GO:0019084 GO:0019084 GO:00190901 GO:00190901 GO:0019884 GO:000	Term Name DNA Polymerase Activity Double-Stranded DNA Binding Single-Stranded DNA Binding Sequence-Specific Single Stranded DNA Binding DNA Binding, Bending Structure-Specific DNA Binding DNA Secondary Structure Binding Four-Way Junction DNA Binding Chromatin Binding Chromatin Binding Transcription Factor Activity, Protein Binding Pre-mRNA Binding Histone Pre-mRNA DCP Binding Mistone Pre-mRNA DCP Binding SunRNA 3'-UTR Binding AU-rich Element Binding SunRNA Stem-Loop Binding AU-rich Element Binding Unfolded Protein Binding SUMO Transferase Activity Protein Kinase Binding SUMO Transferase Activity CTDence Activity	Imp-β # p # 0.008 3 0.023 7 1 1 0.289 3 BE-11 12 1 3 3E-04 8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trn-1 p # 1 4 0.001 4 0.039 2 1 1 0.039 2 1 1 0.033 3 1 1 0.012 6 2E-08 6 1 1 0.015 3 0.001 3 0.001 3 0.001 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	Trn-2 p # 1 4 1 2 0.046 2 0.046 2 0.046 2 0.046 2 0.046 3 1 2 0.227 5 4E-04 4 1 1 0.018 3 0.002 3 1 1 1 1 1 3 1 1 1 3 1 1	Trn-SR p # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.006 7 1 1 0.004 3 0.009 4 0.046 6 0.008 6	49 10.62 5 1 2 0.62 5 1 2 0.001 3 0.002 4 7E-04 3 5E-05 3 0.007 2 0.061 5 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1	62 1 mp-5 p # 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1	Imp-7 p # 0.153 6 0.153 6 0.226 3 0.002 3 0.011 3 9E-05 3 0.011 2 1 2 1 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.011 2 1 1 0.012 1 1 1 0.002 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	60 Imp-8 p # 1 3 1 2 1 3 0.91 3 1 2 1 2 1 3 0.91 3 1 2 1 1 0.91 3 1 2 1 1 0.91 3 1 2 1 1 1 3 0.91 4 0.432 2 1 1 1 3 0.91 4 0.432 1 1 1 1 3 1 2 1 1 1 3 1 2 1 3 1 2 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Imp-9 # p # 1 4 1 1 0.162 3 1 1 1 1 1 1 1 1 1 1 1 1 0.019 4 1 1 0.05 3 1 2 1 1 0.05 3 1 2 1 1 0.021 2 1 3	Imp-11 p # 1 2 1 1 1 3 2 1 1 1 2 1 1 1 2 1 1 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 <td>imp-13 p # p # 1 2 1 2 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4E-04 3 1 4 1 1 1 1</td> <td>49 p # 0.62 5 1 2 1 1 0.1 1 0.24 4 1 1 0.514 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 3</td> <td>Total No. 300 752 88 9 98 18 4 4577 300 1566 5877 223 4 4 423 344 202 233 344 102 111 543 542 202</td>	imp-13 p # p # 1 2 1 2 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4E-04 3 1 4 1 1 1 1	49 p # 0.62 5 1 2 1 1 0.1 1 0.24 4 1 1 0.514 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 3	Total No. 300 752 88 9 98 18 4 4577 300 1566 5877 223 4 4 423 344 202 233 344 102 111 543 542 202

Figure 6. GO term (Cellular Component and Molecular Function) enrichments of the 3rd-Z-4% cargoes. The 3rd-Z-4% cargoes were analyzed, and the results are presented in a format similar to that of *Figure 5*. (A) Term type, Cellular Component. (B) Term type, Molecular Function. These tables were extracted from *Supplementary file 6B*. All the GO terms annotated to the 3rd-Z-4% cargoes are listed in *Supplementary file 7*. The correspondence between each 3rd-Z-4% cargo and GO term is summarized in *Supplementary file 9*. For the 2nd-Z-15% cargoes, see *Supplementary file 6A, 8,* and 10.

DOI: 10.7554/eLife.21184.014

Accession	Major Feature	Gene Name					Rai	nk by 2	nd Z-s	core				
Accession	Major i cature	Gene Manie	Imp-β	Trn-1	Trn-2	Trn-SR	Imp-4	Imp-5	Imp-7	Imp-8	Imp-9	Imp-11	Imp-13	Exp-4
O43148	mRNA Capping	RNMT	2	1432	1420	1906	358	327	1487	1066	687	1560	598	447
Q09161	Cap-Binding	NCBP1	25	327	1037	1373	751	1466	906	1220	655	1248	594	1075
P52298	h= DND	NCBP2	19	44	10	1416	50	1529	865	400	105	1510	602	00
D0651	NNRNP		247		7	285	364	776	323	422	105	773	558 6/1	177
P22626		HNRNPA2R1	301	16	19	382	555	902	336	430	160	711	531	123
P51991		HNRNPA3	634	13	14	531	260	823	165	163	182	405	987	210
P07910		HNRNPC	496	857	259	386	324	1140	337	570	117	563	676	229
Q14103		HNRNPD	851	8	8	566	623	1300	565	938	709	1237	1512	633
P52597		HNRNPF	1678	95	52	1702	382	211	268	230	608	1289	1251	304
P31943		HNRNPH1	438	34	40	948	171	723	233	325	243	628	646	202
P55795		HNRNPH2	741	41	42	1452	1126	534	363	280	302	802	573	208
P31942		HNRNPH3	373	167	85	753	708	686	221	177	177	394	404	184
P61978		HNRNPK	509	1130	331	351	611	919	459	569	318	982	580	315
			453	491	1420	1221	104	477	232 220	621 542	148	1019	921	230
P52272			403	1397	5	20/	532	754	618	723	216	333	777	202
060506		SYNCBIP	770	866	483	1123	502	508	435	529	575	808	628	693
O43390		HNRNPR	471	1421	133	374	1269	598	463	719	293	1236	674	388
Q00839		HNRNPU	123	837	205	395	415	1025	759	1247	475	1133	645	556
Q9BUJ2		HNRNPUL1	572	1600	1586	1503	354	1382	47	50	9	1253	1323	100
Q8IYB3	SR-Rich	SRRM1		1440	1040	1977	863	1842			276	6		723
Q9UQ35	Splicing Factor	SRRM2	202	203	147	3	1412	1463	249	54	151	803	1872	355
Q07955		SRSF1	1617	328	113	55	984	1159	105	84	238	490	786	145
Q01130		SRSF2	133	234	143	8	156	628	68	85	152	373	83	164
012042		SHSF3	2/4	294	204	90	243	3/9	457	650	49	230	357	92
013243		SRSFA	1002	213	270	16	740	633 537	288	446	12/	1004	1728	287
Q16629		SBSF7	377	553	592	26	200	380	86	120	85	224	232	79
Q9BRL6		SRSF8	115	738	1244	19	200	369	00	.20	00		34	
Q05519		SRSF11	1194	342	162	1764	221	1199	81	81	93	338	1576	185
Q15459	Splicing Factor	SF3A1	1621	442	366	1667	118	982	206	228	190	184	1313	150
Q15428	3A, B	SF3A2	1623	402	320	1644	126	782	177	209	202	106	1414	133
Q12874		SF3A3	1650	375	291	1674	114	1021	222	243	231	227	1367	160
075533		SF3B1	1660	343	273	1542	81	862	211	147	188	56	1326	84
Q13435		SF3B2	1638	432	276	1522	143	1000	282	206	178	214	1491	151
Q15393 015427		SF3B3 SE2B4	1604	322	288	1510	215	1020	211	352	192	126	942	207
09BW.15		SE385	1634	430	214	1478	265	1029	217	207	229	77	1317	188
Q9Y3B4		SF3B14	1663	336	246	1685	43	912	181	188	330	148	1483	131
Q01081	Splicing Factor	U2AF1	190	154	201	202	329	175	99	148	48	177	1476	66
P26368	U2AF	U2AF2	261	360	342	1293	220	218	111	128	76	286	1107	106
P23246	PQ-Rich SF	SFPQ	111	219	1209	1890	31	1831	74	24	547	1542	143	42
P09012	snRNP A-F	SNRPA	1030	444	400	218	459	1063	117	142	218	415	1887	361
P09661		SNRPA1	1463	338	316	1664	112	976	207	231	156	107	1475	141
P14678		SNRPB	764	333	222	1540	238	795	228	143	210	226	736	219
P08579		SNRPB2	1422	311	257	1603	84	1050	183	216	144	268	1510	85
P09234 D62214			354	200	393	915	411	825	250	1/0	106	310	1602	264
P62316		SNRPD2	1199	604	238	1646	284	1308	352	493	311	342	1084	227
P62318		SNRPD3	843	384	226	1523	549	861	260	162	217	282	631	256
P62304		SNRPE	1512	357	203	1399	230	948	285	293	241	396	1458	431
P62306		SNRPF	584	426	466	893	73	1191	171	266	223	240	562	329
Q9Y5S9	Exon Junction	RBM8A	497	517	505	976	783	1857	1614	1052	281	109	9	570
P38919	Complex	EIF4A3	629	289	392	256	394	998	535	852	490	24	737	681
P61326		MAGOH	1643	388	329	1183	484	1414	929	975	402	841	8	450
Q10570	Cleavage and	CPSF1	1029	690	1105	1481	231	1950	48	1236	56	1586	1837	114
Q9P2I0	Polyadenylation	CPSF2	825	578	351	309	1434	1326	917	1541	530	99	1856	1730
042800	Specificity	NUDTO1	1104	1348	2/4	1367	1270	1666	1358	1664	154	500	1639	1359
016630	Factor	CPSE6	281	535 647	368	107	201	203	204	96	121	738	687	254
Q8N684		CPSF7	187	521	191	62	421	145	158	208	89	138	1136	62
P35269	General	GTF2F1	35	587	192	68	64	685	224	846	416	466	210	309
P13984	Transcription	GTF2F2	61	636	249	134	229	964	741	811	236	837	510	472
Q8N7H5	RNA Pol II	PAF1	1901	886	1304	14	579	1478	1224	827			1657	33
Q6P1J9	Associating	CDC73	1478	266	542	206	992	1355	484	1227	329	1635	1829	193
OGDDGO	Factor	CTR9	106	1398	91	189		29	159	79		760	1509	324
QOFD02		LEO1	1248	1271	792	272	624	1570	574	1601	187	1546	1277	404
Q8FD62 Q8WVC0		LEUT				-								

Figure 7. mRNA processing factors in the 2nd-Z-rankings. The ranks of the mRNA processing factors in the 2nd-Z-rankings of the 12 NTRs are presented. The color scale is set by percentile rank as indicated. The 2nd-Z-rankings of the 12 NTRs include 275 proteins in total that are annotated with mRNA processing in GO. Of these, 69 were selected and are presented. For other factors and the 3rd-Z-rankings, see *Supplementary file* 11A. DOI: 10.7554/eLife.21184.015

Allocation of RPs to the NTRs

RPs migrate into the nuclei for ribosome assembly, but the NTRs responsible for import have been determined for only a few of RPs (*Chook and Süel, 2011*). The 3rd-Z-4% cargoes include 15 RPs (*Supplementary files 1, 5C*, and *11B*). To see the allocations of all the RPs to the NTRs, the ranks of

the RPs in the 2nd-Z-rankings are arranged in a table (*Figure 8*). Because the +NTR/Ctl values were obtained for most of the RPs in the three SILAC-Tp replicates, the second Z-scores are the median Z-scores in most cases, and they should fairly reflect the import efficiencies. Half of the RPs are included in the 2nd-Z-15% cargoes of one to five NTRs, and most of the RPs are ranked in the top 30% in the 2nd-Z-rankings of additional NTRs. Surprisingly, most RPs, especially the 60S subunit proteins, are ranked in the top 50% of most of the 2nd-Z-rankings, and few RPs are ranked lower. These findings imply that most of the RPs are allocated to multiple NTRs, but the import efficiencies vary depending on the NTR. Indeed, several RPs are reported cargoes of multiple NTRs (*Jäkel and Görlich, 1998*; *Jäkel et al., 2002*). Imp-7, -8, and -9 primarily import RPs, Imp-11 and Exp-4 secondarily import RPs, and all other NTRs also contribute to the import of RPs to some extent. Among the highly homologous NTR pairs, Trn-2 and Imp-8 import RPs more efficiently than Trn-1 and Imp-7, respectively, which indicates that RP import is one of the roles shared unequally by similar NTRs. This differentiation is clearer in the 3rd-Z-rankings (*Supplementary file 11B*).

