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Abstract

Users of bilateral cochlear implants (CIs) show above-chance performance in localizing the source of a sound in the azimuthal

(horizontal) plane; although localization errors are far worse than for normal-hearing listeners, they are considerably better

than for CI listeners with only one implant. In most previous studies, subjects had access to interaural level differences and to

interaural time differences conveyed in the temporal envelope. Here, we present a binaural model that predicts the azimuthal

direction of sound arrival from a two-channel input signal as it is received at the left and right CI processor. The model

includes a replication of a clinical speech-coding strategy, a model of the electrode-nerve interface and binaural brainstem

neurons, and three different prediction stages that are trained to map the neural response rate to an azimuthal angle. The

model is trained and tested with various noise and speech stimuli created by means of virtual acoustics. Localization error

patterns of the model match experimental data and are explicable largely in terms of the nonmonotonic relationship between

interaural level difference and azimuthal angle.
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Introduction

Normal-hearing (NH) subjects can localize the source of
a sound with high acuity across a wide range of azi-
muthal (horizontal) locations. The highest precision
that can be achieved for azimuthal differences in the
frontal field—the minimum audible angle—is approxi-
mately 1� (e.g., Mills, 1958). The explanation for this
precision has been attributed to exquisite sensitivity to
interaural time differences (ITDs) conveyed in the tem-
poral fine structure of low-frequency sounds, particularly
in the frequency range of 500 to 800Hz (Wightman &
Kistler, 1992). Cochlear implant (CI) listeners are gener-
ally unable to exploit this cue, even with identical CI
processors in both ears. One of the reasons is that the
ITD is often not preserved in the electrical pulse timing.
Another reason is that most CI listeners are insensitive to
ITDs if the electrical pulse trains that convey ITDs are
presented at a rate greater than 500 pulses per second
(pps; e.g., Majdak, Laback, & Baumgartner, 2006). CI
listeners instead rely on other localization cues that are
generally available to both NH and bilaterally implanted
listeners, such as ITDs conveyed in the temporal

envelope of modulated sounds (envelope ITDs) and
interaural level differences (ILDs). Spectral cues gener-
ated by the interaction of the sound with the head and
outer ears also contribute to some degree to localization
performance in both the horizontal and vertical planes
and are available even in monaural listening. The extent
to which CI users can exploit these cues, however, is
further limited by the microphone position, the CI pro-
cessing, and the spread of excitation. Together these
aspects result in the very limited localization perform-
ance of unilateral CI listeners (Kerber & Seeber, 2012).

Localization performance is typically assessed with
broadband noise (e.g., Kerber & Seeber, 2012) or
speech stimuli (e.g., Potts, Skinner, Litovsky, Strube, &
Kuk, 2009) presented via loudspeakers in free-field
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conditions to provide a wide range of localization cues.
The localization performance of different listener groups
can then be directly inferred from the availability and
absence of the localization cues. Compared with unilat-
eral CIs, the use of bilateral CIs greatly improves the
accuracy with which sounds can be localized in the azi-
muthal plane (e.g., Litovsky, Parkinson, & Arcaroli,
2009; Nopp, Schleich, & D’haese, 2004), which can be
attributed to bilateral CI users exploiting the ILD, and
potentially the envelope ITD, in their judgments
(Laback, Pok, Baumgartner, Deutsch, & Schmid, 2004;
Seeber & Fastl, 2008). Nevertheless, most studies reveal a
substantial gap in localization performance between NH
listeners and users of bilateral CIs (Grantham, Ashmead,
Ricketts, Labadie, & Haynes, 2007; Litovsky et al.,
2012), likely resulting from of the lack of fine-structure
ITD information, as well as the independent operation of
left and right CI devices, left and right differences in the
processor settings, and the electrode-nerve interfaces.
Kerber and Seeber (2012) tested the localization ability
of NH listeners, bilateral CI users, and unilateral CI
users in the same task. Their results revealed a median
root mean square (RMS) localization error of about 5�

for NH listeners, 30� for bilateral CI listeners, and 47�

for the two best performing unilateral CI listeners, whilst
two other unilateral listeners were unable even to dis-
criminate between left and right. Távora-Vieira, De
Ceulaer, Govaerts, and Rajan (2015) further showed
that CI subjects suffering from unilateral deafness
showed significant improvements in localization abilities
when the CI was switched on (mean RMS error¼ 22.8�)
compared with when it was not (mean RMS
error¼ 48.9�), despite the very different sound stimula-
tion provided to each ear.

To gain a deeper insight into the origin of the local-
ization errors made by bilateral CI subjects, Jones, Kan,
and Litovsky (2014) compared their performance with
that of NH listeners listening through a vocoder simula-
tion of virtual acoustic sounds. They found comparable
performance of about 30� RMS error and a very similar
pattern of systematic errors. The comparison of CI data
with NH data using vocoder simulations has proven
beneficial in the past because the simulations enable test-
ing of two almost identical ears with identical prepro-
cessing and also show a low intersubject variability
(e.g., Goupell & Litovsky, 2014). Therefore, the compar-
able performances between vocoded NH and CI subjects
reported by Jones et al. suggest that the absence of fine-
structure ITD is the most limiting performance factor
with differences between left and right CI playing a less
critical role.

Of the remaining two interaural cues available to typ-
ical bilateral CI users, namely envelope ITDs and ILDs,
the latter is the more salient and dominant cue (Laback
et al., 2004; Seeber & Fastl, 2008). Using their clinical

speech processors, subjects could discriminate acoustic
ILDs of approximately 2 dB, only about twice as high
as NH listeners (Laback et al., 2004).

Despite ILDs being the most important cue for sound
source localization with bilateral CIs, little information
exists as to how the azimuthal direction of sound arrival
translates into different electrode activations, different
auditory nerve (AN) response rates, and, ultimately, in
listeners being able to perceive the direction of sound
arrival. Computer models complemented by experimen-
tal data are expected to reveal this, by dissecting the
specific contribution of each stage of the long processing
chain. For example, some monaural models combine a
speech-coding strategy with a model of the electrode-
nerve interface (e.g., Imennov & Rubinstein, 2009;
Stadler & Leijon, 2009). Such models are useful in clar-
ifying whether specific differences between electric
and acoustic hearing are caused by the speech-coding
strategy or rather by the electrode-nerve interface.
To understand spatial hearing with CIs, even more pro-
cessing stages are required, namely the filtering of the
sound by the head and torso, typically referred to as
the direction-dependent head-related transfer function
(HRTF) as a front end and the binaural interaction as
additional back end.

To date, such direction-estimating models exist only
for NH listeners (e.g., Dietz, Ewert, & Hohmann, 2011;
Faller & Merimaa, 2004). They have found various
applications in wave field synthesis (e.g., Wierstorf,
Raake, & Spors, 2013), computational auditory scene
analysis (Spille, Meyer, Dietz, & Hohmann, 2013b;
Woodruff & Wang, 2013), and automatic speech recog-
nition (e.g., Spille, Dietz, Hohmann, & Meyer, 2013a).
Direction-estimating models for bilateral CI listeners
could further be applied to CI algorithm development
or individualized performance prediction. However,
existing binaural models of CI listening (e.g., Chung,
Delgutte, & Colburn, 2014; Colburn, Chung, Zhou, &
Brughera, 2009; Nicoletti, Wirtz, & Hemmert, 2013)
have mostly been concerned with the response of bin-
aural neurons in the brainstem to electrical stimulation.
So far, no published CI model combines all necessary
processing stages required to estimate the direction of
sound arrival based on simulated neural responses.

