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A B S T R A C T

An electroencephalogram (EEG) measures and records the electrical activity of the brain. It provides valuable
information that can be used to identify epileptic abnormalities. However, the visual identification of such ab-
normalities from EEG signals by expert neurologists is time consuming. Therefore, several researchers have
proposed using deep neural networks (DNNs) to automate the identification of these abnormalities. Their studies
have examined the use of different numbers of layers, different numbers of parameters, and various operation
types arranged in different architectures. This paper presents the shallowest 11-layer DNN architecture capable of
classifying three classes of EEG signals: normal, preictal, and seizure. When the proposed architecture was applied
to the standard University of Bonn EEG signal dataset, it achieved accuracy, specificity, and sensitivity values of
99.43%, 99.57%, and 99.10%, respectively. It not only had a better performance than the state of the art DNN
architectures, but also had shallower layers with fewer parameters. This allowed it to more quickly identify
epileptic abnormalities. Experiments were also conducted where the length of the EEG signals was reduced to
65% (2,662 samples with a period of 15.26 s), which in turn minimised the total parameters of the proposed
architecture so that it was comparable to the smallest state-of-the-art architecture and decreased the lag time for
identification. Even in these experiments, it was capable of producing equal performance measures, with the
execution time reduced to only 69% of that when employing the full length of EEG signals.
1. Introduction

Epilepsy is a central nervous system (neurological) disorder in which
brain activity becomes abnormal, causing seizures or periods of unusual
behaviour, sensations, and sometimes loss of awareness that can lead to
serious physical injuries to the patient. It is classified as a severe disease
that affects 50 million people worldwide, 85% of which reside in
developing countries, with 2.4 million new cases occurring every year at
a global level [1]. With this high impact, it is an important field of
research in the biomedical field. Epilepsy is characterised by unprovoked
seizures due to the involvement of the central nervous system, with the
normal neuronal network abruptly turning into a hyper-excited network
in an unpredictable manner. These occurrences may vary from once a
year to several times a day. The ability to detect the occurrence of sei-
zures would make it possible to improve therapeutic treatment, which
would enhance the quality of life of epileptic patients [2]. Electroen-
cephalogram (EEG) signals, which record details of the electrical activity
of the brain and can be utilised to examine brain functions, are commonly
used to identify epilepsy. Traditionally, the identification of EEG signals
ail.com.
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in order to identify epileptic abnormalities is carried out visually by
expert neurologists. However, this procedure is tedious and prone to
human errors. Hence, automating the identification process for an
epileptic seizure using EEG signals is an important problem. The problem
basically involves the extraction of distinguishing features from EEG
signals for seizure detection.

Deep neural networks (DNNs) have been successfully used for object
classification and detection. Originally, the application of a DNN to a
two-dimensional domain was proposed for the recognition of hand-
written zip codes from their images [3]. Based on the impressive results
in terms of classification accuracy, it was extended to one-dimensional
domains, including human activity recognition from gyroscope/acce-
lerometer sensors attached to the body [4], natural language processing
(NLP) [5], and speech applications [6]. These also showed impressive
detection levels. A thorough survey of the applications of DNNs to
one-dimensional problem domains was published by Kiranyaz et al. [7].

A DNN uses several layers of repetitive operations to extract the low-
level attributes of an object and change the size of its features. By defi-
nition, a feature is the result of applying an operation to the input data
ecember 2020
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:kurdthongmee.wattanapong@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2020.e05694&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2020.e05694
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2020.e05694


