
TYPE Review

PUBLISHED 26 September 2022

DOI 10.3389/fninf.2022.902452

OPEN ACCESS

EDITED BY

Richard S. Nowakowski,

Florida State University, United States

REVIEWED BY

Ruiwang Huang,

South China Normal University, China

David N. Kennedy,

University of Massachusetts Medical

School, United States

*CORRESPONDENCE

Xin Li

leexin@ustc.edu.cn

†These authors have contributed

equally to this work and share first

authorship

RECEIVED 23 March 2022

ACCEPTED 29 August 2022

PUBLISHED 26 September 2022

CITATION

Li X and Liang HD (2022) Project,

toolkit, and database of

neuroinformatics ecosystem: A

summary of previous studies on

“Frontiers in Neuroinformatics”.

Front. Neuroinform. 16:902452.

doi: 10.3389/fninf.2022.902452

COPYRIGHT

© 2022 Li and Liang. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Project, toolkit, and database of
neuroinformatics ecosystem: A
summary of previous studies on
“Frontiers in Neuroinformatics”

Xin Li1*† and Huadong Liang2†

1School of Information Science and Technology, University of Science and Technology of China,

Hefei, China, 2AI Research Institute, iFLYTEK Co., LTD, Hefei, China

In the field of neuroscience, the core of the cohort study project consists

of collection, analysis, and sharing of multi-modal data. Recent years have

witnessed a host of e�cient and high-quality toolkits published and employed

to improve the quality of multi-modal data in the cohort study. In turn,

gleaning answers to relevant questions from such a conglomeration of studies

is a time-consuming task for cohort researchers. As part of our e�orts to

tackle this problem, we propose a hierarchical neuroscience knowledge base

that consists of projects/organizations, multi-modal databases, and toolkits,

so as to facilitate researchers’ answer searching process. We first classified

studies conducted for the topic “Frontiers in Neuroinformatics” according

to the multi-modal data life cycle, and from these studies, information

objects as projects/organizations, multi-modal databases, and toolkits have

been extracted. Then, we map these information objects into our proposed

knowledge base framework. A Python-based query tool has also been

developed in tandem for quicker access to the knowledge base, (accessible

at https://github.com/Romantic-Pumpkin/PDT_fninf). Finally, based on the

constructed knowledge base, we discussed some key research issues and

underlying trends in di�erent stages of the multi-modal data life cycle.
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Introduction

Most chronic diseases in epidemiology take time to form, and many risk factors for

the disease may cause the occurrence of diseases in this process. A longitudinal cohort

study is a common research method in epidemiology, which is an effective way to obtain

pathogenic risk factors and evaluate intervention measures based on the correlation

between “exposure” and “outcome” (Louis and Tampone, 2019). In recent years, some

large-scale longitudinal cohort studies have been carried out and achieved good results,

such as IMAGEN (Schumann et al., 2010), ABCD (Luciana et al., 2018), andUK-Biobank

(Littlejohns et al., 2020).

It can be seen that the core contents of the longitudinal cohort study are prospective

inmulti-modal data collection, multi-modal data analysis, andmulti-modal data sharing.

Take the neuroimaging data as an example, the whole data life cycle can be shown
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in Figure 1. However, in the process of traditional cohort

construction, some major problems need to be solved urgently:

(1) A variety of experimental data and metadata are collected

and stored based on paper-based records; (2) The calculation

efficiency of data quality control (QC) was low, and timely

feedback on and corrections of the data quality are difficult

to receive; (3) Data management standards are difficult to

unify, and multi-modal data are difficult to integrate and share

effectively. Therefore, in recent years many efficient and high-

quality data information platforms, technologies, toolkits, and

standards for cohort study construction have been published and

applied in multiple cohort data research stages such as multi-

modal data collection, data QC analysis, computational analysis

modeling, and data sharing. Thus, researchers ultimately hope

to improve the quality of multimodal data for cohort studies.

From the perspective of cohort construction researchers,

howmany related works have been published?What application

effects have been achieved in the data life cycle of cohort

construction?What other key issues need to be further resolved?

With these questions, we tried to search the corresponding

literature retrieval database, such as the Web of Science,

to seek answers to these questions. However, most of the

retrieved article topics focus on a single point of technology and

method improvement. As a result, we did not find a complete

matching study to answer the above questions. Therefore, to

help researchers more efficiently retrieve and reference the

existing technical and functional architecture solutions, we

mainly make the following contributions in this study: (1) We

proposed a hierarchical knowledge base framework consisting

of projects, toolkits, and databases of the neuroinformatics

ecosystem, and developed an open source knowledge base query

tool, PDT_fninf, in order to help researchers quickly search the

corresponding content from the knowledge base; (2) According

to the content of the knowledge base, themain research progress,

FIGURE 1

Data life cycle in neuroimaging research.

and trends in each stage of the data life cycle are analyzed and

discussed, which provide some guidance for follow-up research.

The rest of this article will be organized as follows: (1) the

“Methods” section is to describe the principle of categorizing

articles topics in Frontiers in Neuroinformatics, and the

construction process of the knowledge base, (2) sections 3∼8

beginning with “Multi-modal” summarize and discuss the main

contributions of existing studies and their underlying trends

from different stages of the data life cycle, and (3) the section

of “Conclusions” summarizes our main contributions and our

future works.

Methods

In order to complete the neuroinformatics ecosystem of

cohort studies, we selected the Frontiers in Neuroinformatics

journal as the input instances of the knowledge base in

this study, which has published some works on existing

neuroscience databases, and novel tools for data acquisition,

analyses, visualization, and dissemination of nervous

system data. Specifically, we first divided the Frontiers

in Neuroinformatics journal articles into different topics

according to the data life cycle of the cohort study. Then, the

information objects in these articles are filled and associated

with the knowledge base framework. Finally, we open source

the corresponding knowledge base query tool based on the

constructed knowledge base.

Categorize articles by data life cycle

First, we searched all the articles published in this journal

from 2007 to 2021 on the Web of Sience database and

obtained a total of 723 articles. We imported them into
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TABLE 1 The categories of all articles published in Frontiers in

Neuroinformatics.

Category Keywords Num

Multi-modal data capture Collect/acquisition/capture 6

Multi-modal data quality control Quality control/assessment 5

Multi-modal data mining analysis Analysis/pipeline/workflow/

process/calculate

82

Multi-modal data visualization Visualize/browse/view/3D/construct 48

Multi-modal data management Manage/open science/xnat 47

Multi-modal data sharing Sharing/atlas/dataset/database/ 40

Others BCI/review/survey/meta/

reproduce/. . . .