Here, we present a processing chain for modeling the
spatial hearing of bilateral CI listeners by combining sev-
eral existing models. The processing chain includes (a)
the sound interacting with the HRTF, (b) the CI speech
processor, (c) the electrode-nerve interface, (d) a model
of the AN responses, (e) a neural stage of binaural pro-
cessing, and (f) three models of a mapping stage, which
estimate an azimuthal direction of the sound source
based on the neural left and right input. Investigating
the input–output characteristics of the key stages and
the nonlinear interaction of some stages will allow for
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a detailed investigation of the final prediction and of any
systematic error. The model-based estimates will also be
compared against published data and be used to test
hypotheses made in the previously described studies. In
particular, the dominance of the ILD and the detrimen-
tal effect of the level-dependent compression will be
investigated.

Methods

The model was implemented in MATLAB. The code is
publicly available.1

After introducing the stimuli used, the following sub-
sections will follow the processing chain of the stimuli by
the model stages as illustrated in Figure 1.

Stimuli and HRTF Filtering

Four different stimuli were used to test the model:

1. Stationary speech-shaped noise (SSN) generated
from 10 male and 10 female adult German speakers,
uttering sentences of the Oldenburg Sentence Test
(OLSA) by the procedure described in Wagener,
Kühnel, and Kollmeier (1999): OLSA noise
OL-noise (SSN),

2. Pink noise (PN), that is, stationary noise with a 1/f
power spectrum,

3. White Gaussian noise (WN), and
4. A male frozen speech segment (Sp) taken from the

OLSA consisting of the phone [vaI
v

] from the German
word weiß.

Dichotic, free-field stimuli were produced from these
four stimuli using a previously generated database of
head-related impulse responses (Kayser et al., 2009).
The head-related impulse responses were taken from
the frontal out of the three behind-the-ear microphones
mounted on an artificial human head and torso at a vir-
tual source distance of 3m. The free-field stimuli were
then generated at 5� intervals for the azimuthal angles
between 0� and 90�, generating 19 virtual sources for
each stimulus.

All experimental stimuli were 200ms in duration and
adjusted to have 10-ms rise and fall times. Model experi-
ments were performed at three different stimulus levels of
45, 55, and 65 dB sound pressure level (SPL) for the
frontal source direction. When the signal was presented
from a nonfrontal direction, the same calibration was
used, and the level would deviate from the frontal level.

In addition to these four main stimuli, two more nat-
ural stimuli were used for additional testing. One was
10 s of continuous male and female speech, obtained
from the OLSA, to examine predictive ability in the
case of dynamic level fluctuations. The second was
SSN combined with a 360� white noise interferer at
5 dB signal-to-interferer ratio to examine the effects of
interfering sound on the predictive ability of the model.

CI Processing

The transformation from sound to electrodogram was
performed using the advanced combination encoder
(ACE) strategy implemented in the Cochlear Nucleus
24 implant (Laneau, 2005). The acoustic broadband
signal was sampled at 16 kHz and filtered into 22 fre-
quency bands using a 128-point FFT. The frequency
bands had center frequencies linearly spaced below
1000Hz and logarithmically spaced above 1000Hz. As
part of the ACE processing strategy, an n-of-m strategy
was implemented by selecting the 8 most energetic of the
22 channels in each 8-ms time frame. Out of the eight
selected bands, the most basal band was stimulated first
during each time frame, followed sequentially by the next
one. Frequency-independent compression was then per-
formed on each channel by applying a loudness growth
function with a steepness controlled by the parameter
ac¼ 415.96 (see Swanson, 2008 for further details).
Threshold levels of TSPL¼ 25 dB SPL and maximum
levels MSPL¼ 65 dB SPL were set, and the resulting
levels were then mapped to the CI electrode threshold
and saturation levels that were specified in clinical units
(CL) of T¼ 100CL and M¼ 200CL, respectively.
These values were then mapped onto output current
values, I in mA, by using the device-specific mapping
function, I ¼ 10:175CL�100. Finally, biphasic pulses with

Figure 1. Flow chart of the implemented processing chain. Each stage is described in detail in the Methods section. The localization

models operate either on the AN output or on the output of the binaural interaction stage (see last part of the Methods section for

details). The output of the binaural interaction stage still has two channels, representing left and right hemisphere brainstem neurons.

AN¼ auditory nerve; HRTF¼ head-related transfer function; CI¼ cochlear implant.
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25-ms phase duration (cathodic first) and an 8-ms inter-
phase gap were generated in a monopolar stimulation
mode and sent to the virtual CI at a rate of 900 pps.

Electrode-Nerve Interface

The spread of current within the cochlea and the
response of the population of AN fibers was modeled
as in Fredelake and Hohmann (2012). The model
assumed an unwound cochlea with a length of 35mm.
The 22 electrodes were equally distributed between 8.125
and 23.875mm (measured from the apex) at a spacing of
0.75mm, simulating a Cochlear Nucleus 24 electrode
array. The electrode locations inside this virtual cochlea
corresponded to acoustic frequencies between 363 and
4332Hz according to the frequency-to-place function
of Greenwood (1990). The spread of current in the coch-
lea was modeled by a double-sided, one-dimensional,
exponentially decaying spatial-spread function con-
trolled with the parameter �¼ 9mm. Along the virtual
cochlea, 500AN fibers were equally distributed. To
simulate individual AN fiber stimulation to electric
pulses, the electric pulse trains were processed by a deter-
ministic leaky integrate-and-fire model (Gerstner &
Kistler, 2002) extended with a zero-mean Gaussian
noise source, to simulate stochastic behavior of the AN
fibers. The model processed electric pulse trains with a
stimulus-level-dependent current amplitude across elec-
trodes as input. The model output was a vector of AN
spike times over the duration of the acoustic stimulus for
each AN fiber in the population.

AN Frequency Bands

Models of binaural processing assume convergent input
from a certain number of AN fibers. The model
described in the binaural interaction stage used 20
AN inputs from either side (Wang & Colburn, 2012)
so that sample groups of 20 fibers along the model
cochlea were combined for further analysis of the AN
responses. Instead of presenting all 25 possible AN
groups from the 500 fibers, only five sample groups
were selected, centered at 10, 13, 16, 19, and 22mm
from the apex, corresponding to 5 segments, each cov-
ering 2 electrodes in the range of electrodes 3 to 20. The
five mean center frequencies of the five electrode pairs
were 563, 1063, 1813, 3188, and 5500Hz. To compute
the corresponding acoustic free-field ILDs, left and
right audio channels were filtered using equivalent rect-
angular bandwidth-wide fourth-order gammatone filters
(Hohmann, 2002) with the same five center frequencies
mentioned earlier. The RMS power was computed in
each frequency band and the difference between the
right and left channels produced the final frequency-
dependent ILD.