Allocation of transcription factors to the NTRs

Sequence-specific DNA-binding transcription factors (annotated with 'transcription factor activity, sequence specific DNA binding' in GO) play pivotal roles in many cellular processes, but they are not significantly enriched in the 3rd-Z-4% cargoes of any NTR (Supplementary file 6B). Transcription cofactors (annotated with 'transcription factor activity, protein binding'), which may engage in genespecific transcription, are significantly enriched in the 3rd-Z-4% cargoes of only three NTRs (Figure 6B; Supplementary file 6B). Nonetheless, transcription factors (sequence-specific DNA binding) are enriched in the Imp- β 2nd-Z-15% cargoes, and cofactors (protein binding) are enriched in the 2nd-Z-15% cargoes of 10 NTRs (Supplementary file 6C). Additionally, some transcription factors and cofactors are included in the 2nd-Z-15% cargoes, albeit not enriched. Thus, the 2nd-Z-15% cargoes of each NTR include 17 to 36 transcription factors or cofactors as listed at the bottom of Supplementary file 11D. We performed GO analyses (term type, BP) for these transcription factors and cofactors (Supplementary file 11C and 11D). The annotated terms may reflect both direct transcription regulation activities and indirect effects via transcription. The proteins annotated with histone modification are enriched in the Imp- β and -13 cargoes, and the term may reflect their direct functions. The cargoes of several NTRs annotated with varying types of nuclear receptor signaling may act as cofactors in receptor-regulated transcription. In contrast, many of the transcription factors and cofactors identified as cargoes are annotated differently with various terms related to cell proliferation, development, rhythmic processes, or apoptosis and may act on these processes via transcriptional regulation. Thus, the NTRs import transcription factors and cofactors that work in distinct cellular processes.

Characterizations of the cargoes of individual NTRs

The GO analyses elucidated the characteristics of the NTR-specific cargoes, but the terms are annotated to not only the central players but also many indirect participants in BPs. Here, we primarily discuss the roles of the notable 3rd-Z-4% cargoes of each NTR and supplement this information with references to the 2nd-Z-15% cargoes. To make our points clear, we classified the 3rd-Z-4% and 2nd-Z-15% cargoes by their characteristics and their allocations to each NTR are presented in *Supplementary file 5C and 5E*. We describe the features of the Imp-13 and Trn-SR cargoes first, because it includes the discussion on an export cargo or SR-domains. Biological functions linked to NTRs by the natures of their cargoes need to be verified by further experiments.

Imp-13 cargoes

Several Imp-13 cargoes have previously been reported, and our SILAC-Tp clearly reproduced the reported import specificities. Nuclear transcription factor Y subunits β (NFYB) and γ (NFYC) have been reported to be Imp-13 specific cargoes, whereas subunit α (NFYA), which has a BIB-like sequence, has been reported to bind to multiple NTRs (*Kahle et al., 2005*). NFYB is ranked first in both the Imp-13 2nd- and 3rd-Z-rankings, and NFYC is a 2nd-Z-15% cargo (*Figure 3*; *Supplementary files 1* and 3). Additionally, we identified NFYA as a cargo of multiple NTRs. Interestingly, a subunit of the general transcription factor TFIIA (GTF2A2) that interacts with NFYA (*Rolland et al., 2014*) is also a highly ranked Imp-13 3rd-Z-4% cargo. We could not identify the Imp-

ſ

	Accession	Gene Name	Imp 0	Trp-1	Trp 2	Trn-SD	Imp_4	Imp F	Imp-7	Imp_0	Imp_0	Imp_11	Imp_12	Eve
	POSSES	RPSA	1110	11.91	590	1142	1/12-4	500	569	126	520	514	805	
	P15880	RPS2	1279	860	840	992	1095	859	633	430	481	565	740	59
	P23396	BPS3	1266	1058	645	1042	962	657	537	418	512	372	973	40
	P61247	RPS3A	1127	1047	859	1096	672	745	548	413	351	455	827	47
	P62701	BPS4X	1197	911	835	982	925	624	474	394	422	558	800	56
	P46782	RPS5	1094	967	678	1095	725	769	478	252	338	502	798	45
	P62753	BPS6	673	902	456	1173	590	829	507	502	395	522	791	36
	P62081	BPS7	1103	1031	907	1127	889	655	511	431	81	588	747	56
	P62241	RPS8	1161	1083	871	1020	927	691	530	464	424	503	691	48
	P46781	RPS9	1147	1016	699	963	704	626	392	404	366	523	880	53
	P46783	BPS10	924	1105	521	669	675	703	420	335	328	253	662	40
	P62280	RPS11	1170	1086	743	735	842	555	490	390	369	587	751	44
	P25398	BPS12	1110	1166	727	1033	1029	752	418	326	411	623	619	49
۲	P62277	RPS13	1087	830	888	1140	812	693	516	429	420	521	916	4
Ę	P62263	RPS14	1089	1203	936	1248	1075	881	319	382	418	657	689	63
ē	P62841	BPS15	1373	908	691	997	1002	487	510	449	583	953	936	61
ร	P62244	BPS15A	1037	1263	862	1014	878	651	503	432	436	329	1020	54
ŝ	P62249	BPS16	1045	1041	763	966	957	588	517	369	371	583	821	6
ĝ	POCW22	BPS17I	1210	1158	709	802	784	512	520	447	361	403	1018	44
1	P62269	BPS18	981	1089	674	869	911	583	467	391	333	729	977	52
	P39019	RPS19	1122	1099	937	993	888	594	461	384	360	285	851	50
	P60866	BPS20	1123	968	858	736	995	472	424	226	365	293	701	5/
	P63220	BPS21	1215	988	954	1036	718	653	704	340	444	549	502	61
	P62266	BPS23	1219	957	776	785	756	475	305	297	348	516	634	3/
	P62847	BPS24	1017	1056	899	1073	890	652	496	409	290	484	779	49
	P62851	BPS25	1111	1211	1052	925	563	812	450	313	525	428	1066	4
	P62854	BPS26	975	1400	1428	885	1000	916	428	250	020	120	371	12
	P42677	BPS27	1051	997	684	811	616	595	514	405	428	610	446	6
	P62979	BPS27A	1001	710	451	1108	966	668	828	350	483	265	489	57
	P62857	BPS28	828	1106	802	809	917	596	557	367	401	598	726	30
	P62273	BPS29	1256	1064	1068	873	916	722	519	318	536	1056	702	36
	P62861	FAU(BPS30)	1265	981	675	1487	908	990	528	320	403	150	695	40
	P05388	BPI P0	1152	1066	662	1028	1146	711	690	821	564	731	1069	52
	P05386	RPI P1	526	732	650	1030	373	913	817	678	594	416	323	50
	P05387	RPI P2	908	733	476	766	929	666	575	481	686	260	302	40
	P39023	RPL3	830	665	524	1047	455	800	332	160	184	366	824	16
	P36578	RPI 4	832	563	410	1247	633	891	317	302	207	459	758	24
	P46777	RPL5	873	638	566	841	853	1053	830	843	624	612	889	77
	002878	BPL6	701	562	478	1199	601	815	389	331	306	689	578	34
	P18124	RPI 7	816	618	457	1057	730	789	354	227	137	157	716	30
		RPI 7I 1	1842	010	1483	41	700	703	004	221	107	157	710	00
	P62/2/		020	775	582	1230	404	630	353	237	262	118	7/3	19
	P62917	RPL8	728	731	481	1266	504	773	333	246	153	234	757	30
	P32060	RPIG	1153	662	347	133/	368	806	318	105	265	595	870	20
	P27635	RPI 10	960	789	668	1177	974	809	399	311	263	489	712	42
	P62006	RPI 104	808	621	360	1227	461	787	313	2/1	147	403	769	25
	P62013	RPI 11	703	712	/01	1326	1123	710	/07	40	201	375	401	37
	P30050	RPI 12	863	763	61/	1208	305	814	338	321	254	314	845	29
	P26373	BPI 13	836	530	492	1107	275	775	244	185	189	323	750	20
	P40420	BPI 134	737	940	375	1203	943	864	230	362	228	305	656	30
	P50014	RPI 14	814	1126	561	1203	200	7/0	200	154	240	572	807	24
	P61313	BPI 15	801	771	432	12/4	556	820	388	244	205	360	8/1	30
	P18621	BPI 17	700	1004	706	1170	610	350	308	315	200	518	597	14
Ħ	007020	BPI 18	758	760	538	1220	369	971	248	368	269	422	754	21
5	002542	BPI 18A	847	184	551	1400	1295	820	497	300	209	304	605	3
9	P84000	RPI 10	1100	1110	651	1242	406	605	502	301	202	176	005	20
้ง	P46778	BPI 21	818	883	507	1161	647	836	382	310	247	607	509	10
S	P35269	BPI 22	720	714	450	174	515	306	50	40	347	1021	309	2
9	P62820	BPI 22	817	702	430	907	669	840	526	42	302	710	836	51
	P62750	RPI 22A	1002	625	417	11/6	844	807	162	200	165	159	752	25
	P83731	RPI 24	1092	963	718	11/1	643	743	421	307	200	130	1001	30
	P61254	BPI 26	650	821	500	1160	664	626	102	220	200	547	640	2
	091101234	BPI 26I 1	030	1337	525	1603	454	567	132	122	320	547	049	21
	P61353	BPI 27	705	654	550	1158	614	925	301	102	326	430	9/1	21
	P46776	BPI 274	792	615	477	1151	295	901	306	274	211	105	500	10
	P46779	BPI 28	666	566	412	1325	203	603	400	346	342	806	555	10
	P47914	BPI 29	982	682	508	1210	660	660	303	235	346	615	847	20
	P62888	BPL 30	621	659	570	1252	760	570	273	136	173	370	808	20
	P62800	BPL 31	543	1026	590	11/2	1104	811	567	286	376	370	568	33
	P62910	BPI 32	885	583	416	1324	301	926	381	100	252	1055	910	2/
	P49207	BPI 34	1135	1/10	350	1224	507	546	279	122	305	222	659	24
	P49207	RPI 35	721	509	356	1059	519	502	175	169	104	67	454	10
	D19077	DDI 25 A	051	614	770	1266	014	940	205	210	104	255	434	14
		DDL 26	951	014	217	1001	105	040	365	219	193	200	013	
	D02001		1000	845	317	1231	125	901	414	395	128	239	823	- 23
	006000	DDI 26AL	1238	12/7	500	027	011	600	601	490	362	295	1311	10
	Re1007	DDI 27	200	1347	522	937	1010	609	459	489		1600	120	47
	P61512	BPI 27A	1140	807	500	040	612	707	408	222	227	560	1075	4/
	P63172	RPI 39	780	1052	400	1046	397	622	280	230	207	555	586	26
		LUC LUC	100	1032	405	1040	007	020	200	210	200	000	500	20

