
[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2514 2514–2521

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 19 2009, pages 2514–2521
doi:10.1093/bioinformatics/btp486

Sequence analysis

PerM: efficient mapping of short sequencing reads with
periodic full sensitive spaced seeds
Yangho Chen, Tade Souaiaia and Ting Chen∗
Program in Computational Biology and Bioinformatics, University of Southern California, 1050 Childs Way,
Los Angeles, CA 90089-2910, USA

Received on May 14, 2009; revised on July 18, 2009; accepted on August 7, 2009

Advance Access publication August 12, 2009

Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: The explosion of next-generation sequencing data
has spawned the design of new algorithms and software tools to
provide efficient mapping for different read lengths and sequencing
technologies. In particular, ABI’s sequencer (SOLiD system) poses a
big computational challenge with its capacity to produce very large
amounts of data, and its unique strategy of encoding sequence data
into color signals.
Results: We present the mapping software, named PerM (Periodic
Seed Mapping) that uses periodic spaced seeds to significantly
improve mapping efficiency for large reference genomes when
compared with state-of-the-art programs. The data structure in PerM
requires only 4.5 bytes per base to index the human genome, allowing
entire genomes to be loaded to memory, while multiple processors
simultaneously map reads to the reference. Weight maximized
periodic seeds offer full sensitivity for up to three mismatches and
high sensitivity for four and five mismatches while minimizing the
number random hits per query, significantly speeding up the running
time. Such sensitivity makes PerM a valuable mapping tool for SOLiD
and Solexa reads.
Availability: http://code.google.com/p/perm/
Contact: tingchen@usc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Next-generation sequencing technology has created the need for
highly efficient methods to align short DNA reads (Shendure and
Ji, 2008). Current technologies (Ronaghi et al., 1998), e.g. the
Illumina and SOLiD platforms, are capable of generating hundreds
of millions of short reads in a single run (Applied Biosystems, 2008a;
Bennett, 2004). These breakthroughs have led to many important
biological applications, including the identification of transcription
factor binding sites (Chip-Seq; Mardis, 2007), estimation of RNA
expression levels (RNA-Seq; Marioni et al., 2008) and SNP calling
(Quinlan et al., 2008).

Applied Biosystems ligation-mediated SOLiD sequencer has
the unique property of collecting color signals for the transitions
between nucleotides. Each single nucleotide polymorphism changes
two transitions (i.e. consecutive colors), providing a large advantage

∗To whom correspondence should be addressed.

in the detection of SNPs because only a fraction of color changes
represent possible SNPs (Applied Biosystems, 2008a) and single
color discrepancies can be regarded as sequencing errors. While this
unique encoding results in base accuracy as high as 99.94% (Applied
Biosystems, 2008a), it also requires algorithms capable of finding
alignments with less similarity than those designed for sequencers
such as Solexa which output signals directly from nucleotides.

Most read mapping programs are designed to be full sensitive
to ‘k’ mismatches, meaning all alignments within k mismatches
will be reported. Original alignment tools such as BLAST (Altschul
et al., 1990) and BLAT (Kent, 2002), are capable of finding
highly sensitive alignments for long reads, but do not provide full
sensitivity to specific numbers of mismatches and are incapable
of efficiently mapping the amount of reads currently produced by
short-read sequencing machines. Many mapping programs have
been designed to handle large amounts of short reads, including
ELAND (Anthony. J. Cox, 2006, unpublished data), MAQ (Li et al.,
2008), ZOOM (Lin et al., 2008), RMAP (Smith et al., 2008) and
SeqMap (Jiang and Wong, 2008), which preprocess and index read
sets and then scan the reference for potential matches. Programs
including SOAP (Li et al., 2008), Pass (Campagna et al., 2009),
MOM (Eaves and Gao, 2009), ProbMatch (Kim et al., 2009),
SXOligoSearch (Malaysian Genomics Resource Center, 2009),
Mosaik (The MarthLab, 2009), BWA (Li and Durbin, 2009) and
Bowtie (Langmead et al., 2009) preprocess and index the reference
and then search for potential matches among the reads.

In many SOLiD datasets (Ondov et al., 2008, Section 3.3), more
than half of the sequenced reads will not align to the reference with
fewer than three mismatches. For this reason, programs designed
specifically for SOLiD data, including the Corona Lite pipeline
(Applied Biosystems, 2008c) and SOCS (Ondov et al., 2008),
provide full sensitivity to alignments including three or more
mismatches. Such sensitivity usually comes at a cost; the shorter
subsequences used to provide full sensitivity to high numbers of
mismatches also slow mapping such that genome-scale mapping
may not be possible.