Binaural Interaction Stage

A Hodgkin–Huxley-type model was used to model bin-
aural interaction at the level of the brainstem (Wang &
Colburn, 2012). The single-compartment model con-
tained a sodium channel, a high-threshold potassium
channel, and a passive leak channel. All channel and
membrane parameters were chosen in the original
study to be within the plausible range for the lateral
superior olive (LSO; see Wang & Colburn, 2012 for
more details). Each binaural model neuron received 20
excitatory AN inputs from the ipsilateral side and 20
inhibitory inputs from the contralateral side that corres-
ponded to the AN frequency bands described earlier.
When using the electric stimulation front end, it was
found that the output responses of the original model
parameters did not generate ILD- or ITD-dependent
output over the tested range. Therefore, as in Wang,
Devore, Delgutte, and Colburn (2014), the excitatory
and inhibitory conductances of the LSO model were
reduced compared with the Wang and Colburn (2012)
conductances. The final chosen values for the current
study were 1.2 and 1.0 nS, respectively, which were still
within the physiologically plausible range.

Localization Models

The stages presented so far modeled the neural response
rates at the AN and LSO stages in the five AN frequency
bands. The neural response rates are expected to change
depending on the source location. In this subsection,
three different localization models are proposed to map
the response rate differences to a predicted source loca-
tion. The methods, namely linear rate-level localization,
linear response difference localization, and maximum-
likelihood localization, were implemented on the inter-
aural AN response differences or on the respective LSO
response differences. Each model differs from the others
in the choice of input–output relations that were used to
train the model.

Linear rate-level localization model. This model operates only
on AN responses, not on LSO responses. Compared with
the other two model types that will be introduced, this
model allows for a more functional understanding of the
input–output relations of each processing stage shown in
Figure 1, thus enabling the user to pinpoint the origin of
model predictions to the influence of acoustic ILDs, the
influence of speech coding, or influences at the electrode-
nerve interface. The model assumes a priori claims that
(1) ILD can be linearly mapped to azimuthal direction of
sound arrival, (2) monaural AN response rate can be
linearly mapped to stimulus level, and (3) CI subjects’
percept of azimuthal localization can be linearly mapped
to the interaural AN response rate difference
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ðRright � RleftÞn in each frequency band, where n denotes
the frequency band index. All three claims are fairly
crude assumptions that are typically not fulfilled. For
example, the ILD is not even monotonic as a function
of azimuth (e.g., Macaulay, Hartmann, & Rakerd, 2010).
Nevertheless, it will be demonstrated that Claims (1)
and (3) are very accurate at central angles between
�45� and þ45�.

Thirty instances of 200-ms SSN were HRTF filtered
and the virtual source at 0� was presented monaurally.
Monaural rate-level curves were constructed from the
mean AN response rates within each of the AN fre-
quency bands, and, based on Claim (2), a linear regres-
sion was performed on this data between the SPL of 35
and 70 dB. The slopes bn (Figure 2, bottom left panel) of
these linear approximations represent the response rate
change per dB for a given frequency band n.

For training the model to the frequency-dependent
mapping of ILD to azimuth, the SSNs were presented
(in virtual acoustic space) from each of the azimuthal
angles. A further linear regression (based on Claims 1
and 3) generated a slope mn that linearly mapped ILD
to an azimuthal angle for each of the AN frequency
bands (Figure 2, top left panel). As the model is inher-
ently left–right symmetric, the analysis can be limited to
sounds originating from the right hemisphere without
loss of generality. The only consequence of the right
hemisphere restriction together with the symmetry
assumption is that the linear regression has to be
forced to be point-symmetric as well. This is achieved

by setting the y axis intercept to zero and fitting only
the slope.

In each frequency band n, the predicted direction of
sound arrival �n was then determined by the interaural
AN response rate differences divided by the products of
the rate-level slope bn and the ILD per degree azimuth
slope mn (see Figure 2):

�n ¼
Rright � Rleft

� �
n

bn �mn

This functional relationship can be isolated again into
the two stages used for training: Dividing the AN-rate
difference by the rate-level slope bn determines the pre-
dicted ILD and dividing this quotient by mn determines
the predicted azimuth.

Two different model calibrations were generated by
altering the azimuthal angle range over which the
linear regression was computed: Slope m45 attempted
to optimize performance in the central linear segment
of the ILD to azimuthal angle function (Figure 2). The
shallower slope m90 attempted to minimize the RMS
error over the entire range.

To produce a final prediction from the five AN fre-
quency bands, a rate-weighted average was then derived:

�weighted average ¼

P
n �n Rright þ Rleft

� �
nP

n Rright þ Rleft

� �
n

Linear response difference localization model. This model
assumes the a priori claim that interaural response rate
differences can be linearly mapped to CI subjects’ azi-
muthal localization percept. This model operates on the
LSO responses; however, for a more direct comparison
with the rate-level model, a second version of this model
was used on the AN responses. In contrast to the linear
rate-level model described earlier, the internal processing
stages here are considered as a black box so that the
model could be trained directly with the interaural
response rate difference over azimuth functions for
each frequency band. Because both the rate-level and
the ILD-over-azimuth function are nonlinear, the
single-stage linear calibration of AN-rate difference
over azimuth is not necessarily the same as the combin-
ation of the two linear mappings performed in the previ-
ously described two-stage model. Presumably, this
one-stage mapping is more accurate and at least more
direct; however, the disadvantage over the two-stage
rate-level calibration is its black-box approach. While
good for applications, it does not allow the scientist to
analyze the contribution of each processing stage.
Training was performed with 30 instances of 55 dB
SSN-noise convolved with the HRTF at each of the 19
sound source directions. Response rate differences were

Figure 2. Schematics of the localization models via linear fitting.

(Left): two-stage rate-level localization model. The first stage maps

azimuthal angle to ILD, and the second stage maps level to spike

rate. These two mappings produce a final mapping of AN response

rate difference to azimuthal angle. (Right): response rate difference

localization model. This model is used on the interaural response

difference for either the AN or the LSO output.

AN¼ auditory nerve; ILD¼ interaural level difference;

SPL¼ sound pressure level; LSO¼ lateral superior olive.
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taken from 20 contralateral and 20 ipsilateral AN fibers.
The output of these 40 fibers was then further pro-
cessed by a binaural interaction stage that produced a
contralateral–ipsilateral difference of one left and one
right hemisphere LSO neuron per AN frequency band.
Linear regressions on the spike rate data produced slopes
that map azimuthal angle to spike rate differences. As in
the previous AN-based localization model, the linear
mapping coefficient �n was then derived by dividing the
response rate differences between the two model LSO
neurons by the slopes of the linear regression (Figure 2
and Table 1). Finally, a weighted average across fre-
quency bands was computed using the same method
described earlier.

Maximum-likelihood estimation. This model assumes that
localization can be modeled as maximizing the likelihood
of a set of frequency channels over all possible azimuthal
angle percepts, similar to the approach of Day and
Delgutte (2013). A prediction was produced by perform-
ing a maximum-likelihood estimation (MLE) over all
angles. This method exploits the azimuth-specific ILD
patterns across frequency channels that are also mirrored
by LSO neurons (Tollin & Yin, 2002). The MLE method
includes, but is not limited to, a possible explicit place
coding of ILD that will be detailed in the HRTF Results
and Discussion section: Depending on which specific fre-
quency channel is closest to its maximum ILD, the pre-
diction model derives the corresponding azimuth.
Hypothetically, this place-coding strategy is suitable at
lateral angles, whereas, for more central angles, the prob-
abilistic calibration can effectively operate in terms of a
rate code, similar to the other calibrations. The model
was trained with interaural AN response rate differences.
As this prediction stage is more suited to training with
naturally fluctuating signals, rather than long-term aver-
ages, 10 s of 55 dB SPL continuous male and female

speech originating from each of the 19 possible directions
was used as training material. Sample means, and cor-
responding standard deviations, were computed on
response difference data collected in 200-ms windows
for each of the 5 frequency bands resulting in 50� 19
training events. A multivariate Gaussian distribution of
response rate differences was then assumed at each angle.
In contrast to the other models, this model is restricted to
the right hemisphere by the training. However, this limi-
tation can easily be overcome.