Figure 8. Ribosomal proteins in the 2nd-Z-rankings. The ranks of the ribosomal proteins in the 2nd-Z-rankings of the 12 NTRs are presented. The color scale is set by the percentile rank as indicated. For the 3rd-Z-rankings, see **Supplementary file 11B**. DOI: 10.7554/eLife.21184.016

13 reported cargo glucocorticoid receptor (Tao et al., 2006) in our MS, but proteins that may interact with nuclear receptors, e.g., thyroid hormone receptor-associated protein 3 (THRAP3) (Ito et al., 1999), RNA-binding protein 14 (RBM14) (Iwasaki et al., 2001), and transcription activator BRG1 (SMARCA4) (Dai et al., 2008), were identified as Imp-13 2nd-Z-15% cargoes. THRAP3 interacts with EJC (Lee et al., 2010), whose subunits, RNA-binding protein RBM8A and mago nashi homolog MAGOH, are well-characterized Imp-13 cargoes (Mingot et al., 2001). RBM8A and MAGOH are highly ranked Imp-13 3rd-Z-4% cargoes, which were not identified as cargoes of the other NTRs with the exception of Trn-1. However, another EJC subunit, that is, translation initiation factor 4A-III (EIF4A3) (Shibuya et al., 2004), was identified as an Imp-11 3rd-Z-4% cargo. Thus, the EJC subunits are imported through different pathways. A well-characterized Imp-13 cargo, SUMO-conjugating enzyme UBC9 (UBE2I) (Mingot et al., 2001), was identified as a 3rd-Z-4% cargo, and SUMO2 and SUMO3 were also identified as 3rd-Z-4% cargoes. Components of the chromatin accessibility complex CHRAC15 (CHRAC1) and DNA polymerase ε subunit 3 (POLE3) are also Imp-13 reported cargoes (Walker et al., 2009), and they are highly ranked 3rd-Z-4% cargoes. In the GO analysis, Imp-13 was linked to chromatin modification by the 2nd-Z-15% cargoes (Supplementary file 6A). Nucleolar complex protein 2 homolog (NOC2L) is ranked 10th in both the second and third Z-scores, and lysine-specific demethylase 2A (KDM2A) is ranked second in the second Z-score. The Imp-13 2nd-Z-15% cargoes include many actin-related proteins that are involved in chromatin remodeling and transcription (Oma and Harata, 2011; Yoo et al., 2007).

Surprisingly, a reported Imp-13 export cargo eIF1A (EIF1AX; *Mingot et al., 2001*) was identified as a 2nd-Z-15% cargo (ranked 84th and 164th by the second and third Z-score, respectively; *Supplementary files 1* and *3*). If a protein endogenous to the permeabilized cell nuclei is exported preferentially in the +NTR in vitro transport reaction, the $(L/H_{+NTR})/(L/H_{Ctl})$ value will be raised and the protein will be ranked high. However, it cannot be generalized because we have only one example. Most of the highly ranked Imp-13 cargoes must be import cargoes, because in all the bead halo assays where the cargoes bound to Imp-13 RanGTP inhibited the binding (*Supplementary file 2*).

Trn-SR cargoes

The reported Trn-SR cargoes include SR-rich splicing factors (SFs) that coordinate transcription elongation, mRNA splicing, and mRNA export (Zhong et al., 2009). Here, we found that proteins engaging in these processes are also Trn-SR cargoes. The Trn-SR 3rd-Z-4% cargoes include the RNA polymerase (RNAP) II elongation factors NELFE and PAF1 (a subunit of the Paf1 complex, PAF1C), DDX and DHX family RNA helicases, and the THO complex subunit THOC1 as well as SR-rich SFs. The 2nd-Z-15% cargoes additionally include PAF1C subunits CTR9, CDC73, and LEO, FACT complex subunits SSRP1 and SPT16, additional DDX and DHX family helicases, and THOC6 and THOC3 (Supplementary file 5C and 5E). Trn-SR bound to NELFE, CDC73, DDX5, and DDX27 in the bead halo assays (Figure 3, Supplementary files 1, 2, and 3). Peptidyl-prolyl cis-trans isomerases, which are contained in human spliceosomes (Wahl et al., 2009), were also identified as 3rd-Z-4% and 2nd-Z-15% cargoes. DnaJ homologs were also identified as 3rd-Z-4% and 2nd-Z-15% cargoes, although the spliceosome component DNAJC8 (Zhou et al., 2002) was not. The 3rd-Z-4% cargoes also include proteins related to nuclear division or chromosome segregation, the Ser/Thr protein kinase PLK1, dual specificity protein kinase TTK, G2/M-specific cyclin-B1 (CCNB1), cyclin-dependent kinase (CDK) 2, protein FAM83D, and dynein 1 light intermediate chain 1 (DYNC1LI1) in addition to proteins related to histone acetylation or deacetylation including histone deacetylase complex subunit SAP18 and SAGA-associated factor 29 homolog CCDC101. Indeed, in the bead halo assays, Trn-SR bound to SAP18 and CCDC101 (Figure 3; Supplementary files 1, 2, and 3). Additionally, the 2nd-Z-15% cargoes include many proteins that are related to nucleosome or chromatin regulation. Thus, the Trn-SR cargoes are involved in chromosome regulation in addition to the coordination of transcription elongation, mRNA splicing, and mRNA export.

Surprisingly, SR-rich SFs, which have been assumed to be Trn-SR-specific cargoes, were also identified as cargoes of other NTRs (*Figure 7*). To determine the allocation of the other SR-domain proteins to the NTRs, we here analyzed the distribution of SRSRSR hexa-peptide sequences in the 3rd-Z-4% cargoes (*Supplementary file 11E*). Imp-5, -7, -8, and Exp-4 as well as Trn-SR may be the specific NTRs for proteins with the hexa-peptide, most of which are nuclear proteins. The hexa-peptidecontaining proteins other than the SR-rich SFs are primarily included in the Imp-5 and Exp-4 cargoes.

Imp-β cargoes

The Imp- β cargoes play roles in DNA synthesis and repair and chromatin regulation. The Imp- β 3rd-Z-4% cargoes include DNA polymerase δ subunits (POLD2 and 3) and mismatch repair endonuclease PMS2 (Supplementary file 5C). Additionally, the Imp- β 2nd-Z-15% cargoes include PCNA-associated factor KIAA0101 and DNA-(apurinic or apyrimidinic site) lyase (APEX1) (Supplementary file 5E). These proteins act in DNA synthesis or repair. The notable 3rd-Z-4% cargoes related to chromatin regulation include high-mobility group (HMG) proteins, histone acetyltransferase complex NuA4 subunit MRGBP, SWI/SNF-related regulator of chromatin SMARCE1, Spindlin-1 (SPIN1), chromodomain-helicase CHD8, and lymphoid-specific helicase HELLS. Additionally, the 2nd-Z-15% cargoes include the NuA4 subunit MORF4L2, SWI/SNF complex subunit SMARCC2, chromatin assembly factor 1 subunit CHAF1B, polycomb protein EED, and sister chromatid cohesion protein PDS5B. Chromatin remodeling by some of these factors is closely related to transcription. The 3rd-Z-4% cargoes include general transcription factor TFIIF (GTF2F1 and 2), TFIIH subunit MAT1, and TBP-associating factor TAF15, and the 2nd-Z-15% cargoes include TFIIH subunit cyclin-H (CCNH) and mediator complex subunit MED15. The sequence-specific transcription factors and cofactors are described above. mRNA capping factors are Imp- β cargoes as described. Thus, many Imp- β cargoes are related to the initial stage of gene expression.

Trn-1 and -2 cargoes

The transcription factor ATF1 was ranked first in both the 2nd- and 3rd-Z-rankings of the Trn-1 and -2 but was ranked low for the other NTRs (*Figure 3*; *Supplementary files 3* and 5). As described, many of the cargoes that ranked higher in the Trn-1 and -2 2nd- and 3rd-Z-rankings (e.g. hnRNPs) are shared by Trn-1 and -2, but RPs are included only in the Trn-2 3rd-Z-4% cargoes. Additional divergences can be observed between their 2nd-Z-15% cargoes. As expected, their cargoes include many mRNA processing factors, but among them snRNPs are preferentially included in the Trn-2 2nd-Z-15% cargoes (*Figure 7*). Actin and actin-related proteins (ARPs), which play roles in chromatin remodeling and transcription (*Visa and Percipalle, 2010*; *Yoo et al., 2007*), proteins related to nuclear division, and tRNA ligases are preferentially Trn-1 cargoes, whereas proteins related to DNA repair and HMG proteins are preferentially Trn-2 cargoes (*Supplementary file 5E*).

Imp-4 cargoes

In the GO analysis, Imp-4 was linked to DNA metabolic processes, chromosome organization, and related terms (*Figures 5* and *6*). Consistently, replication factor C subunit 5 (RFC5) and HMG proteins are Imp-4 3rd-Z-4% cargoes, and the 2nd-Z-15% cargoes include DNA polymerase α subunit POLA1, DNA ligase I (LIG1), DNA topoisomerase I (TOP1), SWI/SNF complex subunit SMARCC2, the SWI/SNF-related chromatin regulator SMARCA5, nucleosome remodeling factor subunit BPTF, and FACT complex subunit SPT16 (*Supplementary file 5C and 5E*). The participation of the Imp-4 cargoes in chromatin organization is supported by a report that Imp-4 binds to the histone chaperon complex (*Tagami et al., 2004*), although the subunits were not identified in our MS. Imp-4 was also linked to cell cycle in the GO analysis. The Imp-4 3rd-Z-4% cargoes include the regulator of chromosome condensation RCC1 and the Ser/Thr protein kinase PLK1, and the 2nd-Z-15% cargoes include the sister chromatid cohesion protein PDS5 homolog PDS5B. Imp-4 was also linked to programed cell death or apoptosis in the GO analysis. The representative related 3rd-Z-4% cargoes are the death-promoting transcriptional repressor BCLAF1 and the tumor suppressor ARF (CDKN2A), and the 2nd-Z-15% cargoes are ribosomal L1 domain-containing protein 1 (RSL1D1) and apoptosis-inducing factor 1 (AIFM1).

Imp-5 cargoes

Few characteristics are unique to the Imp-5 3rd-Z-4% cargo cohort. However, this cohort includes proteins related to ribosome biogenesis, such as rRNA 2'-O-methyltransferase fibrillarin (FBL), H/ ACA ribonucleoprotein complex subunit 1 (GAR1), and the ribosome biogenesis protein BOP1. This group also includes proteins related to nucleosome or chromatin organization, including spindlin-1 (SPIN1), protein DEK, the methyl-CpG-binding domain protein MBD2, and the paired amphipathic helix protein SIN3B (*Supplementary file 5C*). SR-rich SFs are also included as described. The Imp-5 2nd-Z-15% cargoes include many ARPs, proteins related to spindle organization or microtubule-

based processes, and several CDKs (*Supplementary file 5E*). Thus, a portion of the Imp-5 cargoes may be involved in cytokinesis. A number of translation initiation factors (eIFs) and elongation factors, many of which are annotated with nuclear localization (*Supplementary file 1*), are also among the Imp-5 2nd-Z-15% cargoes.