PerM (Periodic Seed Mapping) ameliorates these difficulties
through the design of periodic spaced seeds to maximize efficiency
for many distance measures, including those specific to the location
of polymorphism in color space. For example, rather than accepting
the slower performance associated with sensitivity to multiple
mismatches, we introduce a faster method which provides full
sensitivity to one potential SNP locus (consecutive mismatches) and

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://code.google.com/p/perm/
http://creativecommons.org/licenses/

[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2515 2514–2521

PerM

Conventional Read Mapping Seeds
32bp Read:

Lookup Table 1 (3 cases):
CCCCTTTTACGTACGT

CCCCTTTTACGTACGT

ACGTACGT****************

Lookup Table 2 (2 cases):
ACGTACGT******** ACGTACGT********

CCCCTTTT

AAAAGGGG

******** ********
Lookup Table 3 (1 case):

AAAAGGGGACGTACGT****************

AAAAGGGG

ACGTACGTCCCCTTTTACGTACGTAAAAGGGG

Fig. 1. Conventional seeds used by ELAND, SOAP and MAQ divide a 32 bp
read into four substrings. For any alignment within two mismatches, at least
one of six pairs of substrings will match exactly. This method requires three
hash tables and six lookups for each read and direction (forward or reverse
complement).

a free color error. Periodic seeds allow PerM to maximize efficiency
while maintaining full sensitivity for up to three mismatches with
about 88% and 67% partial sensitivity for four and five mismatches
(see Supplementary section 3)

Most read-mapping programs use the idea of ‘seeds’ for
preprocessing and matching (Myers, 1999). A seed is a set of
selected positions within a window which generates fixed length
subsequences when slid along a string. When a seed is aligned to
a read or a genomic sequence, selected positions are concatenated
to form a fixed length subsequence which can be used to extract
similar reads or genomic substrings. These subsequences are used
for filtering: only when a read and a genomic substring share the
same subsequence will a ‘hit’ be declared and further examination
be carried out to determine the actual similarity level. When
subsequences are short, the seed is said to have ‘low weight’ and the
probability of subsequences matching by chance becomes greater.
For large genomes and datasets, these ‘random hits’ will often be
the bottleneck of the running time.

The most widely used short-read mapping algorithm,
implemented in many programs including ELAND, MAQ (Li
et al., 2008), SOAP (Li et al., 2008), Corona Lite (Applied
Biosystems, 2008c) and SOCS (Ondov et al., 2008) divides
each read into k +m fragments to provide full sensitivity to k
mismatches. Then

(k+m
m

)
hashing steps are used to check for exact

matches in the different combinations of m fragments. If a read
aligns to the reference with k or fewer mismatches then one of
the

(k+m
m

)
subsequences will match exactly. The larger the value

chosen for m, the greater the seed weight, but more index tables
and hashing steps are required. For example, Corona Lite (Applied
Biosystems, 2008c) chooses m = 3, while SOCS (Ondov et al.,
2008) chooses m = 1. However, the most common choice is m = 2,
used by ELAND, MAQ (Li et al., 2008) and SOAP (Li et al., 2008).
This method is displayed in Figure 1. The read is divided into four
equal size fragments, resulting in the hashing of six substring pairs
for each read. These six pairs of substrings are encompassed into
three seeds which can be used to preprocess the genome or the set
of reads into three index tables.

Instead of using seeds composed of equal-sized substrings, our
method is based on idea of the spaced seed proposed by Burkhardt
and Karkkainen (2001), Ma et al. (2002) in PatternHunter and
Kucherov et al. (2005). A spaced seed is a set of ‘care’ and ‘don’t
care’ positions, annotated as ‘1’s and ‘*’s, respectively. For example,
PatternHunter suggested 111*1**1*1**11*111 as a good spaced

ACGTACGTCCCCTTTTACGTACGTAAAAGGGG

*CGT*C**CCC*T**TAC*T**GTA*A*****

GTA*GCCC*T**ACG*A**TAA*A****

TAC*T**CCT*T**CGT*C**AAA*G

****ACG*C**CTT*T**GTA*G**AAA*G**

*****CGT*C**TTT*A**TAC*T**AAG*G*

******GTC*C**TTT*C**ACG*A**AGG*G

ACG*A**TCC*C**TTA*G**CGT*A******

Fig. 2. The single periodic spaced seed full sensitive to two mismatches
over a 32 bp read. For any alignment within two mismatches, at least one
out of the seven subsequences will match exactly. This seed is composed of
repeating the pattern (111*1**).

seed with weight (number of ‘care’ positions) 11. Mathematical
results (Buhler et al., 2003; Xu et al., 2006) have shown that spaced
seeds are more sensitive than consecutive seeds (those without ‘don’t
care’ positions) in finding local similarities between two strings.
Kucherov et al. (2005) attempted to minimize the number of multiple
spaced seeds necessary to achieve different levels of sensitivity. Lin
et al. (2008) used multiple spaced seeds for short-read mapping and
provided bounds for the number of lookups necessary to achieve
full sensitivity for varying seed lengths and weights. They showed
that for a 32 bp read, seeds with the weight of 16 require at least
six lookups to obtain full sensitivity for two mismatches. They
implemented this idea into a program, called ZOOM (Lin et al.,
2008).