In the testing phase, only the five rate differences were
supplied to the multivariate probability density function
and the angle with the maximum likelihood was deter-
mined. This calibration method offers the advantage
over the other two calibrations in that it can potentially
cope with the nonmonotonic ILD because the azimuth
dependence of the ILD is frequency specific, and each
angle has its unique combination of ILDs. Because the
training material and nature of the calibration was fun-
damentally different than that of the other linear meth-
ods, the maximum-likelihood results were not included
in the statistical analysis of the other calibrations.

Results and Discussion

Influence of the HRTF

The upper torso and the head have a considerable spec-
tral filtering effect that depends critically on the direction
of sound arrival, especially for wavelengths shorter than
head diameter (f> 1.5 kHz) (Figure 3). This is manifest
as the HRTF (see, e.g., Kayser et al., 2009). However,
even for sounds arriving from straight ahead, HRTF
filtering results in a strong spectral coloration (Figure 4).

Whilst the difference in HRTFs between the ears for
lateral sources is well known, and forms the basis of
numerous investigations of spatial hearing (e.g., Strutt,

Table 1. Slopes of Linear Regression Performed for Each Stage of Localization Models Obtained With 55 dB Speech-Shaped

Noise.

Localization model

AN frequency bands

563 Hz 1063 Hz 1813 Hz 3188 Hz 5500 Hz

Rate-level

AN (bn in R/dB) 16.56 14.75 15.06 13.23 13.30

-m45 (mn in dB/�) 0.10 0.19 0.17 0.30 0.41

-m90 (mn in dB/�) 0.06 0.10 0.12 0.20 0.30

Response rate difference

AN m45 (mn�R/�) 1.36 3.17 3.15 3.86 4.69

AN m90 (mn�R/�) 0.85 1.54 1.85 2.86 3.14

LSO m45 (mn�R/�) 1.67 2.53 2.26 2.97 3.00

LSO m90 (mn�R/�) 1.00 1.24 1.42 2.18 2.07

Note. AN¼ auditory nerve; LSO¼ lateral superior olive.
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1907), the spectral coloration is typically not considered
in studies that are not explicitly concerned with direc-
tional hearing. The importance of HRTFs, even for
investigations into dimensions of sound processing
other than localization, however, is apparent in the
transfer function of the HRTF filtering to white noise
at 0� azimuth and elevation (Figure 4), where a signifi-
cant amplification of �5 dB SPL is evident in the 2 to
4 kHz range. A collateral benefit of this filtering is an
enhancement of the higher frequency formants (1.7,
3.4, 4.3 kHz) that are captured in the corresponding
AN frequency bands. The HRTF-filtered white noise
also shows a high-pass characteristic resulting in
approximate 10 dB attenuation at 200Hz.

In contrast to the lack of HRTF consideration in
monaural studies, many investigations have analyzed
the azimuth dependence of the HRTF (e.g., Duda &
Martens, 1998). In the current study, compared with a
reference at 0� azimuth, ipsilateral signal levels increased
slightly up to azimuthal angles of approximately 45� and
flattened beyond that (Figure 3, top). This effect was
relatively independent of sound frequency, with the
exception of the 3188-Hz band, which showed destruc-
tive interference effects (due to the reflections from the
shoulder) for angles beyond 45�. Conversely, contralat-
eral levels were strongly dependent on azimuth over the
entire range of angles. This effect was highly frequency
dependent, with larger negative slopes corresponding to
higher frequencies. This frequency dependence is well
established and indeed was highlighted in early descrip-
tions of the duplex theory of sound localization (Strutt,
1907). Low-frequency sounds have a longer wavelength

than the diameter of the head and, as a result, are less
subject to attenuation at locations contralateral to the
source. This results in a frequency-dependent mapping
of interaural difference to azimuth, expressed by the
slopes mn (see Table 1).

Contralateral levels dropped with increasing azi-
muthal angle up to a frequency-dependent minimum,
after which they began to rise again. This increase
toward 90� has been analytically described with a spher-
ical head model (e.g., Duda & Martens, 1998): Close to
�90�, the pathways around the head are similarly long
and the waves interfere constructively at the contralateral
ear. At midfrequencies (e.g., 1 kHz), this effect is already
apparent at �60�, but at higher frequencies with shorter
wavelength, the constructive interference began to appear
only at more lateral angles (see Figure 3).

The free-field dependence of ILD on azimuthal angle
was dominated by the contralateral effects (Figure 3,
bottom). Due to the nonmonotonic behavior, it is not
possible to generate a linear mapping of ILD to azimuth
without including systematic errors. It is possible that the
brain potentially learns this pattern of ambiguity and
employs some form of explicit code to map this region,
such that the dominant frequency of the neuron with the
peak ILD determines the azimuth. The proposed MLE
localization model can potentially account for this pos-
sibility, whereas the other localization models are limited
by their linear approximations.

Influence of the CI Processing

One aspect that illustrates the interaction of HRTF influ-
ences and CI processing is the spectral filtering of the
HRTF, which was shown to have relevance beyond
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rectangles represent the AN frequency bands used in the local-

ization models. The respective color corresponds to the color

code introduced in Figure 3.

HRTF¼ head-related transfer function; AN¼ auditory nerve.
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azimuthal localization. These spectral filtering properties
of the head, torso, and outer ear are typically only inves-
tigated when studying localization in the sagittal plane
(e.g., Majdak, Goupell, & Laback, 2011). Their particu-
lar relevance for electric hearing can be seen in Figure 5,
when comparing the monaural AN model output with
and without HRTF filtering from 0� azimuth. For
instance, the 1/f (pink) noise had the same energy in
each octave band and elicited similar activations in all
five frequency channels without HRTF preprocessing
but possessed a very frequency-dependent activation
after 0� HRTF filtering (Figure 5, column 3).
Interestingly, this was precisely opposite to the case
when SSN is assessed; here, the HRTF-filtered signal
yielded the most homogeneous electrode activation
(Figure 5, column 1). This illustrates just how well CI
processing is tailored to match free-field HRTF filtering
and the average speech spectrum. It is, therefore, import-
ant to include HRTF filtering for the purpose of model-
ing realistic response patterns for broadband stimuli
even in monaural studies. CI subjects are also exposed
to a similar HRTF filtering when they listen using their
behind-the-ear microphones.