Imp-7 and -8 cargoes

The cognate NTRs Imp-7 and -8 share many 3rd-Z-4% and 2nd-Z-15% cargoes (*Figure 4*; *Supplementary file 5A*). The major cargoes of these NTRs are a range of mRNA SFs, but by the third Z-scores, snRNPs were identified only as Imp-7 and not Im-8 cargoes (*Supplementary file 5C*). Additional divergences can be observed between the Imp-7 and -8 cargoes (*Supplementary file 5C*) and *5E*). HMG proteins were identified only as Imp-7 3rd-Z-4% and 2nd-Z-15% cargoes, whereas more RPs were identified as Imp-8 cargoes. Proteins related to cell cycle regulation, the mitotic checkpoint protein BUB3, cell division cycle 5-like protein (CDC5L), and CDK12, are included in the Imp-7 3rd-Z-4% cargoes, and the Ser/Thr protein kinase PLK1 is a 2nd-Z-15% cargo, but these proteins are not Imp-8 cargoes. Many eIFs are Imp-8 but not Imp-7 2nd-Z-15% cargoes.

Imp-9 cargoes

The Imp-9 cargoes include many RPs and mRNA SFs. Proteins that are important for DNA packaging or nucleosome organization were also identified as Imp-9 cargoes (*Supplementary file 5C and 5E*). Histone H2A.Z, which is located in specific regions on chromosome (*Weber and Henikoff, 2014*), is ranked first and third in the third and second Z-scores, respectively. Additionally, the linker histone H1 (H1F0), histone-lysine N-methyltransferase 2A (KMT2A), and the SPT16 and SSRP1 subunits of the FACT complex, which regulates histone H2A.Z (*Jeronimo et al., 2015*), were also identified as 3rd-Z-4% cargoes. Among the Imp-9 2nd-Z-15% cargoes, other histones, DNA topoisomerase I (TOP1) and II α (TOP2A), HMG proteins, SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 (SMARCE1), and scaffold attachment factor B1 (SAFB) are included.

Imp-11 cargoes

Imp-11 was linked to developmental processes in the GO analysis (*Figure 5*; *Supplementary file 6A*), and few proteins with typical nuclear functions, such as DNA replication, nucleosome organization, and transcription, were found among the Imp-11 3rd-Z-4% cargoes (*Supplementary file 5C*). The Imp-11 2nd-Z-15% cargoes include several proteins related to nuclear division, such as Pogo transposable element with ZNF domain (POGZ), α -endosulfine (ENSA), CDK regulatory subunit 2 (CKS2), and the Ser/Thr protein kinase NEK7 (*Supplementary file 5E*). Many ARPs, tubulins and their related factors, tRNA ligases, and mRNA SFs are also in the Imp-11 2nd-Z-15% cargoes.

Exp-4 cargoes

The subunits of RNAP II elongation factors and mRNA processing factors are the representative Exp-4 cargoes, although they are also cargoes of several other NTRs (*Supplementary file 5C and 5E*). PAF1C subunit parafibromin (CDC73) is an Exp-4 3rd-Z-4% cargo, and other PAF1C subunits, that is, PAF1 and RTF1, FACT complex subunits, i.e., SSRP1 and SPT16 (SUPT16H), and elongation complex protein 2 (ELP2) are 2nd-Z-15% cargoes. A variety of mRNA processing factors, including 3'-end processing factors and THO complex subunits, are also Exp-4 3rd-Z-4% and 2nd-Z-15% cargoes. Thus, the factors that act in processes from transcription elongation to mRNA export are included in the Exp-4 cargoes. As discussed for another bi-directional NTR Imp-13, the possibility cannot be denied that the identified Exp-4 cargoes include export cargoes.

Seemingly non-nuclear proteins

A number of nucleoporins (NUPs), which are the components of the NPC, were identified as cargoes. Increasing evidence demonstrates that the import of NUPs through NPCs is important for gene expression (**Burns and Wente, 2014**). Moreover, many mitochondrial proteins are highly ranked. These proteins preferentially localize to the mitochondria due to chaperon-regulated or cotranslational mechanisms in vivo and might interact with NTRs in the in vitro transport system. The transport system contains cytosolic extract and unlabeled (light) mitochondrial proteins in it could be imported if they interact with NTRs. The $(L/H_{+NTR})/(L/H_{Ctl})$ values of them can be calculated, because LC-MS/MS can quantify low levels of labeled (heavy) proteins whether they are endogenous to the recipient nuclei or residual after washing. Thus, mitochondrial proteins with high $(L/H_{+NTR})/(L/H_{Ctl})$ values are imported proteins even if the import is fortuitous. Nuclear localization is annotated to many mitochondrial proteins (*Supplementary file 1*), and actual nuclear localization is possible as in the cases of AIFM1 and ATFS-1 (*Nargund et al., 2012; Susin et al., 1999*). As was the case with the high-throughput cargo identification of the export receptor Exp-1 (CRM1) (*Kurlı et al., 2015*), our method identified other seemingly cytoplasmic proteins as cargoes. We did not detect direct binding between the NTRs and some of these cytoplasmic proteins, for example, Ras-related Rab family proteins and S100 proteins, in the bead halo assays (*Supplementary file 2*), but nuclear import by indirect binding is still possible.

Additional remarks

Here, we have presented the first complete picture of nuclear import via the 12 importin pathways. The 12 pathways must serve distinct roles because the NTRs are linked to different cellular processes by their cargoes. However, the cargoes are intricately allocated to the NTRs, and each NTR is linked to multiple cellular processes. The biological functions of NTRs designated in this work should be further clarified in future experiments.

We used HeLa nuclear extract as the cargo source, but it might not reconstitute all NTR–cargo interactions precisely because proteins in the nuclear extract might have different modifications or binding partners from those in cytoplasm where NTRs bind to cargoes in vivo. Some reported cargoes were ranked lower in the 2nd- and 3rd-Z-ranking, and it might be attributable to these differences of protein states. Alternatively, the transport capacity of our in vitro transport system might not be enough to identify all the cargoes, especially those with low transport efficiency. To reach a definitive conclusion, experiments in vivo might be needed.

We could not find any novel motifs that may serve as NTR-binding sites on the identified cargoes using the ungapped motif search method of MEME (*Bailey and Elkan, 1994*). A more extensive search for such motifs and higher order structures using alternative methods is currently underway.

Materials and methods

SILAC-Tp

SILAC-Tp has previously been described in detail (Kimura et al., 2014), but we provide a brief description here. HeLa-S3 cytosolic and nuclear extracts were depleted of Imp- β family NTRs with phenyl-Sepharose (GE healthcare), and the nuclear extract was subsequently depleted of RCC1 with a Ran-affinity method and concentrated. The extracts were dialyzed against transport buffer (TB, 20 mM HEPES-KOH (pH 7.3), 110 mM KOAc, 2 mM MgOAc, 5 mM NaOAc, 0.5 mM EGTA, 2 mM DTT, and 1 µg/mL each of aprotinin, pepstatin A, and leupeptin). Adherent HeLa-S3 cells were labeled with $u^{-13}C_6$ Lys and $u^{-13}C_6$ Arg by SILAC (**Ong et al., 2002**) and seeded onto a glass plate. After rinsing in ice cold TB, the cells were permeabilized with 40 µg/mL digitonin in TB for 5 min on ice and then rinsed again. The permeabilized cells were pretreated with 4 μ M RanGDP and an ATP regeneration system in TB for 20 min at 30°C to remove the residual Imp- β family NTRs and then rinsed. The cells were incubated in transport mixture (50% cytosolic extract, 10% nuclear extract, 1 μ M p10/NTF2, and ATP regeneration system in TB) with (+NTR) or without (Ctl) 0.3–0.7 μ M of one NTR for 20 min at 30°C for the import reaction. (The NTR concentrations were optimized using the recombinant cargoes presented in Figure 1-figure supplement 1C.) After rinsing, the cells were incubated in extract mixture (50% cytosolic extract and ATP regeneration system in TB) for 20 min at 30°C and rinsed with NaCI-TB (TB containing 110 mM NaCI instead of KOAc) to remove the nonspecifically binding proteins. To extract the proteins, the cells were suspended in nuclear buffer (20 mM Tris–HCl, pH 8.0, 420 mM NaCl, 1.5 mM MgCl₂, 0.2 mM EDTA, 2 mM DTT, and 1 µg/mL each of aprotinin, pepstatin A, and leupeptin), sonicated, and centrifuged.

Actually, the transport reactions for two NTRs were simultaneously performed with one control reaction and triplicated. The simultaneously processed NTRs were Imp- β and Imp-13, Trn-1 and -2, Imp-7 and -8, Imp-9 and -11, and Imp-5 and Trn-SR, and the reactions for Imp-4 and Exp-4 were performed individually with controls.

Peptide analysis by LC-MS/MS

After the in vitro transport reaction, 25 μ g each of the extracted proteins was concentrated by acetone precipitation, reduced with DTT, and alkylated with iodoacetamide. The proteins were digested with trypsin and Lys-C endopeptidase (enzyme/substrate $\approx 1/50$) for 16 hr at 37°C. The peptides were evaporated to dryness, dissolved in Solvent-1 (0.1% TFA and 15% CH₃CN), and fractionated on Empore Cation Exchange-SR (3M, Maplewood, Minnesota). For the fractionation, the support was stacked manually inside the tapered end of a micropipette tip, the tip was fixed into the punched lid of a microtube, and the liquids were run by centrifugation (*Wiśniewski et al., 2009*). The resin was sequentially washed by ethanol and Solvent-1 containing 500 mM ammonium acetate and equilibrated with Solvent-1, and the peptides were then applied. After washing in Solvent-1, the peptides were eluted stepwise by Solvent-1 containing 125, 250, and 500 mM ammonium acetate and Solvent-2 (5% NH₄OH, 30% methanol, and 15% CH₃CN). The eluates were evaporated to dryness, and the peptides were dissolved in 0.1% TFA and 2% CH₃CN.

The peptides were applied to a liquid chromatograph (LC) (EASY-nLC 1000; Thermo Fisher Scientific, Waltham, Massachusetts) coupled to a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific) with a nanospray ion source in positive mode. The LC was performed on a NANO-HPLC capillary column C18 (75 μ m x 150 mm, 3 μ m particle size, Nikkyo Technos, Tokyo) at 45°C. The peptides were eluted with a 100-min 0–30% CH₃CN gradient and a subsequent 20-min 30–65% gradient in the presence of 0.1% formic acid at a flow rate of 300 nL/min. The Q Exactive-MS was operated in the top-10 data-dependent scan mode. The parameters for the Q Exactive operation were as follows: spray voltage, 2.3 kV; capillary temperature, 275°C; mass range (m/z), 350–1800; and normalized collision energy, 28%. The raw data were acquired with Xcalibur (RRID:SCR_014593; ver. 2.2 SP1).