SHRiMP (Rumble et al., 2009) also uses spaced seeds to find hits,
however, they find alignments with InDels as well as mismatches
which requires significantly longer running time.

PerM uses single periodic weight-maximized spaced seeds. An
example, shown in Figure 2, is composed of four repeating patterns
of (111*1**) whose length is seven and is full sensitive to two
mismatches. When this seed is applied to a 32 bp read, it generates
seven subsequences, one of which will match any string within two
mismatches of the read. It should be noticed that the length of the
repeating pattern (seven in the example) is equal to the number of
subsequences generated.

In Section 2, we describe how PerM’s periodic seeds allow to
increase mapping efficiency and sensitivity when compared with
the conventional consecutive seeds used by many other programs.

2 METHODS

2.1 Seed notation
Ck : the conventional seed family which divides reads into k +2

fragments (used in ELAND, MAQ and SOAP) to provide full
sensitivity to k mismatches.

Fk : the maximum-weight periodic spaced seed family which is full
sensitive to k mismatches.

Sx,k : the special weight maximized periodic seed family for mapping
SOLiD reads, full sensitive to x SNP candidates (consecutive
mismatches) and k free mismatches.

2.2 Motivation for periodic design
For any full sensitive seed family, there exists two performance criteria,
memory load and running time. Memory load is directly related to the number
of index tables required to be built during preprocessing. PerM’s single

2515

[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2516 2514–2521

Y.Chen et al.

Table 1. The periodic spaced seed, applied to a read and slid through
positions 8–14 six times, covers all the 21 pair of positions exactly once

Positions 8 9 10 11 12 13 14 Covering 21 pairs of positions

Slide 0 1 1 1 * 1 * * (11,13) (11,14) (13,14)
Slide 1 * 1 1 1 * 1 * (8,12) (8,14) (12,14)
Slide 2 * * 1 1 1 * 1 (8,9) (8,13) (9,13)
Slide 3 1 * * 1 1 1 * (9,10) (9,14) (10,14)
Slide 4 * 1 * * 1 1 1 (8,10) (8,11) (10,11)
Slide 5 1 * 1 * * 1 1 (9,11) (9,12) (11,12)
Slide 6 1 1 * 1 * * 1 (10,12) (10,13) (12,13)

periodic seeds store a single index for each locus, requiring only 4.5 bytes
per base to index the entire genome. Running time is dependent linearly on
the number of queries or slides required of a seed but can be influenced
exponentially by the seed weight (number of ‘care’ positions). Specifically,
periodic seeds that are composed of repeating patterns of length |P| will
generate, for each read, |P| subsequences of weight w for query, where w
is the seed weight. An approximation for the expected number of random
hits per read is 2|G||P|/4w, where |G| is the length of the genome and the
number 2 is necessary for the forward and reverse compliment.

For large-scale genome projects, if the seed weight is not sufficiently
large, the number of random hits will grow by a factor of four each time the
weight is decreased by one. Thus, we make as our goal the design of single
high weight periodic seeds with moderate pattern lengths. Sections 2.3–2.4
describe how the use of periodic seeds provides a generalizable framework
to quickly develop high-performing maximum weight seeds for a variety of
distance measures.

2.3 Periodic seeds: generalization, indexing and
extendability

2.3.1 Generalization for different read lengths That the full sensitive
periodic seeds generalize to all lengths is a function of their repeating pattern.
For example, sliding the following seed (length 28) six times generates seven
subsequences that provide full sensitivity to two mismatches for a 34 bp read.

(111∗1∗∗)(111∗1∗∗)(111∗1∗∗)(111∗1∗∗)

By the definition of full sensitivity, all pairs of positions i and j will be
covered pairwise with ‘don’t care’ (∗) positions in at least one of the slides.
Ignoring boundary effects, we can examine the internal read positions 8–14
in Table 1, when the above spaced seed is applied (Slide 0) and slid six
times (Slides 1–6). In total, each of the

(7
2

) = 21 pairs of positions is covered
pairwise with ‘*’ exactly once. Therefore, this pattern is locally optimal,
providing local full sensitivity to two mismatches.

In fact, local full sensitivity of this pattern implies global full sensitivity of
the periodic spaced seed because every position in the read shares a similar
relationship with some position within 8–14. Formally, for any read position
i (excluding the boundaries of the reads), there exists a position j, 8 ≤ j ≤ 14,
where i mod 7 = j mod 7, such that when j is aligned to ‘*’, so is i. Thus,
if every pair of positions within a pattern are covered pairwise with ‘*’ in
some slides then every pair of positions within the read is covered pairwise
with ‘*’ at some slides. Note that this property is also applied to the boundary
positions which are more often aligned to ‘*’.