495

“Endnote” software for grouped literature management. Then,

two authors of this paper classified these articles in a double-

blind mode, according to the initial categories associated with

the cohort data life cycle, into six categories, “Multi-modal data

collection”, “Multi-modal data quality control”, “Multi-modal

data mining analysis”, “Multi-modal data visualization”, “Multi-

modal data management” and “Multi-modal data sharing”.

It is worth noting that the third person will introduce a

centralized voting decision-making mechanism when some

articles aren’t uniformly classified or can’t be classified. Finally,

all articles are assigned a different category label as shown in

Table 1. Meanwhile, the keywords list of these articles is also

updated synchronously.

We mainly focus on the various stages of the data life cycle

in the construction of the cohort data information platform.

According to the article categories shown in Table 1, we

summarized and discussed the main contributions of these 228

articles to the construction of the neuroinformatics ecosystem.

A hierarchical knowledge base
framework

Researchersmainly carry out different neuroscience research

in the form of projects or working groups, such as the

HCP project (Marcus et al., 2011) for mapping all the neural

connections in the human brain and the ADNI Project for

searching the biomarkers of Alzheimer’s disease (Mueller et al.,

2005; Jack et al., 2010). These projects collect multimodal

data for solving different research problems. Meanwhile, at

different stages of the data life cycle, a variety of information

toolkits have been developed to support the implementation

of these projects. Among them, the data types of multi-modal

data mainly include clinical/behavioral data, neuroimaging data,

electrophysiological data, and molecular data. The data life cycle

stages mainly include data capture, data QC, data analysis, data

visualization, data management, and data sharing.

In order to help researchers quickly sort out and trace the

research progress of existing projects on multi-modal databases

and information toolkits, we propose a hierarchical knowledge

base framework that consists of projects, databases, and toolkits,

as shown in Figure 2. The databases and toolkits are the main

products of the project/organization. of these, the databases can

be mapped into a matrix composed of multi-modal data types

and different diagnostic groups. Similarly, the toolkits can be

mapped into a matrix composed of multimodal data types and

the data life cycle stage.

Knowledge base filling

Information object recording: we used the “5W-4M-6P”

information collection framework to summarize and sort

information objects about the projects/organizations, databases,

and toolkits, obtained from the 228 articles in the Frontiers in

Neuroinformatics (Table 2).

Information object mapping: the summarized information

objects were mapped into the proposed hierarchical knowledge

base framework, as shown in Figure 3. Among them, we

classify information objects into projects/organizations, multi-

modal databases, or information toolkits modules based on

the “Which” field. In the multi-modal databases and toolkits

module, we associate the information object with a specific

project/organization through the “Project” property in the

“Where” field. Meanwhile, the data types and data life cycle

phases involved in the information object are marked as gray in

the “4M” and “6P” modules, respectively.

Information object coding: in order to define the

information object and its related connections, we construct the

data dictionary for the information objects of different modules

in the knowledge base (Figure 4). And, we use the primary

foreign key to establish the connection between information

objects in the projects/organization module (PID_0001) and

the information objects in multi-modal databases (DID_0001)

and the toolkits module (TID_0001). Among them, it is worth

noting that in the multi-modal databases matrix and toolkits

matrix, each cell is filled by a list element composed of similar

information objects, such as both NDAR (National Database

for Autism Research) and ABIDE (Autism Brain Image Data

Exchange) provide a large amount of neuroimaging data for

the study of the autism population. In addition, we use the

“Keywords” field in the data dictionary to represent the cell

position of the information objects (red rectangle) in the

multi-modal databases matrix and toolkits matrix.

Knowledge base query and statistics

We developed PDT_fninf, a knowledge base query tool

based on Python (https://github.com/Romantic-Pumpkin/

PDT_fninf), which can help researchers access this knowledge
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FIGURE 2

A hierarchical knowledge base framework consists of projects, databases, and toolkits.

base. As shown in Figure 5, researchers retrieved the answers to

the question “What are the shared neuroimaging Databases for

autism?” They can first click the “Database” button to enter the

multi-modal database module. Then, they can give keywords

in the search box, such as “Autism, Neuroimaging”. Finally,

press Enter key to obtain the relevant information objects in the

knowledge base, and more instructions can be found in Readme

module in the above Github repository.

The multi-modal databases contain a total of 83 information

objects, which are mapped to a matrix composed of research

groups and multi-modal data types. As shown in Figure 6, we

use a log-normalized heat-map to represent the number of

informative objects distributed in each cell, where red indicates

a high number of informative objects in that cell, and blue

indicates a low number of that. It’s worth noting that the research

groups involved in these databases can be roughly divided into 4

categories: normal people (“Healthy”), mental illness (“Autism”,

“ADHD”, “Schizophrenia”, “Bipolar disorder”, “Sleep”, and

“Epilepsy”), organic disease (“Traumatic brain injury”, “Stroke”,

“Cancer”, “AD”), and other.

The information toolkits contain a total of 484 information

objects, which are mapped to a matrix composed of different

phases of the data life cycle and multi-modal data types. As

shown in Figure 7, we also use a log-normalized heat-map

to represent the number of informative objects distributed in

each cell, where red indicates a high number of informative

objects in that cell, and blue indicates a low number of that.

In particular, the information objects in the data capture

phase mainly include tools for multi-modal data acquisition;

the information objects in the data QC phase mainly include

tools for multi-modal data quality evaluation; information

objects in the data analysis phase mainly include tools for

simulation analysis, format conversion, data annotation, and

data modeling of multi-modal data signals; the information

objects in the data management phase mainly include tools that

support integration and storage of multi-modal data; and the

information objects in the data sharing phase mainly include

tools that support anonymization, citation, and sharing of multi-

modal data.

In addition, the projects/organizations contain 110

information objects, and 43 connections are established with

the information objects in the multi-modal database and

the information toolkits through the project attribute in the

information object dictionary.

In summary, it can be seen that a large number of multi-

modal databases and toolkits have been derived in different

data life cycles of cohort studies, and a complete cohort study

community has been gradually constructed. Next, based on

the content of the constructed knowledge base, we will discuss

somemajor research advances and underlying trends in different

stages of the data life cycle.

Multi-modal data capture

As the first step of the data flow, the data capture process

pays much attention to data quality assurance. From the

data validity in a single modal to the collaboration of multi-

modalities, the emerging electronic data capture (EDC) software

upgrade itself to adapt to both common and special occasions

and environments.