To map the large dynamic range of input signals—
primarily of speech—to the low dynamic range of CI
listeners, a relatively strong compression to the input
signal is applied, which generates a nonlinear relation-
ship between input level in dB and output current
(Figure 5). This nonlinearity leads to a level-dependent

transformation from ILD to interaural current differ-
ences (ICD). In the model, this ultimately resulted in
level-dependent localization. At low input levels, where
the compression was weak, a given ILD resulted in a
larger ICD than at high input levels. This model predic-
tion calls for a subjective evaluation of whether CI sub-
jects show level-dependent localization. Level-dependent
lateralization has been demonstrated with NH subjects
with conflicting ITD information (Dietz, Ewert, &
Hohmann, 2009) and bimodal listeners with nonmatched
loudness growth (Francart & MacDermott, 2012).
However, we are aware of only one bilateral CI subject
whose localization abilities were tested at different levels
(60 and 70 dB SPL; van Hoesel, Ramsden, & O’Driscoll,
2002). In line with our model prediction, van Hoesel
et al. (2002) argues that level compression likely also
has a compressive effect on the perceived angle at
higher sound levels (i.e., it causes a central localization
bias). Their single subject, in contrast, has a lateral local-
ization bias at 70 dB SPL. This is further backed by data
from Grantham, Ashmead, Ricketts, Haynes, and
Labadie (2008; their Figure 3) that reveals lower ILD
thresholds for bilateral CI subjects when compression
is switched off.

Finally, performance is reduced by the independently
operating n-of-m strategies in either processor (i.e., either
ear). Due to the frequency dependence of ILDs, the
contralateral ear had a bias to lower frequencies, result-
ing in the n-of-m strategy selecting more apical
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electrodes that were potentially not selected on the ipsi-
lateral side. In some cases, this result led to a stronger
stimulation on the contralateral electrodes and, ultim-
ately, a contralateral localization cue in the apical chan-
nels (see PN: 65 dB, Figure 7, top right). A similar effect
has previously been described for independently operat-
ing gain control in each ear (Dorman et al., 2014).

The HRTF-filtered SSN produced the most uniform
stimulation pattern across all sound levels, and the
dynamic range from approximately 40 to 70 dB SPL
was centered around 55 dB (Figure 5, middle left).
Because of these properties, 55 dB SSN was chosen to
calibrate the localization models. In the case of speech
being used as a test stimulus, the instantaneous level
fluctuations resulted in a more linear mean stimulus
level across the stimulation current curve (Figure 5,
second column).

Influence of Spread of Excitation

The spread of current within the cochlea is the major
limiting factor of spectral resolution in electric hearing
(Bingabr, Espinoza-Varas, & Loizou, 2008). With a
9mm exponential current decay, and an AN frequency
band spacing of just 1.4mm, a considerable cross talk
can be expected. This was visible in the AN-rate-versus-
azimuth functions (Figure 6), where differences between
neighboring channels were reduced compared with the
acoustic ILDs (Figure 3). However, in the tested condi-
tions, with one directional source, even this large spread
of excitation did not systematically influence localization
ability. Similarly, even an interaural electrode mismatch
has been shown not to harm ILD sensitivity very much
(Kan, Stoelb, Litovsky, & Goupell, 2013). Further, in a
two-source condition, with both sources having different
frequency content, spread of excitation would be

expected to impact localization more than we demon-
strate here. Finally, the spread of excitation resulted in
a less reliable relation of response rate difference for a
given azimuth. For instance, the peak of the AN-rate
difference over azimuth (Figure 6) was at 70� for both
the 19- and the 22-mm channel, whereas the correspond-
ing acoustic ILD had peaks at 70� and 80�, respectively.
The spread from the more energetic electrodes around
the 19-mm band to the 22-mm band caused the 22-mm
rate difference to be dominated by off-frequency ILDs.

Influence of the Binaural Model

Whilst the difference between interaural AN responses
purely resembled the ILD cue, the modeled binaural neu-
rons were also sensitive to the ITD. In the case of the
ACE strategy assessed here, the only available ITD cue
was the envelope ITD. In clinical processors, ILD cues
dominate envelope ITD cues for both speech and noise
input (Laback et al., 2004). This is in line with the model
outcome, that is, that the LSO output as a function of
azimuth (Figure 7) had a similar shape to that of the
acoustic ILDs (Figure 3). When comparing LSO model
data with AN model data (Figure 7), the small but posi-
tive influence of envelope ITD can be seen in the 22-mm
channel where the decline toward 90� was smaller in the
LSO than in the AN response. The LSO stage of the
model is expected to be suitable for testing potential
localization benefits of new coding strategies that pre-
serve ITD in the pulse timing.

NH listeners can also exploit temporal fine-structure
ITD information in the 1-kHz regime, presumably
through their faster medial superior olive (MSO) path-
way (Remme et al., 2014). In processing binaural infor-
mation, CI listeners appear to be limited to the slower
LSO pathway, consistent with their upper-frequency
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limen being roughly 200 to 400Hz or pps, even if ITDs
are preserved in the pulse pattern (van Hoesel & Clark,
1997; van Hoesel & Tyler, 2003). A possible reason for
CIs not activating the MSO pathway is that the highly
synchronized neural stimulation pattern from the electric
pulses is not optimal for the synapse and membrane

parameters of the MSO (Chung et al., 2014). This
single effective pathway of the LSO was represented by
our model and contrasts with the complex dual (MSO,
LSO) pathway models of the acoustically stimulated bin-
aural system (e.g., Dietz et al., 2009; Hancock &
Delgutte, 2004; Takanen, Santala, & Pulkki, 2014).

Results of the Localization Models

In contrast to the previous stages, less is known about
how central pathway stages extract a localization percept
from the ensemble of binaural brainstem neurons.
Therefore, three different localization models were
tested here. The first strategy was a two-stage linear map-
ping of the monaural AN response rates into level and
from ILD to azimuth. This strategy is less likely to
resemble the physiologic processes or the learning and
estimating strategies of a human subject (Figure 8(a)).
The second localization model of a one-stage linear map-
ping from interaural rate differences of LSO or AN
responses to azimuth is more plausible, at least as a pos-
sible learning strategy of a listeners brain (Figures 8(b)
and 9).

The calibration of the linear mapping was somewhat
arbitrary; however, it could resemble an individual map-
ping strategy. For instance, Jones et al. (2014) reported
very individualized localization estimation patterns that
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can be attributed to such mappings. Two possible map-
ping strategies were tested here: (a) minimizing the error
in the frontal segment between �45� and þ45� and (b)
minimizing the error in the range between �90� and
þ90�. Both strategies were successful in reaching their
specific goal (Figures 8(b) and 9(a)). The first strategy,
using the slope m45 had an almost perfect accuracy in
the frontal segment but had an overall worse perform-
ance than the m90 slope (Figure 11). The m45 and m90
slope conditions produced an RMS prediction error of
28:1� � 8:1� and 26:7� � 5:4�, respectively. For the 55 dB
condition with which the model was trained, the first
strategy resulted in azimuth-response histograms that
Jones et al. classified as a central pattern, whereas the
second strategy resulted in a bimodal or trimodal histo-
gram, with many responses pointing to the far left and
the far right (bimodal) and sometimes a third response
cluster at 0� (trimodal). However, in addition to depend-
ing on which range was used for the slope fitting, the
pattern also depended on the level. At low levels, with
little or no compression, larger ILDs caused a larger pre-
dicted angle that resulted in a more bimodal pattern. At
high levels, the compression resulted in a more central
pattern. The LSO model had the advantage that it was
most robust against overall level. Figure 9 reveals that
while at the 55-dB calibration level both AN and LSO
model had the same RMS error (21�), at 45 dB the LSO

model error increases by only 2�, whereas the AN model
error increases by 12�. This can be explained by the level-
dependent slope of the rate-ILD tuning curve of LSO
neurons: Around the 0-dB ILD point, the slope increases
with increasing level (e.g., Tsai, Koka, & Tollin, 2010).
This counteracts the ILD reduction through increasing
compression. This LSO I/O relation presumably helps to
get a less level-dependent LSO rate for a given azimuth
in both acoustic and electric hearing. It was previously
reported that the rate difference between a left–right pair
of antagonistic LSO neurons, as implemented here, is
particularly robust against level variations (Tsai et al.,
2010).