This pattern of length seven can be generalized to produce the periodic
spaced seeds for any read length, e.g. read lengths of 25 and 36 as follows:

111*1**)(111*1**)(111*1),
(111*1**)(111*1**)(111*1**)(111*1**)11.

This generalizability of repeating patterns in periodic seeds holds not just
for two mismatches but for all k mismatches, listed as a lemma in the

Table 2. The maximum weights of patterns that are full sensitivity to x SNPs
and k free mismatches

Sensitivity
threshold

Periodic pattern length |P|

6 7 8 9 10 11 12 13 14 15

k = 2 3 4 4 5 6 7 8 9 9 10
x=1,k =1 2 2 3 4 5 5 6 7 8 8
k =3 2 2 3 3 4 5 5 6 6 7
x=2,k =0 1 2 2 3 4 5 5 6 7 8
k =4 1 1 1 2 3 3 3 4 4 5

work of Kucherov et al. (2005). Most importantly, generalizability drastically
simplifies the seed-design algorithm and provides the framework for variable
seed extension, which provides a significant increase in seed weight while
maintaining a single index table.

2.3.2 Efficient indexing to allow seed extension To achieve full sensitivity
a periodic seed will slide |P|−1 times and generate |P| subsequences on
a read. As shown in Figure 2, this is accomplished by keeping open the
last |P|−1 positions at the end of the read. However, as periodic seeds
maintain full sensitivity when generalized, these empty positions are not
required. This is shown with a different example in Figure 4, each slide
seeds can be extended to the end of the read so that all but the last are
likely to have increased seed weight. In the example shown in Figure 4, seed
extension results in weight increasing from the minimum of 14 to between 14
and 19 which corresponding to an approximately five times faster mapping
performance for the whole human genome.

To take the advantage of the extended seed weight without additional
requirements to memory, PerM combines hashing with the binary search.
Our special data structure consists of a hash table which stores pointers
to the starting position of each bucket in an index table which stores the
addresses of reads or the genome locations. In the example shown in Figure 4,
we preprocess a genome using the maximum weight seed with W = 19 to
generate one subsequence for every position in the genome. The prefix of
each subsequence (e.g. the first 14 bases) is used to hash the location into a
bucket in the index table. Inside each bucket, multiple subsequences with the
same prefix are sorted lexicographically and stored in the index table. Note
that within each bucket, we can search for exact matches of variable-length
strings using the binary search. Then, we apply the extended variable-weight
seeds to each read to generate variable-length subsequences, and use the
extended bases after 14 to find the exact matches using the binary search in
the index table. This method results in seed weight which varies from 14 to
19 in the example shown in Figure 4.

2.4 Seed-search algorithm
The weight of periodic spaced seeds can be optimized by calculating the
maximum-weight patterns of length |P| which achieve full sensitivity to
some distance measure. The small search space allows us to easily enumerate
all reasonable size patterns of length |P| to find which has maximum weight.
Table 2 lists the maximum weights of the optimal patterns found for various
number of consecutive color mismatches (x) and single mismatches (k) for
various pattern lengths |P|=6, ... ,15.

For any fixed values of k and x, the design of periodic space seeds
has to consider which pattern length provides the best seed. Notice that a
longer pattern provides a greater weight/length ratio asymptotically, but the
relationship is not monotonic, as shown in the curve for k = 2 in Figure 3. On
the other hand, longer pattern lengths will increase the number of required
queries, so our seed design considers the shortest pattern whose weight to
length ratio is large enough to provide a tolerable number of random hits. In
the case of two mismatches, local optima occur at |P| = 7 and |P| = 13, which

2516

[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2517 2514–2521

PerM

6 7 8 9 11 13 15 17

0.
1

0.
4

0.
7

1

The weight−length ratios of the single
 periodic spaced seed patterns

k=2
x=1,k=1
k=3
x=2,k=0
k=4

Length of periodic spaced seed patterns

W
ei

gh
t−

le
ng

th
 ra

tio

Fig. 3. This figure shows the optimal weight–length ratios for different
pattern lengths.

provide ratios of 4/7 and 9/13, respectively. Here, we choose the pattern with
|P|=7 because it requires six fewer queries per read. This pattern is used
to design F2, which is shown in Figure 2, generating seven queries when
applied to a 32 bp read. We prove that the F2 seed is the maximum weight
spaced seed for seven lookups in the Supplementary Material. This proof
agrees with the results shown by Kucherov et al. (2005), that for moderate
read lengths, optimal seeds are usually periodic. This method is also used to
design F3, F4 and the SOLiD-specific family of seeds Sx,k .