Data validity in EDC

Data verification is a verification operation to ensure data

integrity and validity. When the scale of data collection changes

from a single modal to multi-modal signals, at the source of data

generation, data verification has always been established as the

first line of protection.
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TABLE 2 A summary and collation framework for projects, databases,

and toolkits.

Column name Meaning

5W Which Annotation information objects belong to

projects, databases, or toolkits.

Who Record the name of the information object in

abbreviated (full name) format.

What Record the content or main function descriptions

of the information object.

Where Record the source of the information object,

including its project, published articles, and access

address information.

When Record the generation time of the information

object.

4M Clinical/behavioral Recordings about clinical information and

reactions made in response to different stimulus of

the subject.

Neuroimaging Produced brain images by noninvasive techniques

(such as computed tomography and magnetic

resonance imaging).

Electrophysiology Electrical signals associated with a physiological

process (such as the function of a body or bodily

part).

Molecular Data resources of, relating to, consisting of, or

produced by molecules.

6P Data Capture Multi-modal data capture phase.

Quality Control Multi-modal data quality control phase.

Data Analysis Multi-modal data analysis stage.

Data Visualization Multi-modal data visualization stage.

Data Management Multi-modal data management phase.

Data Sharing Multi-modal data sharing phase.

The labor-intensive process of transcription from paper

records to electronic records results in delay and random errors

in large-scale research (Babre and Deven, 2011). Thus, the EDC

becomes prevalent, but the misspelling and illegal input remain

here. To solve this problem, the electronic data capture systems,

such as Redcap (Harris et al., 2009), CARAT (Turner et al., 2011),

CIGAL (Voyvodic, 2011), and OpenClinia 1, incorporate the

data verification functions to check the specific logic problems

and symbolic problems, in order to ensure the integrity and

validity of the collected data.

Not only in the field of

clinical/behavioral/electrophysiological data collection, but

also in multi modalities data capturing, the data verification

function plays an essential role in multi-modal EDC, such

as ACQ4 provides an event detection module to monitor

the collection of multi-modal data, and other examples in

1 www.openclinica.com.

electrophysiology, photo-stimulation, and imaging (Luke et al.,

2014). Like ACQ4, Epus is useful for meeting the needs of

researchers to capture electrophysiology and photo-stimulation

together (Benjamin, 2010).

Although the existing EDC systems present a data

verification mechanism to ensure multi-modal data integrity

and validity, areas for future development include support for a

wider range of acquisition devices, and support for allowing data

link to the high-throughput analysis workflow modules, with

consistent data capture and provenance information, to extend

the functionality of the EDC system.

Time alignment of multi-modal data

Time alignment refers to aligning different modal data

signals on the same time axis. It helps researchers not only to

reveal the statistical relationship between two or more modal

data signals in large-scale data sets but also to purify singlemodal

data signals with the auxiliary of other modalities.

Platforms providing association mining across multiple

modalities bind different modal data to achieve novel

mechanisms or patterns in neuroscience. Brainliner, one

of such platforms, provides time-aligned data signals across

neurophysiological and behavioral data for assisting data-driven

neuroscience and neural decoding. For example, visual images

can be reconstructed and decoded from brain functional

magnetic resonance imaging (fMRI) data (Emi et al., 2018).

Since the multi-modal data signals interact with each

other, the collected data signals are not simply induced by

experimentally designed cognitive tasks (Chang et al., 2009;

Glover et al., 2015). As a result, the data signals contain extra

noise, which affects the accuracy of the experimental results.

For example, fMRI signals could be affected by physiological

signals such as breathing and heart rate during the experiment.

Therefore, the CIGAL software purifies the fMRI signals with

the auxiliary of electrophysiological data including the heart rate

(Voyvodic, 2011).

The benefits of time-aligned multi-modal data are obvious.

However, because wearing a heart rate collection device on

the tip of the left finger will cause inconvenience to keyboard

operations, there is an uncertain delay deviation in the real

behavior signal record. Therefore, paying attention to the

convenience of experimental operation can further ensure

the authenticity of the time alignment results of different

data signals.

O	ine mode and local feedback of EDC

Due to the long-term and large-scale temporal-spatial

distributed characteristic of the multi-sites cohort study,

EDC software should meet the needs of use in special
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FIGURE 3

Map information objects to a hierarchical knowledge base framework.

occasions or environments with limited internet access, such

as remote rural areas, prisons, and medical centers. In

such occasions or environments, local caching and local

QC become a solution to solve offline data collection

and transmission.

In order to solve the aforementioned challenges, there are

currently two techniques. First, the offline mode is equipped

within EDC to achieve offline caching capabilities of data. Most

prevalent EDC software, such as REDCap Mobile (Borlawsky

et al., 2011) and CARAT (Turner et al., 2011) have realized such

functions. Second, the data QC program can be executed locally

to obtain the data validity check results, instead of waiting for

feedback from the central site, to solve the time delay problem of

data quality feedback in an offline environment.

It can be seen that some main functions of the EDC system

can be used without internet or network access. However,

asynchronous updates may result in duplicate data or existing

data in the centralized data management system, so these data

can’t be overwritten. In addition, the consistency of the EDC

system version should be considered in the multi-site study.

Multi-modal data quality control

Multi-modal quality control (QC) is a prerequisite for the

data validity of most single or multi-site scientific research

projects. Take the QC of neuroimaging data as an example,

researchers performed qualitative and quantitative QC on the

neuroimaging data to meet the needs of neuroscience research

for repeatability measurement of large-scale and cross-sites

neuroimaging data.

Visual QC

In the process of neuroimaging scanning, due to factors such

as head motion, gradient effects, and intensity inhomogeneity,

many types of artifacts affected the final image quality. Using

these image data containing artifacts without QC may lead to

deviations in subsequent analysis and even wrong conclusions

in neuroimaging studies. For example, studies have confirmed

that these artifacts can cause inaccuracies in the segmentation of

anatomical MRI images (Keshavan et al., 2017).

For this reason, researchers usually resort to the visualization

functions provided by image analysis software to visually inspect

different image modalities. For sMRI volumes, FSLView allows

researchers to inspect neuroimaging slices in the axial, sagittal,

and coronal planes (Jenkinson et al., 2012). For fMRI volumes,

MRICron2 supports switching options for fMRI time series and

offers some brain slices for visual inspection. For DTI volumes,

in addition, to providing the FA, MD, and ADC images, LONI

Viewer also provides the magnetic field gradient direction table

for researchers to proofreading these images (Kim et al., 2019).