W. Kurdthongmee Heliyon 6 (2020) e05694
(such as EEG signals in this case) in the first layer, or the feature from the
preceding layer. Common DNN operations include convolution, pooling,
and fully connected operations. This paper only provides brief explana-
tions of the basic functions of these operations. Greater detail was pro-
vided by Yamashita et al. [8]. Convolution is an operation that is
performed to extract a set of features from an input feature by applying a
kernel in the form of a sliding window over the input feature. Depending
on the values of the convolutional kernel, specific patterns (i.e., hori-
zontal, and vertical edges) can be extracted from the input feature. The
main function of the pooling operation is to reduce the size of an input
feature, which makes the computation faster, reduces the memory size,
and protects the DNNmodel from the effect of overfitting, which occurs if
a model learns the noise and details in the training set to such an extent
that it negatively impacts the model's performance on new data [2]. Two
common types of pooling operations are maximum (max) and average
pooling, which operate by selecting the maximum or average value from
the predefined members of an input feature, respectively. The flatten
operation is responsible for converting an input feature into a
one-dimensional array. Finally, the fully connected or dense operation
is a regular neural network operation that takes an input feature, com-
putes the class scores, and outputs a one-dimensional array with a size
equal to the number of classes.

Different approaches have been utilised to automatically identify
epileptic abnormalities. This is normally performed by making it possible
to recognise three different classes of EEG signals: normal, preictal, and
seizure classes. The approaches have achieved different levels of per-
formance measures in terms of accuracy, specificity, and sensitivity.
Fortunately, a majority of these approaches give rise to over 95% of these
performance measures. The approaches proposed before 2018 can be
classified into the following groups: neural networks with some
enhancement techniques to improve their performance measures [9,10,
11,12], support vector machine (SVM) methods [13,14,15,16], wavelets
[9,17,18], and others, e.g. Gaussian mixture model [19], decision tree
[20], and random forest methods [21]. These approaches share a com-
mon requirement that most of the features within the EEG signals need to
be identified by a domain expert in order to reduce the complexity of the
data and make patterns more visible to allow the learning algorithms to
work. Since 2018, DNNs have been employed in this research domain.
The dominant feature of a DNN is its attempt to learn high-level features
from data in an incremental manner. This eliminates the need for domain
expertise and complex tasks to perform feature extraction. DNN-based
epileptic abnormality identification was pioneered by Acharya et al.
[22] with their 14-layer DNN architecture. In terms of usage operators,
the architecture relies on using one-dimensional convolution, max
pooling, flattening, and dense operations. The architecture achieved an
accuracy of 88.7%, a sensitivity of 95%, and a specificity of 90%. An
improvement in terms of accuracy was reported by Ullah et al. [23] using
a 14-layer architecture. Two data augmentation schemes were intro-
duced to the DNN learning stage in order to increase the size of the
learning dataset. An accuracy of 99.1% was attained without any reports
on the specificity and sensitivity. Later, the feature-scaling approach was
introduced to a DNN to improve the performance measures [24]. This
successfully achieved an accuracy of 97.56%, a sensitivity of 98.17%, and
a specificity of 94.93%. Later, the effectiveness of the stacking ensemble
DNN approach for epileptic seizure detection was studied by Akyol [25].
An average accuracy value of 97.17% was attained, along with an
average sensitivity of 93.11%. The most recent publication by Abiyev
et al. [2] reported the best achievements, with an accuracy of 98.67%, a
sensitivity of 97.67%, and a specificity of 98.83%.

It is very common for reports on the topic of DNN-based epileptic
abnormality identification to present their findings in the form of their
proposed DNN architectures and the improvements in terms of perfor-
mance measures. In addition, they rely on using the standard EEG signal
dataset provided by the University of Bonn, Germany. Only the publi-
cation of Ullah et al. [23] focused on optimising their DNN architecture
to minimise the memory requirement and execution time. It was claimed
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that the architecture was suitable for real-time clinical settings. With
these minimisations, it will ease the burden of neurologists and will assist
patients by alerting them before a seizure occurs.