2.5 Implementation and bitwise encoding
2.5.1 Quality scores and paired end reads If reads include a
corresponding quality score, file PerM will evaluate mappings by their
alignment scores according to the quality score of each base. PerM can also
filter out poor quality reads before mapping. If paired end reads and bounds
for their separation distance are given as input, PerM will output both the
best alignments within and beyond the separation bounds. Each alignment
will be stored in a separate file.

2.5.2 Base to color encoding PerM encodes each read into two 64 bit
words with two bits for each base, that is, A= (0,0), C = (0,1), G = (1,0) and
T = (1,1). We adopt RMAP’s method (Smith et al., 2008) to encode these two
bits separately in two words. Similarly, each base on the reference genome is
encoded three bits, with the third bit indicating whether the locus is masked as
character N . This encoding method enables us to quickly check the number of
mismatches between two bit-strings, using two ‘XOR’ and one ‘OR’ bitwise
operations.

For SOLiD reads, the color signals are also encoded in a similar way, with
Blue = (0,0), Green = (0,1), Yellow = (1,0) and Red = (1,1). This encoding
enables a quick translation of encoded base to encoded color signals by using
bitwise operations of ‘SHIFT’ and ‘XOR’. In the example shown in Figure 5,
a five-base read ‘ATGGA’ is encoded as two binary strings, U = (01110) and
V = (01001). The color signals of this read, ‘Red Green Blue Yellow’encoded
as U′ = (1001) and V′ = (1100), can be obtained by U′ = U XOR (U SHIFT 1)
and V′ = V XOR (V SHIFT 1). This allows the reference genome to be saved
as an encoded string of bases, while the corresponding color spaced encoding
can be read out in few bitwise operations.

2.5.3 Color mutations for SNPs Applied Biosystems lists rules (Applied
Biosystems, 2008b) to check whether two consecutive mismatches are
valid in their indication a base substitution (SNP). Only one-third of
possible combinations of consecutive color mismatches are valid for a base
substitution. For example, if ‘AATAA’ is encoded into the colors ‘BRRB’
and mapped to ‘BBBB’ the reference may have resulted from ‘AAAAA’
meaning a SNP from ‘A’⇔‘T’ causing two identical color mismatches, Blue
⇔ Red. However, if ‘BRRB’ is mapped to ‘BBGB’, a SNP cannot be present

1313131200020003131313130002000200

1,1

W=18

W=17

W=14

W=14

W=19

ACGTACGTCCCCTTTTACGTACGTAAAAGGGGAAA

1313**1***0200**1***1313**0***0200

*3131**2***2000**3***3130**2***200

13130***0003**1***1300**0***00

.
.
. ...

********0002**0***1313**0***0002**

*********0020**3***3131**0***0020*

Fig. 4. This figure shows the extension of periodic spaced seed S1,1,
composed of the repeating pattern (1111∗∗1∗∗∗), to multiple variable-
weight spaced seeds that are applied to a 34-color SOLiD reads where 0,
1, 2 and 3 represent the four colors. The original seed is shown in the black
boxes, and the extended variable-weight seeds are highlighted at the tail by
the dashed boxes. The weight w is shown at the beginning for each extended
seeds

st

nd

Fig. 5. Dinucleotide colors signals encoded from the base encoding.

because the nucleotide sequence which corresponds to ‘BBGB’is ‘AAACC’.
Instead, this is likely the result of two color sequencing errors. For ease of
explanation, the combinations of consecutive mismatches are classified into
three types:

• Type I: Blue ⇔ Red or Green ⇔ Yellow

• Type II: Blue ⇔ Green or Red ⇔ Yellow

• Type III: Blue ⇔ Yellow or Green ⇔ Red

Only when both color mismatches are of the same type, does it indicate
a valid SNP. These three types of consecutive mismatches correspond to the
three classes of base substitutions, (i) Transversion I [A ⇔ T or G ⇔ C]; (ii)
Transversion II [A ⇔ C or G ⇔ T]; (iii) Transition, respectively.

The validation of SNP candidates is simple given our encoding method.
Given two colors, one encoded into two bits B1 and B2, and the other into two
bits b1 and b2, the three types of SNPs can be determined by the following
bitwise operations:

• Type I: iff (B1 XOR b1) AND (B2 XOR b2) = 1

• Type II: iff (NOT (B1 XOR b1)) AND (B2 XOR b2) = 1

• Type III: iff (B1 XOR b1) AND (NOT (B2 XOR b2)) = 1

3 RESULTS

3.1 Results of seed design
As shown in the experimental results, the periodic spaced seeds used
in PerM outperform the seeds used in MAQ in terms of mapping
speed and sensitivity for both Illumina and SOLiD data. Table 3

2517

[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2518 2514–2521

Y.Chen et al.