There have also been efforts made for the quality assurance of

the preprocessed neuroimaging data, such as fiber tractography

extracted from DTI data (Sommer et al., 2017) and brain

registration in fMRI studies (Benhajali et al., 2020).

It is not difficult to imagine that in the visual inspection

of large-scale images, factors such as the professional level,

fatigue degree and participation motivation of image quality

raters are usually difficult to be fully and effectively controlled,

thus increasing the risk of inconsistency in QC results across

2 http://www.sph.sc.edu/comd/rorden/mricron/.
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FIGURE 4

The information objects in knowledge base are coded and organized by dictionary.

FIGURE 5

Query the neuroimaging database of autism from the knowledge base.
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FIGURE 6

Heat map of multi-modal databases.

FIGURE 7

Heat map of information toolkits.
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raters. Although researchers can avoid these effects to some

extent by aggregating multiple ratings from a large pool of raters

(Benhajali et al., 2020), the root cause is the lack of a standard

and validated protocol to perform visual QC. Therefore, the

development of standardized protocols for visual QC will

produce QC ratings of higher quality on large amounts of

data, which will in turn help to train machine learning models

to perform automated QC, thereby reducing the burden of

visual inspection.

Automated QC and comparison to visual
inspection

Some studies such as IMAGEN (Schumann et al., 2010),

HCP (Marcus et al., 2011) or ABCD (Caseya et al., 2018) have

obtained huge MRI datasets, in order to meet the demand for

data volume in the era of big data analysis. It is very time-

consuming and tedious when using visual inspection for QC

of these massive datasets. Therefore, researchers have tried to

use automated QC to substitute the manual QC procedure.

The automated QC quantifies the image QC metrics and

automatically flags images of poor quality by setting their

cutoff values.

At present, some automated QC systems have been

developed for checking the QC of different imagemodalities. For

example, Oguz et al. developed the DTIPrep tool to perform QC

on DTI images (Liu et al., 2014); Pizarro et al. (2016) proposed

several QC metrics to describe the artifacts of sMRI images and

trained a classifier based on these metrics to evaluate the quality

of sMRI images. These tools usually execute QC procedures of

specific image modalities on personal computers or small-size

computing clusters. As a result, the use of these tools in large-

scale, multi-modal image data QC work is limited. To this end,

researchers have calculated a comprehensive set of standard QC

metrics that have been described in the literature and developed

a web-based LONI Pipeline QC system for sMRI, fMRI, and DTI

(Kim et al., 2019).

However, the results from automated QC do not always fully

agree with the visual inspection results (Pizarro et al., 2016;

Esteban et al., 2017). There are two possible reasons for this

phenomenon. First, the deterioration in image quality is caused

by multiple types of noise, and the single QC metric may be

used to detect one type of image artifact. In contrast, the visual

assessment is often a comprehensive assessment. Second, the

setting of thresholds along with the number of simultaneously

occurring “bad” QC metrics may affect the consistency of the

final classification results.

The development of quantitative QC metrics is critical in

solving the subjectivity in visual assessment and is helpful for the

development of automated QC systems for neuroimaging data.

Thus, the methods of QC assessment can be replicated across

multi-site datasets. However, due to the difference in the image

sequence and weighting method, as well as the different degrees

of motion artifacts in children and adults, the optimal cutoff

values for auto QC may be allowed to be flexible scaling by the

user. In addition, compared to univariate analysis that only relies

on QC metrics separately, a machine learning method using

multivariate modeling of QC metrics distribution may improve

the accuracy of image quality classification (Pizarro et al., 2016;

Fonov et al., 2022).

Multi-modal data mining analysis

Brain network analysis has been widely considered an

important method to understand the pathophysiological

mechanism of many neurodegenerative diseases and mental

diseases, including cognitive impairment (Chen et al., 2017;

Javaria et al., 2018; Xia-An et al., 2018), Parkinson’s disease

(Schumacher et al., 2019) major depression disorder (Liao

et al., 2018), and autistic spectrum disorder (Yu et al., 2020).

Sometimes it behooves us to decide whether conclusions are

obtained through a rigorous data analysis process. In making

the data analysis process transparent, the development of

workflow technology has increasingly satisfied our pursuit of

scientific repeatability in neuroscience research.

Multi-level analysis of brain connectivity

Human perception, cognition, and action are supported

by a sophisticated, interconnected network of brain structures

and functions. Thus, a number of studies analyzed brain

connectivity at the macroscopic or microscopic scales, providing

an important foundation for revealing the neurophysiological

mechanism behind normal brain function and disease-

related dysfunction. At the macroscopic scale, sophisticated

neuroimaging techniques have opened up new possibilities

to infer the structural and functional connectivity of brain

regions. For example, Anastasia et al. proposed an automatic

probabilistic reconstruction of white matter pathways based

on DTI and demonstrated automatic tractography analysis in

schizophrenia patients and healthy subjects (Anastasia, 2011).

At the microscopic scale, Markus et al. show three-dimensional

polarized light imaging (3D-PLI) can generate fiber orientation

vectors of the human brain, which can be used as the basis for

high-resolution fiber tract reconstruction in the human brain

(Markus et al., 2011).

Recent advances in multi-scale data acquisition methods

have made it easier to collect data for studying human

structural and functional connectivity networks. However, since

these connectivity data usually rely on indirect connectivity

measures, such as DTI and fMRI, researchers need robust

statistical methods to verify the validity of these connectivity
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data (Leergaard et al., 2012). For example, researchers have

used causal reasoning algorithms to obtain effective brain

connectivity information from fMRI data (Daniel and Stefano,

2014; Martin et al., 2014). Based on these effective connections,

a large number of network analysis methods have been proposed

to reveal complex spatiotemporal dynamics of the human

developing brain. For example, by comparing the changes

in the network architecture of the same brain at different

spatial resolutions, Echtermeyer et al. (2011) clarified that the

spatial scale and resolution play an important role in drawing

conclusions based on network analysis. Similarly, He et al.

(2018) proposed a developmental meta-network decomposition

(DMD) approach to decompose the developmental networks

into a set of temporally smooth developmental meta-networks

(DMs), which may reveal the underlying changes in connectivity

over brain development.

Obviously, mapping multi-scale brain connectivity analysis

is the basis for comprehending the brain’s complex function.