This study examined a shallower DNN architecture with a smaller
total number of parameters and shorter execution time, which was
experimentally proven to be more effective than the state-of-the-art
method in terms of the performance measures. The contributions of
this study include the presentation of a technique that focuses on using a
shallow DNN architecture to directly process a raw EEG dataset which is
capable to improve the performance measures of the classifier. The sys-
tematic approach; instead of the traditional trial-and-error one which has
been used by the previously publications, to design the DNN architecture
is also provided. We also present the DNN architecture that works well in
the detection of epileptic seizures with the least feature extraction. In
addition, the main differences between our study and the previously
proposed ones are on the point of view of the number of DNN layers in
the architecture, its total parameters and the length of the EEG signal
used for detection. This strengthens the understanding that; in the EEG
epileptic abnormality identification domain – to be specific, the deep
DNN architectures and the longer length of EEG signals do not promise to
always produce the superior prediction performance measures. The
research community can work another way around to seek for better
shallow architectures. The remainder of this paper is organised as fol-
lows. Section 2 discusses the materials and methods in detail. This is
followed by the presentation of the experimental results and discussion in
section 3. Finally, the paper is concluded in section 4.

2. Materials and methods

Before providing the details in this section and the rest of this paper,
the terms architecture and classifier are defined. The term architecture
refers to the DNN architecture, which consists of the convolution, pool-
ing, and dense layers. The classifier is a DNN inferencing program that
uses the model produced by training the architecture to identify or
classify the EEG signals into three different classes: normal, preictal, and
seizure. Finally, the prediction performance measures, or simply the
performance measures, in all of the experiments are the accuracy,
sensitivity, and specificity.

2.1. Dataset

This research used a standard dataset similar to previous publications
[2,22]. The University of Bonn dataset was collected, preprocessed, and
provided to the research community by Andrzejak et al. [26]. It is
available for free download at http://epilepsy.uni-freiburg.de/database
It has the following characteristics.

� EEG signals were selected from continuous multichannel EEG signal
recordings after removing artefacts due to muscle activity and eye
movement via visual examination.

� The EEG signals were obtained from five patients in each of three data
classes (normal, preictal, and seizure) with these details:
– Normal class: EEG signals of 100 cases from five healthy subjects,
– Preictal class: EEG signals of 100 cases from five epileptic patients,
– Seizure class: EEG signals of 100 cases from patients in the preictal
class obtained as they experienced an epileptic seizure during the
signal capturing process.

� Each class of the dataset contains 100 EEG signals with a record
duration of 23.6 s which is equivalent to 4096 samples.

� The total number of EEG signals in the dataset is 300.

Based on these characteristics, it can be observed that all the classes
within the dataset are balanced; that is, they have equal numbers of cases
with equal lengths of EEG signals. In the preprocessing stage of the
experiment, all the individual EEG signals of the dataset were normalised
to have a mean of 0 and a standard deviation of 1.00. In each experiment,
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Figure 1. Flowchart illustrating how our proposed DNN architecture was designed.

W. Kurdthongmee Heliyon 6 (2020) e05694
the normalised dataset was then randomly partitioned into training and
testing datasets, with a ratio of 90:10. Thus, the training dataset had a
total of 270 EEG signals (90% of 300), which seemed to be a fairly small
number. A 10-fold cross-validation approach was used in the experiment.
The approach was applied to prevent biasing by possibly selecting a
group of neighbouring EEG signals for the DNN training, which were
likely to have similar properties. In detail, the EEG signals within the
training dataset were randomly divided into 10 equal bins. Within each
bin, nine of the ten EEG signals were used for training the model, while
the rest were used for validating the accuracy of the model. These pro-
cesses were repeated 10 times by shifting the training and validation
datasets. The performance measures were obtained by averaging the
results from running the experiment 10 times.
2.2. Method

In this research, several one-dimensional architectures were designed
with the following main goals:

� lowering the total number of layers compared to the previously pro-
posed architectures,

� relying on fewer convolution layers in order to increase the recog-
nition rate of the architecture, and

� minimising the total number of parameters in order to reduce the
memory usage.