Table 3. PerM’s single periodic spaced seeds for SOLiD 34-color reads

Seed
name

Seed patterns parenthesized
according to their repeats

Seed
weight

�2 (111∗1∗∗)(111∗1∗∗)(111∗1∗∗)(111∗1∗∗) 16

S1,1 (1111∗∗1∗∗∗)(1111∗∗1∗∗∗)(1111∗) 14
�3 (111∗1∗∗1∗∗∗)(111∗1∗∗1∗∗∗)(11) 12

S2,0 (1111∗∗1∗∗∗∗)(1111∗∗1∗∗∗∗)(11) 12
�4 (11∗∗∗1∗∗∗∗)(11∗∗∗1∗∗∗∗)(11∗∗∗) 8

Table 4. Three seed families are compared in their ability to map 34-color
SOLiD reads to a preprocessed human genome

Seed
name

No. of index
tables

No. of queries
per read

Seed
weight

Extended
weights

E(Random Hits)
per read

�2 1 7 16 16–20 1.89
C2 3 6 16 8.38

S1,1 1 10 14 14–19 68.91
�3 1 11 12 12–16 627.25
C3 4 10 12 3576.28

S2,0 1 11 12 12–16 534.42
C4 5 15 10 85.830
�4 1 10 8 8–11 216.007

An index table is, by definition, an array of N index for a genome of N base pairs. Thus,
C2 requires three index tables as shown in Figure 1.

displays our fixed weight periodic spaced seeds generalized to 34-
color SOLiD reads. Fk denotes a seed full sensitive to k mismatches,
while Sx,k denotes a SOLiD-specific seed full sensitive to x
consecutive color mismatches (SNPs) and k free color mismatches.

Table 3 groups F3 and S1,1 into one category because both are full
sensitive to reads with one SNP and one color error. However, S1,1
achieves higher weight than F3 weight by taking advantage of SNP’s
signature in color space. The introduction of positional restriction
at one mismatch at the SNP locus significantly reduces the number
of combinations of three mismatches, leading to the higher seed
weight. Similarly, S2,0 and F4 are both full sensitive to two SNPs,
but S2,0 provides an increase of four (12 to 8) in seed weight. Thus,
the design of seeds specifically for the color space will provide a
significant advantage in mapping speed.

3.2 Theoretical performance of periodic spaced seeds
Table 4 further compares the F-seed family, the S-seed family
and the conventional Ck seed method described in Section 1. Our
comparison is based on the most common implementation where
the human genome is preprocessed and 34-color SOLiD reads are
divided into k+2 fragments for mapping.

3.2.1 Memory requirements As shown in Table 4, PerM’s use
of a single seed results in the requirement of a single index table to
preprocess the human genome no matter the sensitivity requirement,
compared with three to five index tables for the conventional method
Ck . The use of single periodic spaced seeds allows us to preprocess

the human genome efficiently into 4.5 bytes per base, and load it to
14 GB of memory, without the swapping of index tables between
disk and memory.

3.2.2 Running time The total running time of a mapping project
can be divided into two major components:

(1) Preprocessing: the time to preprocess the reference genome
(or the reads set) into one or more index tables.

(2) Mapping: the total time to find matches in the index tables for
all queried subsequences, and the time to examine all matches
using the full read-genome substring alignments.

PerM’s requirement of a single index table results in faster
preprocessing time than methods which use the conventional multi-
seed, multi-table approach. Mapping time consists of two parts:
the time to query each seed-induced subsequence and to validate
matches which result in true alignments, and the time to examine
and ignore matches that result from random hits. The former is fixed
as the number of true alignments is constant given a particular
sensitivity level, while the latter is related directly to the seed
weight. Ideally, mapping time is largely spent on the matching and
validation of true alignments, but if the seed weight is insufficient,
the examination of random hits will dominate the running time. As
listed in last column of Table 4, the expected number of random
hits per read can grow so large that most of the running time is
wasted on filtering out the random hits. For example, using F3 on
the human genome will require the examination of approximately
627 random hits per read which will result in drastically slower
performance than the F2 which is expected to examine fewer than
two random hits per read. Thus, the number of random hits is the
most important indicator of the actual running time. Table 4 shows
that the weight increase associated with extended variable-weight
periodic spaced seeds will result in a large reduction in random hits
and significantly faster running times. As expected, this increased
efficiency is greatest for the Sx,k family, when we compare S2,0 with
C4, we expect 161 times fewer random hits for the periodic seed.

3.3 Experimental results
We performed genome-scale comparison with two popular mapping
programs, MAQ (version 0.6.6; Li et al., 2008) and Bowtie (version
0.10.0; Langmead et al., 2009). Both Illumina and SOLiD reads
from The 1000 Genomes Project were used for mapping the human
genome. We also compared PerM with SOCS, a mapping program
designed specifically for ABI SOLiD reads.