In Table 2, the estimates from the two LSO slope
calibrations for all three stimulus level were categorized
into central versus bimodal or trimodal patterns along-
side the six bilateral CI users that were reported in Jones
et al. (2014, their Figure 4(a) to (c)) for fairly similar
stimuli. The error measures in Table 2 were derived
according to Kerber and Seeber (2012): A linear regres-
sion was performed on the localization data.
Furthermore, a measure of spatial resolvability was gen-
erated by dividing the average standard deviation of pre-
dictions across all target angles by the slope of the linear
regression. Slopes <0.75 were classified as central
response patterns. It can be seen that the range of
slope values across the six model implementations
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varied in a similar interval as the six listeners in Jones
et al. Only the standard deviation and thus the resulting
spatial resolvability was much lower in all models. The 8�

spatial resolvability for the worst performing model is
about equal to the best performing subject in Kerber
and Seeber. However, the good spatial resolvability of
2� to 8� is in line with high-frequency minimum audible
angle data from NH listeners (e.g., Mills, 1958).
Therefore, future studies should determine why CI sub-
jects hardly ever reach this level of performance. More
realistic model versions with left and right differences in
the dynamic range, the AN density, the electrode-nerve
interface, and the electrode insertion depth (see, e.g., Hu
& Dietz, in press), may help in answering this question.

Finally, one predictive model was calibrated by creat-
ing multivariate normal probability density functions
across all AN frequency bands for all azimuthal angles.
In the current experiment, the probabilistic model out-
performed the linear models by producing lower overall
RMS errors and by being able to predict performance at
more lateral angles (Figures 10 and 11). The probabilistic
model’s predictive ability was also compared with that of
the linear AN response difference localization model
(m90 calibration) when subject to the time-varying level
fluctuations of continuous speech. Ten seconds of male
and female speech were presented to the model, and pre-
dictions were made in windows of 200ms. In this case,
the probabilistic model produced slightly higher RMS
errors than the linear model with predictions that were

very widely distributed in a trimodal form. Predictions of
the linear model had bimodal distributions that were
similar to those for the 200-ms noise bursts but more
widely distributed (Figure 10).

Table 2. Results of the LSO Localization Models for Both Model

Calibrations Compared With the Results of Localization

Experiments Performed With Bilateral CI Users

(Jones et al., 2014).

Subject/Model RMS error Slope SD

Spatial

resolvability

Central

Subject ICF 26� 0.72 17.06� 23.76�

Subject ICJ 37� 0.49 20.56� 41.95�

LSO 65 dB m90 26� 0.40 2.93� 7.32�

LSO 65 dB m45 35� 0.26 2.00� 7.71�

LSO 55 dB m45 24� 0.52 2.12� 4.08�

Bimodal/Trimodal

Subject IBZ 22� 0.83 12.62� 15.28�

Subject ICO 25� 0.95 16.70� 17.51�

Subject IBY 25� 1.17 13.30� 11.40�

Subject ICB 25� 1.12 15.21� 13.58�

LSO 45 dB m45 23� 0.82 1.87� 2.29�

LSO 55 dB m90 21� 0.77 2.51� 3.28�

LSO 45 dB m90 23� 1.09 2.15� 1.97�

Note. CI¼ cochlear implant; LSO¼ lateral superior olive; RMS¼ root

mean square.
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Despite their inherent differences, each model pro-
duced predictions that were within the range of pub-
lished subject data (e.g., Grantham et al., 2007; Jones
et al., 2014; Kerber & Seeber, 2012), thus making it dif-
ficult to say that one model is more realistic than the rest
(Figure 11). It is also not possible to state which model is
most accurate. What can be summarized from this sub-
section is that the LSO model is most robust against
changes in signal level and that the MLE model performs
best at the most lateral angles. Instead of choosing a
model version based on performance, each one offers a
different functional understanding of the input–output
relations and should be chosen according to the focus
of study.

Influence of the Test Stimulus

The best performing stimulus level, averaged over all
stimulus types and prediction models, was 55 dB SPL
with an RMS error of 23:6� � 3:2� (Figure 11, gray
bars). This error is within the range of individual subject
errors reported experimentally (e.g., Jones et al., 2014;
Kerber & Seeber, 2012) and was approximately 5� better
than the across-subject average. Model performance was
comparable at 45 dB SPL and was somewhat worse at
65 dB, with RMS errors of 23:8� � 5:3� and 35:1� � 3:9�,
respectively. Because the model was trained at 55 dB, it
was not surprising that this level resulted in the best per-
formance, especially considering that compression
reduces the ICD for higher sound levels. Therefore, the
azimuth was systematically underestimated at 65 dB,
thus generating a larger error. At 45 dB, the opposite
effect resulted in more lateralized estimates of the loca-
tion. However, in the m45 case, there were systematically
more underestimates at larger lateral angles, and the two
effects largely canceled each other out, thus resulting in
similar overall errors. The overall RMS error did not
vary much when comparing the three different steady-
state noise test stimuli (WN: 26:5� � 8:0�, SSN:
27:4� � 6:0�, and PN: 28:4� � 6:7�). Although the
model was trained with the SSN, slightly better perform-
ance was achieved with the frozen male speech segment
(26:1� � 5:0�). The intrinsic-level fluctuations that are
inherent to speech resulted in a more linear rate-level
function as opposed to the standard sigmoidal rate-
level functions that were generated by the stationary sti-
muli (Figure 5). This linearity better appropriated the
linear approximations made in the calibration step of
the model and resulted in a lower mean RMS error.
This result is also in line with subject data reported by
Grantham et al. (2007) that showed a lower RMS error
(reported as unsigned error) for similar 70 dB speech and
white noise stimuli, 24:0� � 10:1�, 25:5� � 9:6�, respect-
ively. This is an example where the model can offer an
explanation behind an experimental finding. However, it

must be noted that speech localization errors were smal-
ler only for 16 of 22 subjects, a fact that further shows
the need for individualizing the model to the CI subject.

In addition to testing the 4 different 200-ms stimuli in
the absence of an interferer, data were also obtained for
continuous speech (Figure 10, bottom row) and for a
þ5 dB signal-to-noise ratio condition (Figure 12). In
the continuous speech, a new prediction was made
every 200ms, and the resulting large variability was
caused by the nonstationary speech. Despite this vari-
ability, the distribution of predictions still retained the
same basic bimodal form as that of the stationary stimu-
lus. The central bias observed for more lateral angles in
the þ5 dB signal-to-noise ratio condition is in line with
data for actual CI subjects (Kerber & Seeber, 2012) and
can be explained by the reduction of ILD due to the 0-dB
ILD of the interferer.