Protein identification and quantitation

The MS and MS/MS data were searched against the Swiss-Prot database (2014_07-2016_01) using Proteome Discoverer (RRID:SCR_014477; ver. 1.4, Thermo Fisher Scientific) with the MASCOT search engine software (RRID:SCR_014322; ver. 2.4.1, Matrix Science, London). The search parameters were as follows: taxonomy, Homo sapiens; enzyme, trypsin; static modifications, carbamidomethyl (Cys); dynamic modifications, oxidation (Met); precursor mass tolerance, ±6 ppm; fragment mass tolerance, ±20 mDa; maximum missed cleavages, 1; and quantitation, SILAC (R6, K6). The proteins were considered identified when their false discovery rates were less than 5%. The SILAC L/H ratios were also calculated by Proteome Discoverer (ver. 1.4) with the default setting: show the raw guan values, false; minimum guan value threshold, 0; replace missing guan values with minimum intensity, false; use single-peak quan channels, false; apply quan value corrections, true; reject all quan values if not all quan channels are present, false; fold change threshold for up-/down-regulation, 1.5; maximum allowed fold change, 100; use ratios above maximum allowed fold change for quantification, false; percent co-isolation excluding peptides from quantification, 100; protein quantification, use only unique peptides; experimental bias, none. Proteins with L/H count >1 were included in further analysis. The L/H counts are shown in Supplementary file 1. To access the mass spectrometry data, see below.

From the SILAC quantitation values of the control and +NTR reactions, the +NTR/Ctl = $(L/H_{+NTR})/(L/H_{Ctl})$ ratio of each protein was calculated, and the Z-score of the log₂(+NTR/Ctl) of each protein was calculated within each replicate.

$$Z - score = (X - \mu)/\sigma$$

where X is $log_2(+NTR/Ctl) = log_2[(L/H_{+NTR})/(L/H_{Ctl})]$ of each protein, μ is the mean of X, and σ is the standard deviation of X.

Reported cargo rate and recall

To calculate reported cargo rate (a lower bound on precision) and recall (sensitivity), we used the 27 and 25 reported cargoes of Trn-1 as the positive examples of the 2nd- and 3rd-Z-rankings, respectively. We do not have explicit labeling of negative examples. Most likely some portion of the proteins not reported as cargoes are genuine cargoes, but it is difficult to estimate that portion. Therefore, as a rough guide we tallied statistics under two simple assumptions: (i) that all proteins

not reported as cargoes should be treated as negative examples and (ii) that in the proteins not reported as cargoes, proteins annotated in Uniprot (RRID:SCR_002380) as having non-nuclear subcellular localization should be treated as negative examples and the other proteins excluded from the analysis (treated as neither positive nor negative). The first definition yielded 1622 and 1210 negative examples in the 2nd- and 3rd-Z-ranking, respectively, and the second definition 259 and 178 in the 2nd- and 3rd-Z-ranking, respectively. Since the first definition is maximally pessimistic, it allows estimation of an upper bound on the rate of false positives, while the second definition is more optimistic.

Reported cargo rate
$$(i) = p(i)/[p(i) + n(i)]$$

$$Recall(i) = p(i)/P$$

where p(i) denotes the number of previously reported cargoes (a lower bound on the number of positive examples) and n(i) denotes the number of negative examples in the top i%; while *P* denotes the total number of previously reported cargoes.

Gene ontology analysis

GO (RRID:SCR_002811) analyses were performed using g:Profiler (RRID:SCR_006809; r1488-1536_e83_eg30) (*Reimand et al., 2016*). The search parameters were the following: organism, *Homo sapiens*; significance threshold, g:SCS; statistical domain size, all known genes; GO version, GO direct 2015-12-09 to 2016-01-21, releases/2015-12-08.

Phylogenetic analysis of the 12 Imp- β family NTRs

The phylogeny was inferred by maximum likelihood using RAxML (RRID:SCR_006086; ver. 8.1.17) (*Stamatakis, 2006*) with 1000 bootstrap replicates and the LG model with gamma-distributed rate variation. The amino acid sequences were aligned using Clustal Omega (RRID:SCR_001591; ver. 1.2.0) (*Sievers et al., 2011*) with the default parameters, and the resulting multiple alignments were trimmed using trimAl (ver. 1.2) (*Capella-Gutiérrez et al., 2009*) in gappyout mode.

Hierarchical clustering of the 11 Imp- β family NTRs based on the degree of overlap of the 3rd-Z-4% cargoes

We performed a hierarchical clustering of the Imp- β family NTRs based on their cargo profile similarities using Ward's method with Euclidean distance as implemented in the software R (RRID:SCR_ 001905; **R Development Core Team, 2012**). Here, we omitted Imp- β because its cargoes include many Imp- α -dependent indirect cargoes. To define a cargo profile for each NTR, we first defined a set of cargoes by merging the 3rd-Z-4% cargoes of the 11 NTRs other than Imp- β , which yielded a total of 426 cargoes. We then defined length 426 binary vectors for each NTR with a 1 for each cargo in the top 4% list and a 0 otherwise and input these 11 vectors into R to perform the clustering.

Bead halo assay

The proteins and *Escherichia coli* extracts were prepared as described (*Kimura et al., 2013a*). The bead halo assays (*Supplementary file 2*) were performed as described (*Patel and Rexach, 2008*). Briefly, GST or GST-NTR was immobilized on glutathione-Sepharose (GE healthcare), and mixed with an extract of *E. coli* expressing a GFP-fusion protein in EHBN buffer (10 mM EDTA, 0.5% 1,6-hexanediol, 10 mg/mL bovine serum albumin, and 125 mM NaCl), and the binding was observed by fluorescent microscopy. The GTP-fixed mutant of Ran Q69L-Ran, which inhibits specific NTR–cargo interactions, was added to determine the specificity of the binding. The expression and degradation levels of the GFP-fusion proteins were analyzed, and the concentrations of GFP-moieties were quantified by triplicate quantitative Western blotting of the extracts with an anti-GFP antibody. Because the GFP-moiety weakly bound to GST-Trn-1, GST-Trn-2, and GST-Trn-SR in the bead halo assay, the concentrations of the GFP-fusion proteins and GFP (control) were equalized, and images were acquired and processed under identical condition. In contrast, because the GFP-moiety does not bind to GST-Imp-13, GST-Imp- β , or GST-Imp- α , the control reaction mixture for these NTRs contained higher concentration of GFP than any other GFP-fusion proteins. Three images (GST, GST-

NTR, and GST-NTR + Q69L-Ran) for each GFP-fusion protein were acquired under identical conditions, and the background intensities and dynamic ranges were equalized.

Cell line

HeLa-S3 (RRID:CVCL_0058; mycoplasma, not detected) was obtained from Dr. Fumio Hanaoka (RIKEN).

Antibodies

See Supplementary file 12B.

GFP-fusion proteins used for in vitro transport

The GFP-fusion proteins used in *Figure 1—figure supplement 1C* were prepared as described (*Kimura et al., 2013a*). For accessions and references, see *Supplementary file 12B*. The SOX2 cDNA (pF1KB9652) was from Kazusa DNA Res. Inst. (Kisarazu, Japan), and the others were cloned from a HeLa cDNA library (SuperScript, Life Technology) by PCR.

Database deposition

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (RRID:SCR_004055; http://www.proteomexchange.org/) via the PRIDE (RRID:SCR_003411; *Vizcaíno et al., 2016*) partner repository with the dataset identifier PXD004655.

The .msf and .raw data files of each experiment summarized in **Supplementary file 1** are listed in **Supplementary file 12A**. The protein and peptide quantitation results can be seen by opening .msf files by Proteome Discoverer software. To see spectra and chromatograms, .msf files and corresponding .raw files must be in the same local directory. A demo version of Proteome Discoverer can be downloaded at the Thermo Scientific omics software portal site (https://portal.thermo-brims. com/).

Acknowledgements

We thank Martin Beck, Alessandro Ori, and Kentaro Tomii for helpful discussion, Masahiro Oka for a supporting experiment, Shoko Motohashi and Ai Watanabe for technical assistance, and Hiroshi Mamada for a plasmid. We also thank the Support Unit for Bio-Material Analysis, RIKEN BSI Research Resource Center, especially Kaori Otsuki, Masaya Usui, and Aya Abe for MS analysis. This work was supported by JSPS KAKENHI Grant Number 15K07064 and a RIKEN FY2014 Incentive Research Project to MK, KAKENHI Grant Numbers 26251021, 26116526, and 15H05929 to NI, and the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from the Japan Agency for Medical Research and Development (AMED) to KI.

Additional information

...

Funding		
Funder	Grant reference number	Author
Japan Society for the Promo- tion of Science	KAKENHI,15K07064	Makoto Kimura
RIKEN	FY2014 Incentive Research Project	Makoto Kimura
Japan Agency for Medical Re- search and Development	Platform Project for Supporting in Drug Discovery and Life Science Research	Kenichiro Imai
Japan Society for the Promo- tion of Science	KAKENHI,26251021	Naoko Imamoto
Japan Society for the Promo- tion of Science	KAKENHI,26116526	Naoko Imamoto

Kimura et al. eLife 2017;6:e21184. DOI: 10.7554/eLife.21184

Japan Society for the Promo- KAKENHI,15H05929 Naoko Imamoto tion of Science

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

MK, Conceptualization, Formal analysis, Funding acquisition, Investigation, Visualization, Methodology, Writing—original draft, Project administration, Writing—review and editing; YM, Formal analysis, Investigation, Visualization, Writing—review and editing; KI, Formal analysis, Funding acquisition, Investigation, Visualization, Methodology, Writing—review and editing; SK, Conceptualization, Resources, Methodology, Writing—review and editing; PH, Supervision, Validation, Investigation, Methodology, Writing—review and editing; NI, Conceptualization, Supervision, Funding acquisition, Validation, Project administration, Writing—review and editing

Author ORCIDs

Makoto Kimura, http://orcid.org/0000-0003-0868-5334 Naoko Imamoto, http://orcid.org/0000-0002-2886-3022

Additional files

Supplementary files

• Supplementary file 1. Results of SILAC-Tp. Each sheet contains the result of SILAC-Tp with one of the 12 NTRs. The proteins that exhibited $+NTR/Ctl = (L/H_{+NTR})/(L/H_{Ctl})$ values at least once in the three replicates (Experiments 1–3) are listed with the $\log_2[(L/H_{+NTR})/(L/H_{Cl})]$ values. The second and third Z-scores and the ranks according to those scores are also presented. The 2nd-Z-15% and 3rd-Z-4% cargoes are indicated in cyan. The LC-MS/MS quantitation data for each replicate (Experiments 1-3) are also included. Light/Heavy, the median of quantified L/H values; Light/Heavy count, the number of quantified values; Light/Heavy variability, coefficient-of-variation for log-normal distributed data. ^aReport: The proteins listed by Chook and Süel (2011) are regarded as reported cargoes, and the references are provided in the Legend sheet. For Imp- β , only direct cargoes are listed. For Trn-2, the reported Trn-1 cargoes are listed. ^bDirect Binding: The results of the bead halo assays (Supplementary file 2) are summarized. ++ or +, positive; ± or -, negative. ^cGO Nucleus: Annotated with 'nucleus' in Gene Ontology (term type, cellular component). The rows can be sorted into preferable orders with Excel. To access the mass spectra, chromatograms, or raw data, see Supplementary file 12A. Statistics: For each experiment, the number of proteins assigned with $\log_2[(L/H_{+NTR})/(L/H_{Ctl})]$ values (proteins assigned with Z-scores), the mean and standard deviation $\log_2[(L/H_{+\rm NTR})/(L/H_{\rm Ctl})]$ are listed. $Z - score = (X - \mu)/\sigma$ (S.D.) of where X = $\log_2[(L/H_{+\rm NTR})/(L/H_{\rm Ctl})]$ of each protein, μ is the mean of X in one experiment, and σ is the S.D. of Χ.