Despite the numerous brain connectivity studies, we still

know little about neuroanatomy and functional connectivity

remains limited. In this case, researchers propose using

workflow technologies to standardize the process of brain

connectivity data collection and analysis. The technology will

help researchers to effectively compare and combine these

brain connectivity data of previous studies. These data will

provide a solid foundation for the long-standing goals of

achieving complete connectome maps for the human brain in

the neuroscience community.

Data processing workflow for
neuroimaging

Scientific workflows are normally visualized as a collection

of modules with pipes to represent the data flow from the

output ports of one module to the input ports of another. With

neuroscience datasets continually expanding in size, scope, and

complexity, a large number of efficient processing tools need

to be developed to mine more useful information from these

datasets. Workflow technologies can link these tools into high-

throughput processing pipelines, in order to provide the means

for wide dissemination and validation of research protocols and

scientific findings.

Taking neuroimaging data processing as an example, some

sophisticated neuroimaging processing tools (e.g., AFNI (Cox,

1996), FSL (Jenkinson et al., 2012), ANTs (Avants et al., 2008) 3,

SPM 4, FreeSurfer (Fischl, 2012), and Nipy (Millman and Brett,

2007) 5) have been designed to analyzemultimodal imaging data.

3 http://sourceforge.net/projects/advants/.

4 http://www.fil.ion.ucl.ac.uk/spm/.

5 http://nipy.org/.

However, these tools are accessed and interfaced with in different

ways, such as shell scripting (AFNI, FSL, ANTs, FreeSurfer),

MATLAB (SPM), and Python (Nipy). Thus, there is no unified

way to use or execute these tools in the existing pipelines.

For example, SPM, written in MATLAB, does not provide a

command line interface. This has resulted in the LONI pipeline

(Ivo, 2009) can’t interact with SPM. In this case, researchers have

proposed Nipype, an open source, python-based open source

software that easily interfaces with existing tools for efficiently

processing of neuroimaging data (Krzysztof et al., 2011). Based

on Nipype, several pipelines have been proposed for specific

research purposes, such as MRIQC used for the QC of sMRI

and fMRI data (Esteban et al., 2017), and Pypes used for pre-

processing Positron Emission Tomography (PET), sMRI, fMRI,

and DTI data (Savio et al., 2017).

Methodological improvements in the neuroimaging

pipeline, such as non-linear spatial normalization and Bayesian

Markov Chain Monte Carlo approaches, can dramatically

increase the computational burden. Neuroimaging tools benefit

from the growing number of parallel hardware configurations

(multi-core, clusters, clouds, and supercomputers), and thus

help facilitate data processing workflow for solving specific

research problems (e.g., image registration, image segmentation,

and statistical analyses). For instance, researchers have proposed

BROCCOLI for parallel analysis of fMRI data on many-core

CPUs and GPUs (Anders et al., 2014). Similarly, researchers

have proposed ATPP 6 to realize the framework of brain

parcellation with massive parallel computing. ATPP implements

parallel computing across and within machines by means of

SGE and MATLAB PCT, respectively.

Workflow technologies address the need for transparency,

efficiency, and repeatability in cohort studies by providing

valid and complete process records. Meanwhile, workflow

technologies also provide an important opportunity to compare

and combine results from previous studies via meta-analytic

and data mining approaches. Thus, as the diversity of research

applications increases, workflow technologies must be flexible

for diverse research applications while being able to include

new applications without modification, in order to reduce

the learning curve for researchers to leverage and improve

these workflows.

Multi-modal data visualization

The brain is such an extremely complex organ, requiring

researchers to interpret it from multiple levels. Benefiting from

the development of multi-scale measurement methods, more

and more data mining results are presented. Visualization

provides an important way for researchers to gain new insights

6 https://www.nitrc.org/projects/atpp.
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into extracting, disseminating, and interpreting these data

mining results.

Multi-scale data interactive visualization

The purpose of scientific visualization is to represent multi-

modal data graphically and to facilitate the extraction and

interpretation of useful information from multi-modal data

by leveraging humans’ abilities for pattern recognition, and

intuition. To make the most of these capabilities, researchers

resort to interactive visualization tools, in order to assist the

analysis process of multi-scale data.

To date, a large number of interactive visualization tools

have been developed to assist researchers in multi-modal data

visualization. These tools focus on data visualization at the

micro scale neuronal circuits and at the meso/macro scale brain

regions. At the micro scale neuronal circuits, Visimpl supports

researchers in visually analyzing complex neuron-level detailed

brain simulations (Galindo et al., 2016). Relevant works include

ShuTu (Jin et al., 2019) and VIOLA (Senk et al., 2018). At

the meso/macro scale brain regions, visualization tools fall into

two categories. The first is the visualization tool for a single

mode, such as EEGVIS (Robbins, 2012), BrainBroswer (Tarek

et al., 2014), Procortex (Gao et al., 2015), Fiberweb (Louis-

Philippe et al., 2017), and webTaDat (Li et al., 2021); the second

category is the visualization tools compatible with multi-modal

data, such as DataView3D (Gouws et al., 2009), the virtual brain

(Marmaduke et al., 2014), iBrainEEG (Rojas et al., 2016), and

Visbrain (Combrisson et al., 2019).

Although much effort has been devoted to providing

visualization tools compatible with multi-modal data, several

areas for future development include making these tools

fully compatible with Jupyter to embed the visual function

into notebooks and iPython for the interactive shell, and

the development of automated algorithms for automatic

annotation and tracking of multi-modal data, in order

to improve the efficiency of data visualization analysis

by researchers.

Visual representation of data mining
results

Visualization of the data mining results may help researchers

to understand their data as well as in the dissemination

and exchange of knowledge. In neuroscience, the neural

network model and brain atlas are important products of data

mining results.

When the data mining result is applied to the neural

network model, it usually appears in the publication in

the form of technical illustrations supplemented with text

descriptions. The description of the neural network model

mainly includes the network structure, connectivity, and

neuron and synapse types. With the increasing complexity

of network and the demand of researchers for spatial

structure information representing network connections, the

traditional geometric box and arrow diagrams can no longer

convey the author’s true intentions clear. For this reason,

in addition to using box and arrow diagrams to provide

network structure information, researchers have proposed the

Connectivity Pattern Tables (CPTs), which are generated by

ConnPlotter to represent the spatial connection information

of the network (Nordlie and Plesser, 2010). In addition,

considering neuroscience is an interdisciplinary field, Neural

Schematics was proposed as a unified formal graphical

representation method for neural network structure, in order

to further eliminate obstacles when researchers from different

domains communicate neural network ideas and concepts

(Matthias and René, 2013).