Summary and Conclusions

A computer model for simulating the spatial hearing
abilities of bilateral CI listeners was presented and
tested in seven different versions. The model predictions
were similar to the subjective performance of bilateral CI
listeners not only in terms of the average localization
error but also in the occurrence of systematic errors.
The spatial resolvability of the model was too good,
likely due to the absence of cognitive noise and due to
modeling both ears with an identically programmed pro-
cessor and an identical electrode-nerve interface. The dif-
ferent model versions performed fairly similar so that
future studies should choose a version based on the
focus of study. For studies investigating the origin
along the processing chain, the two-stage rate-level
model is recommended. For other purposes, the linear
LSO rate-difference model is the best one-size-fits-all
choice.
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Irrespective of the particular version, the model con-
firmed a range of hypotheses from experimental studies,
including the dominance of ILD cues in lateralization
judgments, and the detrimental effect of level-dependent
compression. The model allows for the identification of
the origins of unexpected predictions along the process-
ing chain. Beyond that, the proposed model of localiza-
tion for bilateral CI can be useful in predicting
performance of individual CI subjects by customizing
the model to their clinical profile and for early stage
testing of CI algorithms. It can be especially useful for
the investigation of complex acoustic scenarios and
more complex input systems (e.g., electro-acoustic
stimulation or single-sided deaf), as well as in testing
the influence of interaural pulse time differences at low
pulse rates (with the ITD sensitive LSO model). From
the investigations made to date, a binaurally coordi-
nated n-of-m selection and compression are highly
desirable for the next generation of CIs. Future model
extensions are envisaged to include individualized ver-
sions of the processor setting, the electrode-nerve inter-
face, and the mapping strategy.
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Note

1. The model, including 2 GB of preprocessed AN and LSO

responses, can be downloaded here: http://sirius.physik.uni-
oldenburg.de/downloads/CI-Model/. The current version

(bilateral-localization-v1.zip) was designed for the purpose
of this study. It is anticipated to make the model available

with a more flexible user interface in the auditory model

toolbox (http://amtoolbox.sourceforge.net).

References

Bingabr, M., Espinoza-Varas, B., & Loizou, P. C. (2008).

Simulating the effect of spread of excitation in cochlear
implants. Hearing Research, 241(1), 73–79.

Chung, Y., Delgutte, B., & Colburn, H. S. (2014). Modeling

binaural responses in the auditory brainstem to electric
stimulation of the auditory nerve. Journal of the
Association for Research in Otolaryngology, 16(1), 135–158.

Colburn, H. S., Chung, Y., Zhou, Y., & Brughera, A. (2009).
Models of brainstem responses to bilateral electrical stimu-
lation. Journal of the Association for Research in
Otolaryngology, 10(1), 91–110.

Day, M. L., & Delgutte, B. (2013). Decoding sound
source location and separation using neural population
activity patterns. The Journal of Neuroscience, 33(40),

15837–15847.
Dietz, M., Ewert, S. D., & Hohmann, V. (2009). Lateralization

of stimuli with independent fine-structure and envelope-

based temporal disparities. The Journal of the Acoustical
Society of America, 125(3), 1622–1635.

Dietz, M., Ewert, S. D., & Hohmann, V. (2011). Auditory

model based direction estimation of concurrent speakers
from binaural signals. Speech Communication, 53(5),
592–605.

Dorman, M. F., Loiselle, L., Stohl, J., Yost, W. A., Spahr, A.,

Brown, C., . . . ;Cook, S. (2014). Interaural level differences
and sound source localization for bilateral cochlear implant
patients. Ear and Hearing, 35(6), 633–640.

Duda, R. O., & Martens, W. L. (1998). Range dependence of
the response of a spherical head model. The Journal of the
Acoustical Society of America, 104(5), 3048–3058.

Faller, C., & Merimaa, J. (2004). Source localization in com-
plex listening situations: Selection of binaural cues based on
interaural coherence. The Journal of the Acoustical Society
of America, 116(5), 3075–3089.

Francart, T., & MacDermott, H. (2012). Speech perception and
localisation with SCORE bimodal: A loudness normalisa-
tion strategy for combined cochlear implant and hearing aid

stimulation. PLoS One, 7(10), e45385.
Fredelake, S., & Hohmann, V. (2012). Factors affecting pre-

dicted speech intelligibility with cochlear implants in an

auditory model for electrical stimulation. Hearing
Research, 287(1), 76–90.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models:

Single neurons, populations, plasticity. Cambridge, England:
Cambridge University Press.

Goupell, M. J., & Litovsky, R. Y. (2014). The effect of inter-
aural fluctuation rate on correlation change discrimination.

Journal of the Association for Research in Otolaryngology,
15(1), 115–129.

Grantham, D. W., Ashmead, D. H., Ricketts, T. A., Haynes,

D. S., & Labadie, R. F. (2008). Interaural time and level
difference thresholds for acoustically presented signals in
post-lingually deafened adults fitted with bilateral cochlear

implants using CISþ processing. Ear and Hearing, 29(1),
33–44.

Grantham, D. W., Ashmead, D. H., Ricketts, T. A., Labadie,

R. F., & Haynes, D. S. (2007). Horizontal-plane localization
of noise and speech signals by postlingually deafened adults

14 Trends in Hearing



fitted with bilateral cochlear implants. Ear and Hearing,
28(4), 524–541.

Greenwood, D. D. (1990). A cochlear frequency-position func-

tion for several species—29 years later. The Journal of the
Acoustical Society of America, 87(6), 2592–2605.

Hancock, K. E., & Delgutte, B. (2004). A physiologically based

model of interaural time difference discrimination. The
Journal of Neuroscience, 24(32), 7110–7117.

Hohmann, V. (2002). Frequency analysis and synthesis using a

Gammatone filterbank. Acta Acustica united with Acustica,
88(3), 433–442.

Hu, H., & Dietz, M. (2015). Comparison of interaural electrode

pairing methods for bilateral cochlear implantsTrends in
Hearing, 19, 1–22.

Imennov, N. S., & Rubinstein, J. T. (2009). Stochastic popula-
tion model for electrical stimulation of the auditory nerve.

IEEE Trans Biomed Eng., 56(10), 2493–2501.
Jones, H., Kan, A., & Litovsky, R. Y. (2014). Comparing

sound localization deficits in bilateral cochlear-implant

users and vocoder simulations with normal-hearing lis-
teners. Trends in Hearing, 18, 1–16.

Kan, A., Stoelb, C., Litovsky, R. Y., & Goupell, M. J. (2013).

Effect of mismatched place-of-stimulation on binaural
fusion and lateralization in bilateral cochlear-implant
users. The Journal of the Acoustical Society of America,
134(4), 2923–2936.

Kayser, H., Ewert, S. D., Anemüller, J., Rohdenburg, T.,
Hohmann, V. & Kollmeier, B. (2009). Database of multi-
channel in-ear and behind-the-ear head-related and binaural

room impulse responses. EURASIP Journal on Advances in
Signal Processing, 2009(1), 298605.

Kerber, I. S., & Seeber, I. B. U. (2012). Sound localization in

noise by normal-hearing listeners and cochlear implant
users. Ear and Hearing, 33(4), 445–457.

Laback, B., Pok, S. M., Baumgartner, W. D., Deutsch, W. A.,

& Schmid, K. (2004). Sensitivity to interaural level and
envelope time differences of two bilateral cochlear implant
listeners using clinical sound processors. Ear and Hearing,
25(5), 488–500.