All of these architectures were designed with the final goal of
obtaining better performance measures. Figure 1 illustrates the flowchart
that we followed during the period to design our proposed DNN archi-
tecture. All the processes within the round edge rectangle were auto-
mated by use of our self-developed Python script. The architectures of
Acharya et al. [22] and Abiyev et al. [2] were used as the starting points
and benchmarked architectures. In terms of performance measures, the
Abiyev architecture is the state-of-the-art one. The Acharya architecture
dominates from the point of view of the smallest total number of pa-
rameters. From an architectural point of view, these architectures consist
of 14 and 16 layers, respectively, of convolution, max pooling, and dense
3

operations. In detail, the Acharya (see Table 1) architecture has five
convolution layers. Each convolution layer supplies the output feature to
a max pooling layer, which is responsible for reducing the feature size.
The Abiyev architecture (see Table 2) consists of four double convolution
layers and two convolution operations for any input feature. The output
of each double convolution layer, with the exception of the final one, is
connected to the max pooling layer. The last three layers of both archi-
tectures are dense layers. The Abiyev architecture also introduces a
dropout layer with the aim of minimising the impact of overfitting.

In order to attain the second goal, the proposed architecture bor-
rowed from that of Acharya in the way that it relies on using an alter-
nating arrangement of convolution and max pooling layers. This helps
reduce the number of parameters overall, as well as within the layers of
the architecture. This can clearly be seen in Table 1. In experiments, the
number of pairs of convolution and max pooling layers varied, with a
maximum of five pairs, which was equivalent to the Acharya
architecture.

From Tables 1 and 2, it can be observed that the kernel sizes of the
Acharya architecture are assigned to the convolution layers in decreasing
order, while the kernel sizes of the Abiyev architecture are kept constant
for all convolution layers. In the experiments conducted in this study, the
kernel sizes were assigned to the convolution layers in the following
manner: increasing order, decreasing order, and constant. Additionally,
the stride parameter of the max pooling layers also varied. The perfor-
mance measures of the trained architecture with these parameter varia-
tions were then recorded and thoroughly examined.

The Google Cloud Platform (GCP) was used because the experiments
were performed with many variations in the architecture's parameters,
i.e. the number of pairs of convolution and max pooling layers, kernel
sizes, and strides, which could take an extremely large amount of time for
the computations. The configuration of the GCP platform consists of 8
vCPUs with a storage size of 30 GB and 1 NVIDIA Tesla P4. The Linux
operating system was installed on the platform. Keras, which is a
powerful deep-learning library that runs on top of TensorFlow, was uti-
lised for training and testing the models. The Python scikit-learn package
was employed to provide a 10-fold cross validation function. The model
training stage was subdivided into pre-training and main-training stages.



Table 2. Details of Abiyev architecture.

Layer Operator Feature Size Filters Kernel Parameters

1 Conv1D 4095 32 3 128

2 Conv1D 4093 32 3 3104

3 Max Pooling 1364 32 0

4 Conv1D 1362 64 3 6208

5 Conv1D 1360 64 3 12352

6 Max Pooling 453 64 0

7 Conv1D 451 128 3 24704

8 Conv1D 449 128 3 49280

9 Max Pooling 150 128 0

10 Conv1D 148 256 3 98560

11 Conv1D 146 256 3 196864

12 Global Average Pooling1D 256 0

13 Dropout 256 0

14 Dense 32 8224

15 Dense 64 2112

16 Dense 3 195

Total 401731

Table 1. Details of Acharya architecture.