When the data mining result is the brain atlas, some atlas

viewing tools are developed for specific atlases, for example, the

BrainExplorer for the Allen Brain Map (Sunkin et al., 2012).

However, the close integration of the atlas viewer and the

specific atlas limits its interoperability with other atlas resources.

Therefore, to decouple the atlas viewer from the specific atlas,

there have been some efforts to provide standardized data

exchange formats and visual viewing tools for all publicly

available brain atlas, such as the Human Atlas Working Group

(HAWG) data format allows atlas sharing viewing tools, data

editors, and other atlas creation software. Based on this data

format, researchers presented the Open Anatomy Browser

(OABrower), an experimental anatomy atlas viewer for atlas

interoperability (Michael et al., 2017).

Although the researchers’ visualization work on complex

neural network models and brain atlases validated the usefulness

of Neural Schematics and HAWG concepts, respectively.

However, it is worth noting that models and modeling concepts

are constantly changing. Thus, the concepts built around them

should be constantly changing with the need of different

application domains, in order to ensure these concepts are

universally applicable.

Multi-modal data management

In neuroscience research, more and more multi-scale

data are collected and archived for different research topics.

Researchers have designed a large number of data management

systems, in order to support the storage and retrieval of these

data. The data management system needs to standardize data

formats and resource description schemes for heterogeneous

data, in order to facilitate the knowledge representation and

integration of neuroscience.
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Some data repositories and data
management systems

With the increase in the scale of research projects, some

research laboratory-level data management systems are facing

challenges from new technologies (e.g., data scale, QC, and

complex data analysis) and society (e.g., system maintenance

staff turnover and data sharing needs) (Buckow et al., 2016).

Therefore, instead of reinvesting manpower to develop new

software, a more practical method is to use existing solutions.

These solutions can realize the electronic collection and

management of neurophysiological data, and automatically

upload data to the central repository for archiving.

The central data repository promotes the availability of

neurophysiological data and is one of the important guarantees

for reproducible research (Gorgolewski et al., 2015). The central

data repository can be divided into three main categories. The

first category is the original database for special populations,

such as ADNI (Mueller et al., 2005; Jack et al., 2010), ABIDE

(Martino et al.), NDAR (Dan et al., 2012), and ADHD-200

(Fair et al., 2013). The second category is modality-specific

repositories, such as OpenfMRI 7 (Poldrack et al., 2013),

NITRC 8, NeuroVult (Gorgolewski et al., 2015). The third

category is derived repositories with highly processed data, such

as SumsDB 9 (Dickson et al., 2001), BrainMap 10 (Laird et al.,

2005), Neurosynth 11 (Yarkoni et al., 2011).

For multi-modal data storage and management purposes,

some data management systems are designed. The existing data

management systems can be mainly divided into two categories.

The first category is the research project management system

based on full data hostings, such as COINS 12 (Adam et al.,

2011), NiDB (Book et al., 2013), LORIS 13 (Samir et al., 2011),

XANT 14 (Marcus et al., 2007), Redcap (Harris et al., 2009),

LabIS (Dimiter, 2011) and HiveDB (J-Sebastian et al., 2013).

The second category is the lightweight data management system,

such as odML (Lyuba et al., 2016), Expipe (Lepperd et al., 2020),

Clowdr (Kiar et al., 2019), andNeuroManger (David et al., 2015).

Due to the division of the above-mentioned databases may

overlap in particular research areas, the data management

system further needs to support cross-database joint queries.

Take AD data retrieval as an example, in addition to ADNI

repository specifically for the AD population, OPENFMRI may

also include FMRI resources for the purpose of AD diagnosis.

7 https://openfmri.org/.

8 http://www.nitrc.org.

9 http://sumsdb.wustl.edu/sums/.

10 http://www.brainmap.org.

11 http://www.neurosynth.org.

12 http://coins.mrn.org/.

13 https://www.nitrc.org/projects/loris/.

14 http://www.xnat.org.

In addition, different data management systems have their

own independent characteristics. For example, both Redcap

and XNAT systems can provide an API for automating data

management tasks, LORIS and NiDB can be installed and

managed locally in personal laboratories. Thus, researchers need

to carefully evaluate the research conditions and requirements

when choosing proper data management systems.

Manage metadata and experimental data

Experimental neuroscience collects data with a wide range

of techniques including clinical/behavioral tasks, imaging,

electrophysiology, and genetics. These data cover multiple

spatial and temporal dimensions. Thus, in order to meet

researchers’ management needs for standardized data structures,

the data management process needs to deal with a wide range of

metadata and experimental data formats generated by different

experimental paradigms.

In neuroscience, the experimental data generated various

data formats with different vendor software. For example,

the formats for clinical and behavioral data are CSV, XLSX,

and TXT. For imaging data, the common data format

standardization includes ANALYZE 7.5, DICOM, NIFIT,

GIFTI, ECAT, GE, MGH, HRRT Interfile (Cradduck et al.,

1989), NRRD, Interfile, and MINC (Vincent et al., 2016).

For electrophysiological data, the common data format

standardization includes Opne Ephys (Adrian et al., 2014), NIX

(Adrian et al., 2014). For biological samples, the common data

format standard includes BioSig (Vidaurre et al., 2011), Neo 15,

EDF+ (Kemp and Olivan, 2003), NeuroShare16, SignalML17

(Durka and Ircha, 2004), and Pandora18.

Metadata, which refers to the structure of data, describes

other data. It can be extracted from experimental data and used

as an index to retrieve experimental data. For example, an image

may include metadata that describes the picture size, the color

depth, the image resolution, and when the image was created.

The information is self-evident for subsequent image analysis.

However, metadata is rarely provided in a unified structured,

comprehensive, and machine-readable form, which makes it

difficult to retrieve across multiple datasets. In order to solve

the above problems, researchers proposed an “open metaData

Markup Language” (odML) based on extended key-value pairs

(Jan et al., 2011; Lyuba et al., 2016). It uses odMLtables, which

are normally represented in tabular, to organize and store

complex metadata in a hierarchical structure (Sprenger et al.,

2019). Similar to odML, the NeurodataWithout Borders (NWB)

15 http://neuralensemble.org/neo/.

16 http://neuroshare.org/.

17 www.signalml.org.

18 http://userwww.service.emory.edu/~cgunay/pandora/.
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format is defined for storing neurophysiological data and its

related metadata (Jeek et al., 2020).