DOI: 10.7554/eLife.21184.017

• Supplementary file 2. NTR-cargo direct binding. The direct binding of the candidate cargoes to the NTRs was analyzed by bead halo assay. From well-characterized proteins that have not been reported as cargoes, (i) proteins ranked high (within the top 15% in the 2nd-Z-rankings or 4% in the 3rd-Z-rankings), around presumptive cutoffs (within about top 15–25% in the 2nd-Z-rankings), or lower and (ii) highly ranked proteins that are suspected as indirect cargoes or false positives based on their well-known features, e.g., PMPCA, GALE, UAP1, NQO2, EEF1A2, RAB2A, RAB8A, S100A4, S100A6, S100A13, and S100P, were selected and analyzed. Proteins in (i) verify the cargo identification and cutoff setting, and proteins in (ii) serve for finding indirect cargoes and false positives. The negative rate of these bead halo assays should be higher than the true overall false positive rate of the SILAC-Tp, because proteins in (ii) were selected preferentially. GST or GST-NTR was attached to glutathione-Sepharose beads, mixed with an extract of *E. coli* expressing GFP or a GFP-fusion protein, and observed by fluorescence microscopy. Q69L-Ran, which inhibits the NTR-cargo functional binding, was added as appropriate. The contrast of the bead fluorescence between the GST and GST-NTR indicates the binding, and the inhibition of this binding by Q69L-Ran certifies the specificity of the binding; ++ or +, positive; \pm or -, negative. Summary of the results (p2–5): The results are

summarized in both 2nd- and 3rd-Z-rank order. The 2nd-Z-15% and 3rd-Z-4% cargoes are indicated by cyan, and positive binding (++ or +) is indicated by blue. Trn-1 (p6-8): The GFP-fusion proteins were divided into five groups (A-E) according to the expression levels. Because GFP binds weakly to Trn-1, the concentrations of GFP (control) and GFP-fusion proteins were equalized within each group, and the binding was observed in the same conditions. The images are comparable within a group. Trn-2 (p9): GFP weakly binds to Trn-2, and the concentrations of GFP and GFP-fusion proteins were equalized. The images are comparable. Proteins whose ranks differed substantially between the Trn-1 and Trn-2 Z-ranking were assayed. Imp-13 (p10-13): GFP does not bind to Imp-13, and GFP was added to the control mixture at the highest concentration. Three images (GST, GST-Imp-13, and GST-Imp-13 + Q69L-Ran) for each GFP-fusion protein were acquired under identical conditions, and the background intensities and dynamic ranges were equalized. Trn-SR (p14-16): GFP weakly binds to Trn-SR, and the procedures were similar to those used for Trn-1. The GFPfusion proteins were divided into four groups (A–D), and the images are comparable within a group. Imp- α/β (p17–20): GFP does not bind to Imp- α or $-\beta$, and the procedures were similar to those used for Imp-13. GST-Imp- α_2 lacks the N-terminal Imp- β -binding domain. Western blotting (p21–22): The GFP-fusion proteins in the E. coli extracts were relatively quantified by Western blotting using an anti-GFP antibody (Roche). The extracts containing the amounts of protein (ng) indicated at the bottoms were loaded. The arrowheads indicate the expected full-length products. The GFP-moieties including those of the partial products were quantified by chemiluminescence. GFP was used as the standard. The Western blots were replicated more than three times. Accessions and sequences (p23-27): The cDNAs were cloned from a HeLa cDNA library by PCR. The accession numbers of the proteins are listed. If the sequence of a used protein is different from that in the database, the deleted, substituting, or inserted amino acids are indicated by the colors. The sequences that matched perfectly are not presented.

DOI: 10.7554/eLife.21184.018

• Supplementary file 3. The 2nd-Z-15% cargoes of the 12 NTRs. The 2nd-Z-15% cargoes of each NTR are listed by the gene names in the 2nd-Z-rank orders. The ranks by the third Z-scores are also shown. Cyan in the rank columns indicates the 2nd-Z-15% and 3rd-Z-4% cargoes. Colors in the gene name columns: magenta, reported cargoes; blue, cargoes bound directly to the NTR in the bead halo assays (**Supplementary file 2**); light blue, cargoes bound directly to Imp- α but not Imp- β ; gray, proteins that did not bind to the NTRs; yellow, Imp- α ; and green, reported export cargoes. For the 3rd-Z-4% cargoes, see **Figure 3**.

DOI: 10.7554/eLife.21184.019

• Supplementary file 4. Example of extracted ion chromatograms (EICs) of peptides. EICs of GLUD1 peptides in the SILAC-Tp with Trn-1: As a general problem of high-throughput LC-MS/MS quantitation, quantitative values of proteins with fewer quantified peptides deviate among the replicates. Referring to EICs of the guantified peptides is useful to avoid misidentification of cargoes. For example, the L/H ratios of a Trn-1 2nd-Z-15% cargo GLUD1 (P00367, ranked 110th and 342nd by the second and third Z-score, respectively) deviated largely in the three replicates of SILAC-Tp with Trn-1 (Supplementary file 1). Panels (A-H) show EICs of the indicated peptide (trypsin targets, K and R, are written in lower cases) in the three (three Ctl and there +Trn) experiments (some peptides were not identified in all the experiments). Magenta letters indicate the guantified peptides and L/H rations. In panel (A), the elution time of the peptide TAMkYNLGLDLr differs largely between the expriment-1 Ctl and experiment-2 +Trn-1, the peak shape of the experiment-2 +Trn-1 is irregular, and the L/H ratio of it is much higher than those of other peptides in +Trn-1 experiments (B and E). Thus, there is concern about misidentification. Because the L/H count of GLUD1 in the experiment-2 +Trn-1 is two (TAMkYNLGLDLr and NLNHVSYGr, A and B) and the L/H ratio of a protein is defined as the median, the L/H ratio of GLUD1 in the expriment-2 +Trn-1 is affected by the L/H ratio of TAMkYNLGLDLr. Exclusion of the L/H ratio of TAMkYNLGLDLr in the experiment-2 +Trn-1 lowers the Z-score rank of GLUD1 significantly. In panel (C), the chromatogram of the peptide HGGTIPIVP-TAEFQDr in the experiment-1 Ctl has an irregular peak, and the L/H ratio of it is much higher than those of other peptides in the Ctl experiments (A-H). Thus, overlap with other peptide or other failures may be possible. However, the L/H count of GLUD1 in the experiment-1 Ctl is four (TAMkYNLGLDLr, HGGTIPIVPTAEFQDr, ALASLMTYk, and GASIVEDkLVEDLr) and the value of HGGTIPIVPTAEFQDr does not affect the median. (The L/H ratio of TAMkYNLGLDLr, whose EIC

differ between the experiment-1 Ctl and expriment-2 +Trn in (A) as mentioned above, may affect the L/H ratio of GLUD1 in the experiment-1 Ctl, but we assumed that it is reliable.) As above, the L/ H ratios of proteins with low L/H counts (*Supplementary file 1*) may be affected by LC-MS/MS artifacts, and misidentification can be avoided by referring to the EICs. All the EICs and MS spectra in this work can be accessed by downloading the mass spectrometry data and Proteome Discoverer software (see the Materials and methods and *Supplementary file 12A*).

DOI: 10.7554/eLife.21184.020

• Supplementary file 5. Redundancy of NTRs: Cargoes shared by NTRs. (A) The numbers of the 2nd-Z-15% cargoes shared by two NTRs. For the 3rd-Z-4% cargoes, see Figure 4. (B) Redundancy of the 3rd-Z-4% cargoes. Many proteins are included in the 3rd-Z-4% cargoes of multiple NTRs. The ranks of these cargoes in the 3rd-Z-rankings for all 12 NTRs are presented. (C) Relationships between the NTRs and the characteristics of their 3rd-Z-4% cargo proteins. The 3rd-Z-4% cargoes are grouped according to their characteristics (functions or biological processes that the proteins act in), and their ranks are presented as in (B). To make our points clear, typical terms for the protein characteristics and typical proteins related to the terms have been selected with reference to Gene Ontology (GO) and UniProt. Thus, the terms in this sheet are slightly different from those in the databases, fewer proteins than annotated in the databases are grouped, and the list is redundant. For the complete linkages between the GO terms and the 3rd-Z-4% cargoes, see Supplementary file 7. (D) Redundancy of the 2nd-Z-15% cargoes. The ranks of the 2nd-Z-15% cargoes are presented as in (B). (E) Relationships between the NTRs and the characteristics of their 2rd-Z-15% cargo proteins. The 2nd-Z-15% cargoes are grouped, and their ranks are presented in a manner similar to that in (C). For the complete linkages between the GO terms and the 2nd-Z-15% cargoes, see Supplementary file 8. DOI: 10.7554/eLife.21184.021

• Supplementary file 6. GO term enrichments of the identified cargoes. (A) Extraction of the GO term enrichments of the 2nd-Z-15% cargoes. The 2nd-Z-15% cargoes were analyzed for GO term enrichment in (C). The terms that were significantly enriched (p<0.05, cyan) in the 2nd-Z-15% cargoes of four or fewer NTRs were selected, and terms that represent many similar terms are presented. With the p-values, the numbers (#) of cargoes annotated with each of the terms are presented. Total No. represents the number of proteins annotated with each term in the database. Related terms are bundled in the same color. For the 3rd-Z-4% cargoes, see Figures 5 and 6. The correspondences between each 2nd-Z-15% cargo and GO term are summarized in Supplementary file 10. All the GO terms annotated to the 2nd-Z-15% cargoes are listed in Supplementary file 8. (B) Full table of the GO term enrichments of the 3rd-Z-4% cargoes. The 3rd-Z-4% cargoes were analyzed for GO term enrichment. For all combinations of GO terms and NTRs, the p-values for the term enrichments in the 3rd-Z-4% cargoes and the numbers (#) of cargoes annotated with the terms are presented. The numbers following '# in' are the total numbers of 3rd-Z-4% cargoes. Total No. represents the number of proteins annotated with each term in the database. Cyan, p<0.05. Figures 5 and 6 were extracted from this table. This table was derived from Supplementary file 7, and see Supplementary file 7 to retrieve the protein accessions. (C) Full table of the GO term enrichments of the 2nd-Z-15% cargoes. The 2nd-Z-15% cargoes were analyzed and are presented in a manner similar to that in (B). (A) was extracted from this table. This table was derived from Supplementary file 8, and see Supplementary file 8 to retrieve the protein accessions.

DOI: 10.7554/eLife.21184.022

• Supplementary file 7. The 3rd-Z-4% cargoes annotated with GO terms. With respect to each NTR, the accessions of the 3rd-Z-4% cargoes annotated with each GO term are listed. Cyan, significant term enrichment (p<0.05) in the 3rd-Z-4% cargoes of the NTR. Total No. represents the number of proteins annotated with each term in the database. *Supplementary files 6B* and *9* were derived from this table. For the 2nd-Z-15% cargoes, see *Supplementary file 8*. DOI: 10.7554/eLife.21184.023

• Supplementary file 8. The 2nd-Z-15% cargoes annotated with GO terms. With respect to each NTR, the accessions of the 2nd-Z-15% cargoes annotated with each GO term are listed. Cyan, significant term enrichment (p<0.05) in the 2nd-Z-15% cargoes of the NTR. Total No. represents the number of proteins annotated with each term in the database. *Supplementary files 6C* and 10 were derived from this table. For the 3nd-Z-4% cargoes, see *Supplementary file 7*.