Layer Operator Feature Size Filters Kernel Parameters

1 Conv1D 4092 4 6 28

2 Max Pooling 2046 4 0

3 Conv1D 2042 4 5 84

4 Max Pooling 1021 4 0

5 Conv1D 1018 10 4 170

6 Max Pooling 509 10 0

7 Conv1D 506 10 4 410

8 Max Pooling 253 10 0

9 Conv1D 250 15 4 615

10 Max Pooling 125 15 0

11 Flatten 1875 0

12 Dense 50 93800

13 Dense 20 1020

14 Dense 3 63

Total 96190
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Both stages relied on fixing a batch size of three. The batch size was
defined as the number of EEG signals that were used for each training
update of the architectures. In contrast, different provisions were made
for the epoch, which referred to one iteration of applying the full training
dataset to the architecture. The pre-training and main-training stages
used 10 and 150 epochs, respectively. In this way, it was possible to
quickly eliminate non-candidate architectures from further consider-
ation. These architectures were those whose performance measures were
poorer than those of the Abiyev architecture, which was treated as the
state-of-the-art method for benchmarking the performance measures. It
should be noted that the average times taken to perform the pre-training
and main training stages on the selected platform were 5 and 45 min,
respectively. After obtaining the candidate architectures, they were
elaborately examined by further training with a full 150 epochs. A batch
size of three and full set of 150 epochs were used in imitation of the
experiments of Acharya et al. [22]. The common training hyper-
parameters used in all the experiments included the categorical
cross-entropy loss function, Adam optimiser, and accuracy metric.

In addition to focusing on the performance measures, this study also
focused on the time required for the prediction with the proposed ar-
chitecture. It is true that reducing the number of layers and total number
of parameters of a DNN architecture results in speeding up the prediction
time. Another way to accelerate the prediction time is processing shorter
4

EEG signals. Previously proposed architectures relied on conducting
training and prediction using full-length EEG signals with a sample size of
4096, which was equivalent to a duration of 23.5 s. This means that the
current classifier results were processed using the previous 23.5 s of EEG
signals. The current experiment was also used to study the relationships
between the length of the EEG signals, execution time, and performance
measures of the proposed architectures. In the experiment, the length of
the EEG signals was varied between 10% and 100% in steps of 5%, and all
the performance measures were recorded. The training was repeated
only for the best architecture from the candidate architectures obtained
in the previous experiment with the full 150 epochs.

Finally, experiments were also performed to study the execution time
of the proposed architecture in comparison with the Acharya and Abiyev
architectures. These were also carried out on the previously discussed
platform.
3. Results and discussions

After performing the first experiment, several candidate architectures
were produced with better performance measures than the Abiyev and
Acharya architectures. Table 3 lists all the candidate architectures with
better performances than the Abiyev and Acharya architectures as the



Table 3. Comparison of candidate architectures and benchmark architectures in terms of total number of parameters and performance measures.

Architecture Parameters Accuracy Specificity Sensitivity

(16 _3)_3_(32_4)_3_(64_5)_3_(96_6)_3_F_16_32 123795 99.43% 99.57% 99.10%

(32 _5) _3_ (64_5) _3_ (96_5) _3_ (128_3) _3 F_32_64 281347 98.54% 97.57% 98.62%

(32 2) _4_ (64_4) _4_ (96_6) _4_ (128_8) _4_F_32_64 203427 98.54% 97.56% 98.57%

(32 3) _3_ (64_4) _3_ (96_5) _3_ (128_6) _3_F_32_64 312003 98.19% 97.31% 98.07%

Abiyev 401731 98.67% 98.83% 97.67%

Acharya 96190 88.7% 90% 95%

Table 4. Comparison of previously proposed DNN architectures and their performance measures.

Researchers Architecture Performance measures

Accuracy Specificity Sensitivity

Acharya et al. [22] 14-layer 88.7% 90% 95%

Ullah et al. [23] 14-layer 99.1% NA NA

Thara et al. [24] NA 97.56% 94.93% 98.17%

Abiyev et al. [2] 16-layer 98.67% 98.83% 97.67%

Akyol [25] Stacking Ensemble DNN 97.17% 97.17% 93.11%

Our winner one 11-layer 99.43% 99.57% 99.10%

Figure 2. Comparison of identification accuracies of all candidate and benchmark architectures.
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benchmarks. Each architecture name within the table is encoded in the
following format, starting from the left.