3.3.1 Genome-scale mapping with SOLiD reads We mapped
5 million 35-color SOLiD reads (the first 5 million reads in the NCBI
dataset ERR000455 are available on our web site) to the whole
human genome. Overall, we were able to map 58% of the reads
(2.94 M) with five or fewer mismatches. Over 78% of the mapped
reads included at least one mismatch and 22% of the mapped reads
have four or five mismatches in their best alignment to the reference,
indicative of a high machine error rate. Considering that each SNP
causes consecutive mismatches, it is likely that the majority of reads
which cover SNP loci will contain at least three color mismatches.
Thus, the detection of genomic variation with SOLiD reads requires
far greater sensitivity than necessary for Illumina data. For this
reason, PerM offers the seed S1,1 to maximize seed weight while

2518

[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2519 2514–2521

PerM

Table 5. The results of mapping 5 million 34-color SOLiD reads to the
whole human genome

Seed
name

Mapped reads Unique SNP-supporting reads

3 mis 4 mis 5 mis Mis Threshold Read count

�2 298 898 167 048 117 964 ≤3 colors 74 877

S1,1 465 460 348 416 257 281 ≤3 colors 98 325
�3 496 401 379 936 283 971 ≤3 colors 98 325

All PerM seeds provide a minimum of full sensitivity to two mismatches and report
637 681 exact matches, and 583 363 and 561 029 reads with one and two mismatches,
respectively.

Table 6. Running time comparison of mapping the 35 bp SOLiD reads to
the whole human genome

Program Seed/mode weight (Full) Sensitivity Speed (M/h)

PerM F2 16–20 2 colors 3.53
PerM S1,1 14–19 1 base + 1 color 1.17
PerM F3 12–16 3 colors 0.75
MAQ -c 14 2 colors 0.56

still maintaining full sensitivity to reads which contain one SNP
and a color error. For each seed, Table 5 lists the discovery rate
for alignments containing five or fewer mismatches. The small
difference in the discovery rates of S1,1 and F3 provides further
reason to use S1,1 for SOLiD data.

MAQ does not provide an alignment option which adheres to the
definition of full sensitivity to greater than two mismatches. Instead,
MAQ aligns SOLiD reads by finding hits using a seed similar to C2
(shown in Fig. 1), and checks each for the possibility of a feasible
base-color alignment. It should be noted that each SOLiD read
includes thirty-five colors preceded by the base of the primer used
to synthesize the read. Thus, the first color represents the transition
from the primer (which is not part of the reference) to the first base
on the reference, leaving only thirty four colors which represent
transitions on the reference. MAQ’s current implementation uses
only these thirty four colors for alignment. Unfortunately, each
thirty-four color read could be the result of four different base strings,
depending on the first base synthesized in the read. PerM uses the
primer-color transition to infer the identity of this base and includes
an extra check to insure that the first base in the reference matches
the first base on the read.

Table 6 compares the mapping efficiency of MAQ and PerM
at different sensitivity thresholds. In general, PerM offers faster
running time for SOLiD reads than MAQ. In addition, PerM is able
to offer full sensitivity to more than two mismatches.

Genome-scale mapping with Illumina reads We mapped 9.9
million Illumina reads from whole human genome shotgun
fragments (NCBI dataset SRR001154) to the whole human genome
with full sensitivity to two and three mismatches. The reads,
originally of length 47 bp were also trimmed down to 40 bp and
36 bp to provide a better comparison with MAQ and Bowtie. After
trimming, 71.5%, 62.7% and 36.7% of the 36 bp, 40 bp and 47 bp

Table 7. Running time comparison of mapping the Illumina reads with
different read lengths and seeds to the whole human genome

Length 36 bp 40 bp 47 bp

Weight Reads/h Weight Reads/h Weight Reads/h

Seed
F2 18–21 5.92 M 20–24 8.01 M 24–28 20.1 M
MAQ 14 0.49 M 14 0.55 M 14 0.67 M
Bowtie -v2∗ 4.43 M 3.87 M 2.64 M

F3 13–18 1.69 M 15–19 2.21 M 18–23 3.27 M
Bowtie -v3∗ 4.28 M 3.38 M 1.63 M
Bowtie default 9.27 M 7.95 M 7.20 M

The default mode of Bowtie is equivalent to -k 1. The -v k mode is set with -a –best –
strata. The tests are performed on Sun, X4600, Opteron, 2.6 GHz, using 15 GB single
node and thread.

reads, respectively, could be mapped within four mismatches to the
genome with our F3 seed. MAQ which only offers full sensitivity
to two mismatches was compared with the seed F2. Bowtie was run
in its default mode which outputs the first alignment encountered
with two or fewer mismatches as well as conditions which are most
similar to offering full sensitivity to two and three mismatches, ‘-v
2 -a –best – strata’ and ‘-v 3 -a –best – strata’. These modes were
compared with the seeds F2 and F3.