Furthermore, in order to better integrate and hierarchically

manage metadata and experimental data in neuroscience,

some open data storage specifications have been continuously

proposed. These specifications include the Brain Imaging

Data Structure (BIDS) for neuroimaging (Gorgolewski

et al., 2016), and Hierarchical Data Format (HDF5) format

(Teeters et al., 2015) as well as Exdir for the general field

(Svenn-Arne et al., 2018).

In consideration of the latest use of multi-modal data,

metadata acts as the indexing role. Due to the flexibility of

the key-value representation of metadata, researchers could

add experiment-related information arbitrarily, thus making

metadata lose its meaning in sharing information across

multiple datasets. Therefore, metadata inspection, through

which researchers can check whether all mandatory fields exist

in the data file and verify the consistency of the information

in these fields, should be seriously considered and needs

further discussion.

Knowledge representation and
integration in neuroinformatics

Researchers with specific research questions usually need to

read up on the subject to retrieve relevant information. This

retrieval process is undoubtedly time-consuming. Therefore,

researchers propose a knowledge base management system for

answering neuroscience questions, which can quickly help to

answer research questions, thereby expediting the exposure of

the still controversial or missing parts of neuroscience.

Neuroscience research has produced a lot of resources

including tools, protocols, and data, to expound on the

mechanism of different neuroscience phenomena. However,

these resources are scattered and difficult to integrate (Bono

and Hunter, 2012). A key cause of this situation is the lack of

a unified semantic framework in neuroscience, which refers to

unifying naming rules and granularity of resource annotations

in specific fields (Gardner et al., 2008). Without the framework,

the terms in the neuroscience field are full of synonyms,

partial correspondences, and even homophones, making

otherwise effective scientific communication unnecessarily

difficult. Take neuroanatomy as an example, based on BAMS

Neuroanatomical Ontology (Bota and Swanson, 2010),

researchers use the projection translation method to achieve the

unified correspondence of terms across different nomenclatures.

Similar works include NeuroLex.org, a semantic wiki-based

website as well as a knowledge management system in the

neuroscience field. It brings neurobiological knowledge into

a framework, in order to allow neuroscientists to review

the concepts of neuroscience, and then link thisknowledge

to data sources and descriptions of important concepts in

neuroscience (Larson and Martone, 2013). Another related

work, ApiNATOMY (Kokash and de Bono, 2021), as a

topological and semantic assembly framework, can help

physiologists to capture the process interactions between

neuroanatomical entities in multi-scale physiological route

modeling, such as the Nephron engages in multiple coalescences

with Blood Vessel leaf-distal lyphs.

Therefore, building a unified semantic framework can

help to create a machine-processable multi-scale neuroscience

knowledge base. Possible future expansion directions include

the development of graphical tools and automated algorithms to

detect the novel topological relationships between neuroscience

terms in the knowledge base, in order to accelerate the

construction process of the neuroscience knowledge base.

Multi-modal data sharing

Data sharing plays an essential role in open scientific

research and contributes to the reproducibility of the research,

the cost performance of the funding, and the small effect

identification. By sharing the research data, the low quality data

features, such as missing value and noise, could be uncovered

with multiple datasets comparison, thus making it possible to

verify the reproducibility. Due to the costly process of data

collection, sharing what we have obtained could increase the

cost-benefit ratio of the funding, which obviates the need for

repetitive data collection for the same research goal. Moreover,

small effects could be easy to be identified by combining the

shared data into large databases.

Although the benefits of data sharing are obvious, the

challenges of preventing researchers to share data are self-

evident, which are the concern over ethical and privacy issues,

the non-standardized data sharing schema, and the low level of

motivation to share from the authors. Specifically, data owners

first worry about whether the content of shared data meets the

ethical and legal requirements for data privacy and security

(Poline et al., 2012; Poldrack et al., 2013; Gorgolewski et al.,

2015). Second, they may find it difficult to integrate the shared

data due to the metadata management of heterogeneous data is

complex and standards are not unified (Garcia and Fourcaud-

Trocme, 2009; Poline et al., 2012; Poldrack et al., 2013; Christian

et al., 2014; Vaccarino et al., 2018). Moreover, the lack of widely

accepted quantitative methods to highlight the contribution

of shared data also restricts the motivation of data owners to

participate in data sharing (Poline et al., 2012; Poldrack et al.,

2013; Honor et al., 2016).

In order to overcome the aforementioned challenges,

researchers and organizations have done abundant work in data

security and privacy, sharing standards and schema as well as

highlighting the contribution of the data owner.
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Data security and privacy

Data is usually collected in the context of solving specific

scientific research problems. However, due to some public

data privacy violations, the subjects’ privacy is under attack.

For example, researchers can combine DNA sequences with

publicly available, recreational genealogy databases to re-identify

subjects (Gymrek et al., 2013), which makes subjects worried

about their identifiable health information being shared with

unknown parties and used for an unauthorized purpose,

such as advertising research or insurance (Wardlaw et al.,

2011). Therefore, under the premise of complying with the

ethical requirements of data privacy, some emerging technical

means should also be adopted to strengthen the protection of

data security.

Obtain an informed consent document from the subject is

the premise of data sharing, which is the legal requirement of two

international initiatives, namely the Health Information Privacy

and Accountability Act (HIPAA) and the Protected Health

Information (PHI). Theoretically, once we get the informed

consent document from the subject, we will have the right to

publish data. Practically, the Institutional/Ethical Review Boards

(IRB/ERB) rarely grant researchers such right under the context

of extensive data sharing in informed consent (Poline et al.,

2012; Dylan et al., 2014). Therefore, to address the dilemma

between data sharing and data privacy, researchers now could

conduct data sharing by setting the authorized access rights

of the data, such as Open Database Commons Public Domain

and Dedication License (PDDL), Open Database Commons

Attribution License (ODC-BY) and custom data license method

(Gorgolewski et al., 2015; Makoto et al., 2016).

Although we get permission from the subject that we can

publicize the data under a certain license, some data processing

techniques should be applied to these data to ensure data

security and privacy, such as data desensitization, data leakage

prevention, and sharing highly processed derived data. To be

specific, neuroimaging data should be de-identified by using

customized anonymous tools (Christian et al., 2014; Vaccarino

et al., 2018), such as mri_deface (Bischoff-Grethe et al., 2007),

a deidentification tool for structural brain magnetic resonance

images. Network and database security environments should be

designed to reduce the risk of data privacy leakage, especially

when allowing for querying archived data (Dylan et al., 2014).