1. The brackets are used to refer to a convolution layer, with the main
parameters defined within the brackets. The first and second numbers
represent the filter size, which is equivalent to the number of channels
of the output feature, and kernel size that applies to the input feature,
respectively.

2. A max pooling layer follows the convolution layer. The max pooling
stride parameter is defined between the underscore characters.

3. The flattened layer is denoted by F.
4. The last number or, in some cases, last two numbers following the

flattened layer provides the parameters of the dense layer (s).

For example, the first architecture listed in Table 3 (16_3)_3_(32_4)
_3_(64_5)_3_(96_6)_3_F_16_32, has the following characteristics:

1. A convolution layer with a kernel size of 3 and 16 filters,
2. A max pooling layer with a stride of 3,
3. A convolution layer with a kernel size of 4 and 32 filters,
4. A max pooling layer with a stride of 3,
5. A convolution layer with a kernel size of 5 and 64 filters,
6. A max pooling layer with a stride of 3,
5

7. A convolution layer with a kernel size of 6 and 96 filters,
8. A max pooling layer with a stride of 3,
9. A flattened layer, and

10. A dense layer with 16 nodes.
11. A dense layer with 32 nodes.

With respect to the experimental results, it is obvious that the (16_3)
_3_(32_4)_3_(64_5)_3_(96_6)_3_F_16_32 architecture is the best or the
winner one. A comparison of the previously proposed DNN architectures
along with their performance measures and the best architecture from
this study is given in Table 4. Figure 2 illustrates the comparison of
identification accuracies of all candidate and benchmarked architectures
in a form of box plot from the experiments with 10 repeats. The figure
clearly indicates the winner architecture whose accuracy is the highest
compared to the benchmark architectures which are resulted from our
experiments and the previously proposed ones. From the figure, the
winner architecture does not only produce the best median which is very
close to 100%, it also gives the narrowest standard deviation. Addition-
ally, even the outlier is less than the Abiyev and Acharya architectures.

The determination of its superiority was based on the fact that all of
its performance measures were better than those of the state-of-the-art
architecture. It was also a shallower architecture with 11 layers and a
total number of parameters of 123,795. In terms of the total number of



Figure 3. Comparison of the confusion matrices resulted from applying Abiyev,
Acharya and our winning architectures to classify the EEG signals into three
different classes. (a) Below the figure to Archarya architecture.

Table 5. Comparative multi-class classification performance of benchmarked and pro

Class Precision Recall

Abiyev Archaya Our Arch Abiyev Archaya Our Arc

Normal 0.96 1.00 0.98 0.96 0.95 1.00

Preictal 0.97 1.00 1.00 0.93 1.00 1.00

Seizure 0.91 0.95 1.00 0.97 1.00 0.98
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parameters, it was comparable to the Acharya architecture and had
approximately a third of the parameters of the Abiyev architecture. The
other three architectures also showed improvements over the Abiyev
architecture. However, they had lower performance measures than the
above-mentioned winning architecture. Additionally, the total numbers
of parameters of the third and fourth architectures seemed to be equal to
those of the Abiyev architecture.

The analysis of multi-class classification performance was also carried
out to compare the benchmarked architectures with our winning. The
normalized confusion matrices resulted from the experiment results were
used to compare the multi-class classification performance. Figure 3
comparatively illustrates the normalized confusionmatrices from the two
benchmarked and our winning architectures. In term of true positive
(TP), it is obvious that our winning architecture gives rise to the com-
parable overall performance to the Abiyev architecture. It is slightly su-
perior to the Abiyev one for the seizure class. The TP performance of both
Abiyev and our winning architectures significantly improve over the
Archaya architecture. Table 5 provides the comparative analysis results
in terms of precision, recall, specificity and F1-score of the benchmarked
and our winning architectures on a class by class basis. For each per-
formance measure, the values of the winner architecture(s) are high-
lighted. It can be seen that most of the highlighted values are within
Abiyev and our winning architectures. Both of these analysis results
further confirm that although our winning architecture has a shallower
architecture and a smaller total number of parameters, its overall multi-
class classification performance is comparable to a more complex state of
the art architecture.