Laneau, J. (2005). When the deaf listen to music–pitch percep-
tion with cochlear implants (Doctoral dissertation, Ph D dis-
sertation). Katholieke Universiteit Leuven, Faculteit

Toegepaste Wetenschappen, Leuven, Belgium.
Litovsky, R. Y., Goupell, M. J., Godar, S., Grieco-Calub, T.,

Jones, G. L., Garadat, S. N., . . . ;Misurelli, S. (2012).

Studies on bilateral cochlear implants at the University of
Wisconsin’s Binaural Hearing and Speech Laboratory.
Journal of the American Academy of Audiology, 23(6),
476–494.

Litovsky, R. Y., Parkinson, A., & Arcaroli, J. (2009). Spatial
hearing and speech intelligibility in bilateral cochlear
implant users. Ear and Hearing, 30(4), 419–431.

Macaulay, E. J., Hartmann, W. M., & Rakerd, B. (2010). The
acoustical bright spot and mislocalization of tones by
human listener. The Journal of the Acoustical Society of

America, 127(3), 1440–1449.
Majdak, P., Goupell, M. J., & Laback, B. (2011). Two-

dimensional localization of virtual sound sources in

cochlear-implant listeners. Ear and Hearing, 32(2), 198–208.

Majdak, P., Laback, B., & Baumgartner, W. D. (2006). Effects
of interaural time differences in fine structure and envelope
on lateral discrimination in electric hearing. The Journal of

the Acoustical Society of America, 120(4), 2190–2201.
Mills, A. W. (1958). On the minimum audible angle. The

Journal of the Acoustical Society of America, 30(4), 237–246.

Nicoletti, M., Wirtz, C., & Hemmert, W. (2013). Modeling
sound localization with cochlear implants. In J. Blauert
(Ed.), The technology of binaural listening (pp. 309–331).

Heidelberg, Berlin: Springer.
Nopp, P., Schleich, P., & D’haese, P. (2004). Sound localiza-

tion in bilateral users of MED-EL COMBI 40/40þ cochlear

implants. Ear and Hearing, 25(3), 205–214.
Potts, L. G., Skinner, M. W., Litovsky, R. A., Strube, M. J., &

Kuk, F. (2009). Recognition and localization of speech by
adult cochlear implant recipients wearing a digital hearing

aid in the nonimplanted ear (bimodal hearing). Journal of
the American Academy of Audiology, 20(6), 353.

Remme, M. W., Donato, R., Mikiel-Hunter, J., Ballestero, J.

A., Foster, S., Rinzel, J., . . . ;McAlpine, D. (2014).
Subthreshold resonance properties contribute to the effi-
cient coding of auditory spatial cues. Proceedings of the

National Academy of Sciences, 111(22), E2339–E2348.
Seeber, B. U., & Fastl, H. (2008). Localization cues with bilat-

eral cochlear implants. The Journal of the Acoustical Society
of America, 123(2), 1030–1042.

Spille, C., Dietz, M., Hohmann, V., & Meyer, B. T. (2013a,
May). Using binaural processing for automatic speech recog-
nition in multi-talker scenes. Paper presented at the

Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, Vancouver, BC
(pp. 7805–7809). Piscataway, NJ: IEEE.

Spille, C., Meyer, B. T., Dietz, M., & Hohmann, V. (2013b).
Binaural scene analysis with multidimensional statistical fil-
ters. In J. Blauert (Ed.), The technology of binaural listening

(pp. 145–170). Heidelberg, Berlin: Springer.
Stadler, S., & Leijon, A. (2009). Prediction of speech recogni-

tion in cochlear implant users by adapting auditory models
to psychophysical data. EURASIP Journal on Advances in

Signal Processing, 2009, 5.
Strutt, J. W. (1907). On our perception of sound direction.

Philosophical Magazine, 13, 214–232.

Swanson, B. A. (2008). Pitch perception with cochlear implants
(PhD thesis). Faculty of Medicine, Dentistry & Health
Sciences, Otolaryngology Eye and Ear Hospital, The

University of Melbourne.
Takanen, M., Santala, O., & Pulkki, V. (2014). Visualization of

functional count-comparison-based binaural auditory
model output. Hearing Research, 309, 147–163.

Távora-Vieira, D., De Ceulaer, G., Govaerts, P. J., & Rajan,
G. P. (2015). Cochlear implantation improves localization
ability in patients with unilateral deafness. Ear and Hearing,

36(3), e93–e98.
Tollin, D. J., & Yin, T. C. (2002). The coding of spatial loca-

tion by single units in the lateral superior olive of the cat. I.

Spatial receptive fields in azimuth. The Journal of
Neuroscience, 22(4), 1454–1467.

Tsai, J. J., Koka, K., & Tollin, D. J. (2010). Varying overall

sound intensity to the two ears impacts interaural level dif-
ference discrimination thresholds by single neurons in the

Kelvasa and Dietz 15



lateral superior olive. Journal of Neurophysiology, 103(2),
875–886.

van Hoesel, R., Ramsden, R., & O’Driscoll, M. (2002). Sound-

direction identification, interaural time delay discrimin-
ation, and speech intelligibility advantages in noise for a
bilateral cochlear implant user. Ear & Hearing, 23(2),

137–149.
van Hoesel, R. J., & Clark, G. M. (1997). Psychophysical stu-

dies with two binaural cochlear implant subjects. The

Journal of the Acoustical Society of America, 102(1),
495–507.

van Hoesel, R. J., & Tyler, R. S. (2003). Speech perception,

localization, and lateralization with bilateral cochlear
implants. The Journal of the Acoustical Society of America,
113(3), 1617–1630.

Wagener, K., Kühnel, V., & Kollmeier, B. (1999). Entwicklung

und Evaluation eines Satztests für die deutsche Sprache I:
Design des oldenburger satztests [Development and evalu-
ation of a German sentence test part I: Design of the

Oldenburg sentence test]. Zeitschrift für Audiologie/
Audiological Acoustics, 38(1), 4–15.

Wang, L., & Colburn, H. S. (2012). A modeling study of the
responses of the lateral superior olive to ipsilateral sinusoid-
ally amplitude-modulated tones. Journal of the Association

for Research in Otolaryngology, 13(2), 249–267.
Wang, L., Devore, S., Delgutte, B., & Colburn, H. S. (2014).

Dual sensitivity of inferior colliculus neurons to ITD in the

envelopes of high-frequency sounds: Experimental and
modeling study. Journal of Neurophysiology, 111(1),
164–181.

Wierstorf, H., Raake, A., & Spors, S. (2013). Binaural assess-
ment of multichannel reproduction. In J. Blauert (Ed.), The
technology of binaural listening (pp. 255–278). Heidelberg,

Berlin: Springer.
Wightman, F. L., & Kistler, D. J. (1992). The dominant role of

low-frequency interaural time differences in sound localiza-
tion. The Journal of the Acoustical Society of America, 91(3),

1648–1661.
Woodruff, J., & Wang, D. (2013). Binaural detection, localiza-

tion, and segregation in reverberant environments based on

joint pitch and azimuth cues. Audio, Speech, and Language
Processing, IEEE Transactions on, 21(4), 806–815.

16 Trends in Hearing