DOI: 10.7554/eLife.21184.024

• Supplementary file 9. Correspondences between the 3rd-Z-4% cargoes and GO terms. Each sheet shows the correspondences between the 3rd-Z-4% cargoes of one NTR and selected GO terms. A term annotation to a cargo is indicated by '1' in the corresponding cell. Reported cargoes are indicated by magenta in the gene name cells, and the results of the bead halo assays (*Supplementary file 2*) are also indicated by colors in the gene name cells: blue, cargoes directly bound to the NTR; light blue, cargoes directly bound to Imp- α but not Imp- β ; gray, proteins that did not bind to the NTR. GO terms that represent many similar terms were selected from the terms enriched significantly (p<0.05) for the 3rd-Z-4% cargoes of each NTR, and broadly defined terms were deselected. Magenta and orange in the term ID cells indicate terms that are significantly enriched for the cargoes of four or fewer NTRs, and of them magenta indicates the terms presented in *Figures 5* and *6*. Related GO terms are bundled in the same color, and different colors are used to distinguish the columns easily. The NTRs added in the transport reactions (white in the rank cells) were not analyzed. This table was derived from *Supplementary file 7*. For 2nd-Z-15% cargoes, see *Supplementary file 10*.

DOI: 10.7554/eLife.21184.025

• Supplementary file 10. Correspondences between the 2nd-Z-15% cargoes and GO terms. Each sheet shows the correspondences between the 2nd-Z-15% cargoes of one NTR and selected GO terms. A term annotation to a cargo is indicated by '1' in the corresponding cell. Reported cargoes are indicated by magenta in the gene name cells, and the results of the bead halo assays (*Supplementary file 2*) are also indicated by colors in the gene name cells: blue, cargoes directly bound to the NTR; light blue, cargoes directly bond to Imp- α but not Imp- β ; gray, proteins that did not bind to the NTR. GO terms that represent many similar terms were selected from the terms enriched significantly (p<0.05) for the 2nd-Z-15% cargoes of each NTR, and broadly defined terms were deselected. Magenta and orange in the term ID cells indicate terms that are significantly enriched for the cargoes of four or fewer NTRs, and of them magenta indicates the terms presented in *Supplementary file 6A*. Related GO terms are bundled in the same color, and different colors are used to distinguish the columns easily. The NTRs added in the transport reactions (white in the rank cells) were not analyzed. This table was derived from *Supplementary file 8*. For 3rd-Z-4% cargoes, see *Supplementary file 9*.

DOI: 10.7554/eLife.21184.026

• Supplementary file 11. mRNA processing factors, ribosomal proteins, and transcription factors. (A) Ranks of mRNA processing factors. All of the 2nd-Z-15% and 3rd-Z-4% cargoes that are annotated with mRNA processing in Gene Ontology (GO) are listed with the ranks in the 2nd- and 3rd-Z-rankings. The color scale is set by percentile rank as indicated. Figure 7 was extracted from this table. (B) The 3rd-Z-rankings of ribosomal proteins. The ranks of the ribosomal proteins in the 3rd-Z-rankings of the 12 NTRs are presented. The color scale is set by percentile rank as indicated. For the 2nd-Z-rankings, see Figure 8. (C) Extracts of the GO term enrichments of the transcription factors found in the 2nd-Z-15% cargoes. Seventeen to 36 proteins in the 2nd-Z-15% cargoes of each NTR are annotated with 'transcription factor activity, sequence-specific DNA binding' or 'transcription factor activity, protein binding' in GO. The factors were analyzed for GO term enrichment (term type, biological process, BP) in (D). Typical terms that represent similar terms were extracted from (D). The p-value for the term enrichment and the number (#) of factors annotated with the term are presented. Total No. represents the number of proteins annotated with each term in the database. Cyan, p<0.05. Related terms are bundled in the same color. (D) Full table of the GO term enrichments of the transcription factors found in the 2nd-Z-15% cargoes. The 2nd-Z-15% cargoes that are annotated with 'transcription factor activity, sequence-specific DNA binding" or 'transcription factor activity, protein binding' in GO were analyzed for GO term enrichment (term type, BP). The analyzed transcription factors are listed at the bottom. For all of the combinations of GO terms and NTRs, the p-value for the term enrichment and the number (#) of transcription factors annotated with the term are presented. The numbers following '# in' are the total numbers of transcription factors in the 2nd-Z-15% cargoes. Total No. represents the number of proteins annotated with each term in the database. Cyan, p<0.05. (C) was extracted from this table. (E) SRSRSR motif in the 3rd-Z-4% cargoes. The 3rd-Z-4% cargoes that contain an 'SRSRSR' hexa-peptide sequence were counted. DOI: 10.7554/eLife.21184.027

• Supplementary file 12. MS data files, recombinant cargoes, and antibodies. (A) MS data files. The mass spectrometry proteomics data (.msf and .raw files) have been deposited to the ProteomeX-change Consortium (http://www.proteomexchange.org/) with the dataset identifier PXD004655. The results of protein and peptide identification and quantitation are summarized in Supplementary file 1, and the .msf and .raw data files corresponding to each experiment in Supplementary file 1 are listed in this table. The quantitation results can be seen by opening .msf files by Proteome Discoverer software. To see spectra and chromatograms, .msf files and corresponding .raw files must be in the same local directory. A demo version of Proteome Discoverer can be downloaded at the Thermo Scientific omics software portal site (https://portal.thermo-brims.com/). (B) GFP-fusion proteins used for in vitro transport and antibodies.

DOI: 10.7554/eLife.21184.028

Major datasets

The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database, license, and accessibility information
Kimura M, Imamoto N	2016	SILAC-Tp (12 importins)	http://www.ebi.ac.uk/ pride/archive/projects/ PXD004655	Publicly available at the Pride Archive (accession no: PXD004655)

References

Adam SA, Marr RS, Gerace L. 1990. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. *The Journal of Cell Biology* **111**:807–816. doi: 10.1083/jcb.111.3.807, PMID: 2391365

Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology: AAAI Press. p 28–36.

- Beauchamp P, Nassif C, Hillock S, van der Giessen K, von Roretz C, Jasmin BJ, Gallouzi IE. 2010. The cleavage of HuR interferes with its transportin-2-mediated nuclear import and promotes muscle fiber formation. *Cell Death* and Differentiation 17:1588–1599. doi: 10.1038/cdd.2010.34, PMID: 20379198
- **Bischoff FR**, Ponstingl H. 1995. Catalysis of guanine nucleotide exchange of ran by RCC1 and stimulation of hydrolysis of Ran-bound GTP by Ran-GAP1. *Methods in Enzymology* **257**:135–144. doi: 10.1016/s0076-6879 (95)57019-5, PMID: 8583915

Burns LT, Wente SR. 2014. From hypothesis to mechanism: uncovering nuclear pore complex links to gene expression. *Molecular and Cellular Biology* **34**:2114–2120. doi: 10.1128/MCB.01730-13, PMID: 24615017

- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972–1973. doi: 10.1093/bioinformatics/btp348, PMID: 1 9505945
- Chook YM, Süel KE. 2011. Nuclear import by karyopherin-βs: recognition and inhibition. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1813:1593–1606. doi: 10.1016/j.bbamcr.2010.10.014, PMID: 21029754

Dai Y, Ngo D, Jacob J, Forman LW, Faller DV. 2008. Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis 29:1725–1733. doi: 10.1093/carcin/bgn117, PMID: 18487222

Gene Ontology Consortium. 2015. Gene Ontology Consortium: going forward. Nucleic acids research 43: D1049–1056. doi: 10.1093/nar/gku1179, PMID: 25428369

Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA. 2004. Importin alpha: a multipurpose nucleartransport receptor. *Trends in Cell Biology* **14**:505–514. doi: 10.1016/j.tcb.2004.07.016, PMID: 15350979

- Golomb L, Bublik DR, Wilder S, Nevo R, Kiss V, Grabusic K, Volarevic S, Oren M. 2012. Importin 7 and Exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis. *Molecular Cell* **45**:222–232. doi: 10.1016/j.molcel. 2011.11.022, PMID: 22284678
- Görlich D, Kutay U. 1999. Transport between the cell nucleus and the cytoplasm. Annual Review of Cell and Developmental Biology **15**:607–660. doi: 10.1146/annurev.cellbio.15.1.607, PMID: 10611974
- Huang JG, Yang M, Liu P, Yang GD, Wu CA, Zheng CC. 2010. Genome-wide profiling of developmental, hormonal or environmental responsiveness of the nucleocytoplasmic transport receptors in Arabidopsis. *Gene* 451:38–44. doi: 10.1016/j.gene.2009.11.009, PMID: 19944133
- Hutten S, Kehlenbach RH. 2007. CRM1-mediated nuclear export: to the pore and beyond. Trends in Cell Biology 17:193–201. doi: 10.1016/j.tcb.2007.02.003, PMID: 17317185
- Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG. 1999. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and

diverse mammalian activators. *Molecular Cell* **3**:361–370. doi: 10.1016/S1097-2765(00)80463-3, PMID: 1019863 8