Figure 4 shows the experimental results from a further study of the
performance measures of the winning architecture along with the
execution times for a variety of lengths of EEG signals, which were
varied between 10% and 100% in increments of 5%. Observations
showed that the length percentage of the EEG signals had a linear
relationship with the total number of parameters of the architecture. It
should be noted that all the architectures had to be retrained after
changing the length percentage of the EEG signals. Increasing the
length percentage of the EEG signals only affected the number of pa-
rameters in the first dense layer, the 10th layer, of the winning archi-
tecture. The parameters of all the remaining layers remained intact.
When the total execution time was considered, it was expected that a
small length percentage for the EEG signals would be likely to take a
shorter time to process. This was confirmed by the experimental re-
sults, which are also shown in Figure 3 as a red line graph. Because the
exact execution times are likely to be machine/platform dependent,
their relative values compared to the execution time for the entire
length of the EEG signals are presented instead. The execution times
seemed to have a linear relationship with the length percentage of the
EEG signals. A consideration of the execution times and performance
measures of the winning architecture clearly shows that when length
percentages of 65, 70, 75, and 80% of the EEG signals were used, it
was capable of producing performance measures comparable to those
with 100% of the signals. Table 6 provides a summary of the param-
eters of the winning architecture using these length percentages for the
EEG signals. For these different length percentages, the execution
times were 69, 73, 75, 77, and 81% of the time required when 100% of
the length of the EEG signals was used. The total numbers of param-
eters for this architecture in these cases were 97,683, 100,755,
posed architectures.

Specificity F1-score

h Abiyev Archaya Our Arch Abiyev Archaya Our Arch

0.97 1.00 0.99 0.96 0.98 0.99

0.99 1.00 1.00 0.95 1.00 1.00

0.97 0.98 1.00 0.94 0.97 0.99



Figure 4. Comparison of performance measures in terms of accuracy, specificity, and sensitivity with variation in length of EEG signals of winning architecture.

Table 6. Candidate CNN architecture.

Operator Percentage of EEG signals

65% 70% 75% 80%

Output Param Output Param Output Param Output Param

Conv1D (2661, 16) 64 (2865, 16) 64 (3070, 16) 64 (3275, 16) 64

Max Pooling (887, 16) 0 (955, 16) 0 (1023, 16) 0 (1092, 16) 0

Conv1D (884, 32) 2080 (952, 16) 2080 (1020, 16) 2080 (1089, 16) 2080

Max Pooling (295, 32) 0 (317, 32) 0 (340, 32) 0 (363, 32) 0

Conv1D (291, 64) 10304 (104, 32) 10304 (336, 32) 10304 (359, 32) 10304

Max Pooling (97, 64) 0 (99, 64) 0 (112, 64) 0 (120, 64) 0

Conv1D (92, 96) 36960 (97, 64) 36960 (107, 64) 36960 (115, 64) 36960

Max Pooling (31, 96) 0 (33, 96) 0 (36, 96) 0 (38, 96) 0

Flatten 2976 0 3168 0 3456 0 3648 0

Dense 16 47632 16 50704 16 55312 16 58384

Dense 32 544 32 544 32 544 32 544

Dense 3 99 3 99 3 99 3 99

Total 97,683 100,755 105,363 108,435

Table 7. Comparative execution times of benchmark and proposed architectures.