In addition, researchers have also actively advocated the sharing

of highly processed derived data (Poldrack et al., 2013; Sarwate

et al., 2014), such as SumsDB (Dickson et al., 2001; Van Essen

et al., 2003), BrainMap (Laird et al., 2005), Neurosynth (Yarkoni

et al., 2011) and BrainSpell 19 have shown that using differential

privacy strategies uin neuroscience research is feasible (Sarwate

et al., 2014; Peng et al., 2021).

19 http://brainspell.org.

Thus, in order to alleviate the concern about the

privacy and security of data sharing, standards for

different data modalities’ sharing, for example, what

content and to what extent should be anonymized as

well as how to anonymize it, should be formulated.

On this basis, the IRB/ERB would be able to provide

guidelines for preparing ethics applications for data sharing,

which could help the researchers to share data as freely

as possible.

Data sharing standards and schemes

Data collected by different equipment consist of metadata

(descriptive information) and experimental data, among

which there are multiple modalities, such as clinical and

behavioral data, neuroimaging data, electrophysiological data,

and genetic data (Vaccarino et al., 2018). However, due to

the lack of a standard for data management, the metadata,

and heterogeneous experimental data are organized and

managed based on the privatization of different data platforms.

As a result, data needs to be frequently customized and

modified when integrating data, which in turn limits the

communication between heterogeneous databases (Poline

et al., 2012; Poldrack et al., 2013). Therefore, standardized data

sharing principles, and a unified data description are urgently

needed to meet the core requirement of interoperability in

data integration.

Data sharing principles such as the NeuroImaging Data

Model (NIDM) (Keator et al., 2013), the Cognitive Atlas

Ontology (Poldrack et al., 2011), and OntoNeuroLOG (Gibaud

et al., 2012), are all for special modal data annotation, have

been proposed in order to win the consensus among researchers,

publishers, and funders. Above all, a high-level guidelines for

sharing standardized data, the FAIRData Principles (Findability,

Accessibility, Interoperability, and Reusability) have been

released (Wilkinson et al., 2016), which have become the current

international standard for scientific data management. Under

the guidance of principles, existing studies have made progress

in establishing a standard data description schema (data models,

ontologies), such as XCEDE (Gadde et al., 2012) and CDISC

(Souza et al., 2007).

Researchers have realized that the lack of data management

standards is a hindering factor that can’t be ignored in the data

sharing stage, and carried out some work to establish unified

data management standards. However, it is worth noting that

the metadata for a specific research question still needs to be

customized according to its research goals (Poldrack et al.,

2013). Thus, how to obtain the balance between generalization

and specifications of the schemes or to promote the nowadays

models in order to be compatible with both occasions needs to

be further studied.
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Highlight data sources and contributions

Even if we address the aforementioned two challenges, the

lack of motivation from researchers to share data is not ignorable

(Poline et al., 2012; Christian et al., 2014). It is undeniable

that the research data is considered worthy of formal citation

(MOONEY and Hailey, 2011), but what makes the low-level

motivation is the lack of quantitative measurement of the impact

of shared data which is a proxy of the contribution of the data

owner. Therefore, while data sharing enhances the usability and

discoverability of the scientific research community, without

emphasizing the influence of shared data, it’s hard to attract

data owners to share data only by means of devoting themselves

(Honor et al., 2016).

H-index is increasingly used as an important indicator

to measure scientific research contribution and the influence

of an individual. Similarly, it could be utilized to denote

the influence of the dataset. For example, the ADNI’s user

agreement requires the ADNI consortium to be listed on all

related publication’s author lists, which may not meet the

standards of authorship of scientific publications (Rohlfing

and Poline, 2012). For this reason, some organizations have

begun to develop data citation standards or guidelines,

such as the Research Data Alliance (RDA) and the Joint

Declaration of Data Citation Principles (JDDCP) (Starr

et al., 2015). These data citation standards or guidelines

aim at quantitatively measuring the impact of shared data,

thus proposing a series of methods for identifying and

citing data.

Researchers have investigated a variety of data identification

and citation schemes, such as RRID (Bandrowski et al.,

2016), Thomson Reuters PermID 20, PURL 21, Handles 22,

and determined that the Digital Object Identifier (DOI)
23 is the most widely accepted and widely supported

data identification and citation method. The Neuroscience

Information Framework (NIF) assigns DOI to the resources and

tools used in research, which are then included in publications

and subsequently indexed by Google Scholar and PubMed

(Gorgolewski et al., 2015).

Though the benefit of utilizing DOI in quantitatively

measuring the impact of the dataset is obvious, we still need

to pay attention to the existence of a single dataset appearing

in multiple data repositories for avoiding the duplication of

DOI. Moreover, the monitoring of improper identifiers and the

standard of the landing pages of DOI should be taken into

consideration as well.

20 https://permid.org/.

21 http://handle.net/index.html.

22 http://handle.net/index.html.

23 https://www.doi.org/.

Conclusion

Faced with floods of information, such as that stored

in databases targeting patients with an autism spectrum

disorder or Alzheimer’s disease, researchers will waste plenty

of time before obtaining answers to particular questions in

cohort studies. Obviously, building a neuroscience knowledge

base is believed to help resolve this problem. Thus, we

firstly propose a knowledge base framework that consists of

projects/organizations, multi-modal databases, and toolkits

related to cohort study. Then, we take the information objects

about the projects/organizations, multi-modal databases,

and toolkits in the Frontiers in Neuroinformatics journal as

a sample input, forming the knowledge base. Meanwhile,

we develop an open source complementary query tool,

PDT_fninf (https://github.com/Romantic-Pumpkin/PDT_

fninf), which allows interested researchers to quickly retrieve

information objects from the knowledge base in question.

Finally, based on the collection of information objects at

different stages in the data life cycle, we analyze its research

trends and draw key lessons that facilitate the discovery of

new knowledge.

Although we have preliminarily constructed a knowledge

base for cohort studies which has brought about the desired

effect, the information objects in the knowledge base are

incomplete to some extent for we merely use Frontiers in

Neuroinformatics journal as input data. In our future work,

therefore, we will improve the knowledge base in two ways:

Firstly, we advocate the use of the “5W-4M-6P” framework

in describing different information objects in the knowledge

base. Meanwhile, we hope that more researchers will transfer

the framework to other journals such as NeuroImage,

Neuroinformatics, Human brain mapping, etc., and contribute

their findings to the open source knowledge community.

Secondly, we will employ topic mining based on natural

language processing to expand knowledge base information

objects. With continuous improvement, the knowledge base will

provide more experience, knowledge, and innovative ideas for

cohort studies, and then help yield more revealing insights based

on the multi-modal databases.
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