- Iwasaki T, Chin WW, Ko L. 2001. Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein, and its splice variant as a coactivator modulator (CoAM). *Journal of Biological Chemistry* 276:33375–33383. doi: 10.1074/jbc.M101517200, PMID: 11443112
- Jäkel S, Görlich D. 1998. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. *The EMBO Journal* **17**:4491–4502. doi: 10.1093/emboj/17.15.4491, PMID: 96 87515
- Jäkel S, Mingot JM, Schwarzmaier P, Hartmann E, Görlich D. 2002. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. *The EMBO Journal* **21**:377–386. doi: 10.1093/emboj/21.3.377, PMID: 11823430
- Jeronimo C, Watanabe S, Kaplan CD, Peterson CL, Robert F. 2015. The histone chaperones FACT and Spt6 restrict H2A.Z from intragenic locations. *Molecular Cell* **58**:1113–1123. doi: 10.1016/j.molcel.2015.03.030, PMID: 25959393
- Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D. 2015. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. *eLife* 4:e11466. doi: 10. 7554/eLife.11466, PMID: 26673895
- Kahle J, Baake M, Doenecke D, Albig W. 2005. Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. *Molecular and Cellular Biology* 25:5339–5354. doi: 10.1128/MCB.25.13.5339-5354.2005, PMID: 15964792
- Kang HS, Ock J, Lee HJ, Lee YJ, Kwon BM, Hong SH. 2013. Early growth response protein 1 upregulation and nuclear translocation by 2'-benzoyloxycinnamaldehyde induces prostate cancer cell death. *Cancer Letters* **329**: 217–227. doi: 10.1016/j.canlet.2012.11.006, PMID: 23178451
- Kataoka N, Bachorik JL, Dreyfuss G. 1999. Transportin-SR, a nuclear import receptor for SR proteins. *The Journal* of Cell Biology **145**:1145–1152. doi: 10.1083/jcb.145.6.1145, PMID: 10366588
- Kimura M, Imamoto N. 2014. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 15:727–748. doi: 10.1111/tra.12174, PMID: 24766099
- Kimura M, Kose S, Okumura N, Imai K, Furuta M, Sakiyama N, Tomii K, Horton P, Takao T, Imamoto N. 2013a. Identification of cargo proteins specific for the nucleocytoplasmic transport carrier transportin by combination of an in vitro transport system and stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics. *Molecular & Cellular Proteomics* **12**:145–157. doi: 10.1074/mcp.M112.019414, PMID: 23087160
- Kimura M, Okumura N, Kose S, Takao T, Imamoto N. 2013b. Identification of cargo proteins specific for importin-β with importin-α applying a stable isotope labeling by amino acids in cell culture (SILAC)-based in vitro transport system. *Journal of Biological Chemistry* **288**:24540–24549. doi: 10.1074/jbc.M113.489286, PMID: 23846694
- Kimura M, Thakar K, Karaca S, Imamoto N, Kehlenbach RH. 2014. Novel approaches for the identification of nuclear transport receptor substrates. *Methods in Cell Biology* **122**:353–378. doi: 10.1016/B978-0-12-417160-2. 00016-3, PMID: 24857738
- Kobayashi J, Hirano H, Matsuura Y. 2015. Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p. *Biochemical and Biophysical Research Communications* **463**: 309–314. doi: 10.1016/j.bbrc.2015.05.060, PMID: 26022122
- Kobayashi J, Matsuura Y. 2013. Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. Journal of Molecular Biology 425:1852–1868. doi: 10.1016/j.jmb.2013.02.035, PMID: 23541588
- Kose S, Furuta M, Imamoto N. 2012. Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shockinduced nuclear damage. *Cell* **149**:578–589. doi: 10.1016/j.cell.2012.02.058, PMID: 22541429
- Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. 2007. Classical nuclear localization signals: definition, function, and interaction with importin alpha. *Journal of Biological Chemistry* **282**:5101–5105. doi: 10.1074/jbc.R600026200, PMID: 17170104
- Lee BJ, Cansizoglu AE, Süel KE, Louis TH, Zhang Z, Chook YM. 2006. Rules for nuclear localization sequence recognition by Karyopherin Beta 2. *Cell* **126**:543–558. doi: 10.1016/j.cell.2006.05.049, PMID: 16901787
- Lee KM, Hsu I, Tarn WY. 2010. TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation. *Nucleic Acids Research* **38**:3340–3350. doi: 10.1093/nar/gkq017, PMID: 20123736
- Li KK, Yang L, Pang JC, Chan AK, Zhou L, Mao Y, Wang Y, Lau KM, Poon WS, Shi Z, Ng HK. 2013. MIR-137 suppresses growth and invasion, is downregulated in oligodendroglial tumors and targets CSE1L. *Brain Pathology* **23**:426–439. doi: 10.1111/bpa.12015, PMID: 23252729
- Lieu KG, Shim EH, Wang J, Lokareddy RK, Tao T, Cingolani G, Zambetti GP, Jans DA. 2014. The p53-induced factor Ei24 inhibits nuclear import through an importin β -binding-like domain. *The Journal of Cell Biology* **205**: 301–312. doi: 10.1083/jcb.201304055, PMID: 24821838
- Lu M, Zak J, Chen S, Sanchez-Pulido L, Severson DT, Endicott J, Ponting CP, Schofield CJ, Lu X. 2014. A code for RanGDP binding in ankyrin repeats defines a nuclear import pathway. *Cell* **157**:1130–1145. doi: 10.1016/j. cell.2014.05.006, PMID: 24855949
- Maertens GN, Cook NJ, Wang W, Hare S, Gupta SS, Öztop I, Lee K, Pye VE, Cosnefroy O, Snijders AP, KewalRamani VN, Fassati A, Engelman A, Cherepanov P. 2014. Structural basis for nuclear import of splicing factors by human Transportin 3. PNAS 111:2728–2733. doi: 10.1073/pnas.1320755111, PMID: 24449914

- Major AT, Whiley PA, Loveland KL. 2011. Expression of nucleocytoplasmic transport machinery: clues to regulation of spermatogenic development. *Biochimica et Biophysica Acta (BBA) Molecular Cell Research* **1813**:1668–1688. doi: 10.1016/j.bbamcr.2011.03.008, PMID: 21420444
- Makhnevych T, Lusk CP, Anderson AM, Aitchison JD, Wozniak RW. 2003. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. *Cell* **115**:813–823. doi: 10.1016/S0092-8674(03)00986-3, PMID: 14697200
- Mingot JM, Kostka S, Kraft R, Hartmann E, Görlich D. 2001. Importin 13: a novel mediator of nuclear import and export. The EMBO Journal 20:3685–3694. doi: 10.1093/emboj/20.14.3685, PMID: 11447110
- Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. 2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. *Science* **337**:587–590. doi: 10.1126/science.1223560, PMID: 22700657
- Oma Y, Harata M. 2011. Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. *Nucleus* **2**:38–46. doi: 10.4161/nucl.2.1.14510, PMID: 21647298
- Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. *Molecular & Cellular Proteomics* 1:376–386. doi: 10.1074/mcp.M200025-MCP200, PMID: 12118079
- Patel SS, Rexach MF. 2008. Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. *Molecular & Cellular Proteomics* 7:121–131. doi: 10.1074/mcp.M700407-MCP200, PMID: 17897934
- Perry RB, Fainzilber M. 2009. Nuclear transport factors in neuronal function. Seminars in Cell & Developmental Biology 20:600–606. doi: 10.1016/j.semcdb.2009.04.014, PMID: 19409503
- Pollard VW, Michael WM, Nakielny S, Siomi MC, Wang F, Dreyfuss G. 1996. A novel receptor-mediated nuclear protein import pathway. Cell 86:985–994. doi: 10.1016/S0092-8674(00)80173-7, PMID: 8808633
- Quan Y, Ji ZL, Wang X, Tartakoff AM, Tao T. 2008. Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. *Molecular & Cellular Proteomics* 7:1254–1269. doi: 10.1074/mcp.M700511-MCP200, PMID: 18353765
- **R Development Core Team**. 2012. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/
- Rebane A, Aab A, Steitz JA. 2004. Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA 10:590–599. doi: 10.1261/rna.5224304, PMID: 15037768
- Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J. 2016. G:Profiler-a web server for functional interpretation of gene lists (2016 update). *Nucleic Acids Research* **44**:W83–W89. doi: 10.1093/nar/gkw199, PMID: 27098042
- Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, Kamburov A, Ghiassian SD, Yang X, Ghamsari L, Balcha D, Begg BE, Braun P, Brehme M, Broly MP, Carvunis AR, et al. 2014. A proteome-scale map of the human interactome network. *Cell* 159:1212–1226. doi: 10.1016/j. cell.2014.10.050, PMID: 25416956
- Schmidt HB, Görlich D. 2016. Transport Selectivity of nuclear pores, Phase Separation, and Membraneless Organelles. Trends in Biochemical Sciences **41**:46–61. doi: 10.1016/j.tibs.2015.11.001, PMID: 26705895
- Shibuya T, Tange TØ, Sonenberg N, Moore MJ. 2004. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nature Structural & Molecular Biology 11:346–351. doi: 10.1038/ nsmb750, PMID: 15034551
- Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology* 7:539. doi: 10.1038/msb.2011.75, PMID: 21 988835
- Soniat M, Chook YM. 2015. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochemical Journal 468:353–362. doi: 10.1042/BJ20150368, PMID: 26173234
- Soniat M, Chook YM. 2016. Karyopherin-β2 recognition of a PY-NLS variant that lacks the Proline-Tyrosine motif. Structure 24:1802–1809. doi: 10.1016/j.str.2016.07.018, PMID: 27618664
- Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22:2688–2690. doi: 10.1093/bioinformatics/btl446, PMID: 16928733
- Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature **397**:441–446. doi: 10.1038/17135, PMID: 9989411
- Süel KE, Gu H, Chook YM. 2008. Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. *PLoS Biology* **6**:e137. doi: 10.1371/journal.pbio.0060137, PMID: 18532879
- Szczyrba J, Nolte E, Hart M, Döll C, Wach S, Taubert H, Keck B, Kremmer E, Stöhr R, Hartmann A, Wieland W, Wullich B, Grässer FA. 2013. Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. *International Journal of Cancer* **132**:775–784. doi: 10.1002/ijc. 27731, PMID: 22815235
- Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. *Cell* **116**:51–61. doi: 10.1016/S0092-8674(03) 01064-X, PMID: 14718166

- Tao T, Lan J, Lukacs GL, Haché RJ, Kaplan F. 2006. Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. *American Journal of Respiratory Cell and Molecular Biology* **35**:668–680. doi: 10.1165/rcmb.2006-0073OC, PMID: 16809634
- Thakar K, Karaca S, Port SA, Urlaub H, Kehlenbach RH. 2013. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. *Molecular & Cellular Proteomics* 12:664–678. doi: 10.1074/mcp. M112.024877, PMID: 23242554
- Twyffels L, Gueydan C, Kruys V. 2014. Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Letters **588**:1857–1868. doi: 10.1016/j.febslet.2014.04.023, PMID: 24780099
- Visa N, Percipalle P. 2010. Nuclear functions of actin. Cold Spring Harbor Perspectives in Biology 2:a000620. doi: 10.1101/cshperspect.a000620, PMID: 20452941
- Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016. 2016 update of the PRIDE database and its related tools. *Nucleic Acids Research* **44**:D447–D456. doi: 10.1093/nar/gkv1145, PMID: 26527722
- von Roretz C, Macri AM, Gallouzi IE. 2011. Transportin 2 regulates apoptosis through the RNA-binding protein HuR. Journal of Biological Chemistry **286**:25983–25991. doi: 10.1074/jbc.M110.216184, PMID: 21646354
- Wahl MC, Will CL, Lührmann R. 2009. The spliceosome: design principles of a dynamic RNP machine. *Cell* **136**: 701–718. doi: 10.1016/j.cell.2009.02.009, PMID: 19239890
- Walker P, Doenecke D, Kahle J. 2009. Importin 13 mediates nuclear import of histone fold-containing chromatin accessibility complex heterodimers. *Journal of Biological Chemistry* 284:11652–11662. doi: 10.1074/jbc. M806820200, PMID: 19218565
- Wang P, Liu GH, Wu K, Qu J, Huang B, Zhang X, Zhou X, Gerace L, Chen C. 2009. Repression of classical nuclear export by S-nitrosylation of CRM1. *Journal of Cell Science* **122**:3772–3779. doi: 10.1242/jcs.057026, PMID: 1 9812309
- Weber CM, Henikoff S. 2014. Histone variants: dynamic punctuation in transcription. Genes & Development 28: 672–682. doi: 10.1101/gad.238873.114, PMID: 24696452
- Weberruss MH, Savulescu AF, Jando J, Bissinger T, Harel A, Glickman MH, Enenkel C. 2013. Blm10 facilitates nuclear import of proteasome core particles. *The EMBO Journal* **32**:2697–2707. doi: 10.1038/emboj.2013.192, PMID: 23982732
- Wiśniewski JR, Zougman A, Mann M. 2009. Combination of FASP and StageTip-based fractionation allows indepth analysis of the hippocampal membrane proteome. *Journal of Proteome Research* 8:5674–5678. doi: 10. 1021/pr900748n, PMID: 19848406
- Yoo Y, Wu X, Guan JL. 2007. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. *Journal of Biological Chemistry* **282**:7616–7623. doi: 10.1074/jbc. M607596200, PMID: 17220302
- Zhong XY, Wang P, Han J, Rosenfeld MG, Fu XD. 2009. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. *Molecular Cell* 35:1–10. doi: 10.1016/j.molcel.2009.06.016, PMID: 19595711
- Zhou Z, Licklider LJ, Gygi SP, Reed R. 2002. Comprehensive proteomic analysis of the human spliceosome. Nature **419**:182–185. doi: 10.1038/nature01031, PMID: 12226669