Measures Architectures

Acharya Abidev Proposed architectures

65% 70% 75% 80% 85% 100%

Average Execution Time (ms) 8.68 11.65 5.23 5.54 5.69 5.84 6.14 7.59

Standard Deviation 0.75 0.57 0.11 0.12 0.12 0.13 0.13 0.16

W. Kurdthongmee Heliyon 6 (2020) e05694
105,363, and 108,435, which represented increases of 2, 5, 10, and
30%, respectively, with respect to the total number of parameters for
the Acharya architecture.

Finally, Table 7 presents the average execution times along with
their standard deviations for all the benchmarks and proposed archi-
tectures. All the execution times were measured on the GCP platform
detailed in section 2. The results indicated that even when the winning
architecture used 100% of the length of the EEG signals it out-
performed both the benchmark architectures. When the winning ar-
chitecture used lower length percentages for the EEG signals, it
required approximately half the execution time of the Abiyev archi-
tecture. These experiments confirmed the effectiveness of the proposed
architecture, which relies on lowering the number of layers, total
number of parameters, and length of the EEG signals. The
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improvement in terms of the execution time was accompanied by the
production of better performance measures.

In order to confirm the applicability of our proposed architecture in
term of its stability for processing a long run of EEG signals, we also
performed an additional experiment to carry out identifying epileptic
abnormalities from the continuous long run EEG signals. The EEG signals
from the dataset detailed in Section 2.1 were annotated and combined to
create a single long run signal which was then used as an input for our
winning architecture-based classifier. The positive result was obtained
from the experiment. That is to say our winning architecture-based
classifier successfully performed abnormalities identification with com-
parable performance measures to the previous experiment results.
Additionally, the classifier was able to continuously perform without any
execution failures.
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4. Conclusion

The identification of epileptic abnormalities from EEG signals, which
can be classified as normal, preictal, and seizure signals, is an important
goal in the biomedical research field. A DNN has been applied to auto-
mate the identification process to avoid the tedious time spent by expert
neurologists. The state-of-the-art DNN architectures for epileptic abnor-
mality identification claim to have high performance measures in terms
of accuracy, specificity, and sensitivity on the standard University of
Bonn dataset. However, their common weaknesses consist of the
requirement for several convolution, pooling, and dense processing
layers, along with a high total number of parameters. These influence the
execution time and memory demand of the computer platform. In the
current experiment, a DNN architecture with shallower layers and a
lower number of total parameters was tested. The standard EEG signal
dataset was used for the DNN training and classification in order to
ensure that the performance measures were comparable to those of
previous publications. The 10-fold cross validation approach with 10
iterations per experiment was employed as ameans to compensate for the
small dataset specifically used for DNN applications. All the training
parameters were taken from the previously proposed architectures in
order to make the results comparable. The best architecture from our
experiment was proven to provide superior performance measures with a
significant improvement in the execution time. Additionally, more ex-
periments were performed to train the winning architecture with various
percentage lengths for the EEG signals. These variations showed a linear
relationship with the total parameters of the architectures. Several su-
perior architectures with a lower number of total parameters were found.
All of them had shorter execution times compared to the original winning
architecture while preserving the performance measures. In summary,
the proposed winning architecture only had 11 layers. It achieved ac-
curacy, specificity, and sensitivity values of 99.43%, 99.57%, and
99.10%, respectively. When the EEG signals were reduced to 65, 70, 75,
80, and 85%, the architecture only required 69, 73, 75, 77, and 81% of
the average execution time of the original winning architecture,
respectively. This was approximately half of the execution time of the
Abiyev architecture. This means that the lag time for identification was
reduced by a factor of two. The total numbers of parameters for these
versions of the winning architecture were 2, 5, 10, and 30% greater,
respectively, than the total number of parameters for the Acharya ar-
chitecture, which had the lowest total number of parameters. The find-
ings of this study could be used as guidelines to select an appropriate
hardware platform to implement the automatic DNN-based identification
of epileptic abnormalities from EEG signals.
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