Table 7 compares the performance for mapping different length
Illumina reads with sensitivity to two or three mismatches. For the
popular task of mapping 36 bp reads with full sensitivity to two
mismatches, PerM runs approximately 12 times faster than MAQ.
Bowtie outperforms PerM when three mismatches are allowed
for 36 bp reads. However, as read lengths grow longer, PerM
significantly outperforms Bowtie and MAQ for sensitivity to both
two and three mismatches. It should be noted also that Bowtie’s
default mode is faster than PerM’s F2 seed for read length 36. This
advantage results from Bowtie’s requirement to find and output only
a single alignment in the default mode.

3.3.2 Comparison: PerM and MAQ As shown in Tables 6 and 7,
PerM is able to map both SOLiD and Solexa reads significantly
faster than MAQ while offering greater levels of full sensitivity.
The differences in performance are a testament to the benefit of
extendable periodic spaced seeds which provide greater seed weights
than the fixed length consecutive seeds implemented in MAQ. This
increase in seed weight allows PerM to avoid the bottleneck which
results from the many random hits present on a large genome. It
should also be noted that MAQ preprocesses reads, requiring it to
build an index table for each mapping project while PerM can reuse
the same index because it preprocesses the genome.

3.3.3 Comparison: PerM and Bowtie Although PerM and Bowtie
both index the genome, PerM finds full sensitive alignments
through seed subsequence matching while Bowtie uses a modified
exact matching algorithm and quality-aware backtracking to report
alignments. As shown in Table 7, Bowtie’s performance slows down
when aligning long reads because of the increase in backtracking
steps required to find inexact alignments. PerM’s performance is
primarily a result of it’s seed weight, which is maximized for any

2519

[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2520 2514–2521

Y.Chen et al.

Table 8. Comparing of PerM and SOCS in chromosome-level reference

Full sensitivity PerM SOCS

Running time Weight Running time Weight

2 color mis 11 min 46 s 16–20 14 min 30 s 11
1 base + 1 color mis 23 min 0 s 14–19
3 color mis 32 min 41 s 12–16 2 h 20 min 8

The running time includes preprocessing and I/O. The memory usage of both the
programs is <2 GB. The tests are performed on Sun, X4600, Opteron, 2.6 GHz, using
single node and thread.

read length or sensitivity level. As shown in Table 7, long reads
allow PerM’s extended seeds to significantly speed up mapping.

3.3.4 Comparison: PerM with SOCS PerM was compared with
a program dedicated to SOLiD reads, SOCS (version 1.2.1). Both
PerM and SOCS provide full sensitivity to three mismatches, but
SOCS does not provide sufficient seed weight to map reads to
the entire genome. For this reason, we mapped the 5 million
35 bp SOLiD reads used in 3.3.1 to chromosome X. Eight percent
of the reads included a mapping to chromosome with three of
fewer substitutions. Table 8 lists the mapping times for different
sensitivity levels. PerM’s faster running time in comparison to SOCS
is primarily the result of much higher seed weight.

3.3.5 Genome preprocessing Genome preprocessing time is
linear with respect to the size of the reference regardless of the
seed used. PerM requires 3 h 30 min to index the whole human
genome to 14 GB of memory. In comparison, Bowtie requires
4 h 47 min to build a compressed 2.7 GB human genome index.
However, for large-genome resequencing projects, preprocessing
time is negligible in comparison with mapping time. Once the
genome has been preprocessed, its index can be shared and reused
by multiple processors to map different read sets. Both PerM and
Bowtie use multiple cores in one computer to map read sets in
parallel by querying the same genome index table in the shared
memory. Thus, on a server with shared memory architecture, PerM
is more memory efficient in terms of ‘memory per CPU’ compared
with MAQ, despite a 14 GB index table.

4 DISCUSSION
PerM provides highly efficient mapping solutions for genome-scale
mapping projects involving Illumina or SOLiD data. PerM owes its
performance primarily to the use of single periodic spaced seeds
which are capable of providing sufficient weight and sensitivity
to significantly increase genome-scale mapping performance in
comparison with other mapping programs.

However, for applications that require full sensitivity to many
mismatches (k ≥ 4) on a short read, single periodic seeds may
prove incapable of providing efficient mapping performance. In this
situation, the costly step of hashing to multiple index tables may
be necessary to increase seed weight and eliminate a bottleneck
in the checking step. Already a topic of much interest (Li et al.,
2004; Nicolas and Rivals, 2008; Noé and Kucherov, 2004; Sun
and Buhler, 2005; Yang et al., 2004), Ma and Yao (2008) showed
that the optimization of multiple seeds cannot be easier than the

Golomb Ruler Design problem, considered likely to be NP-hard.
Thus, although we cannot guarantee optimality over the entire search
space, we propose three methods to design high weight multiple
seeds: a constrained exhaustive search, a reduction to the integer
programming problem and a ‘tuples-grouping’ algorithm. These
methods and additional performance analysis and experiments are
discussed in detail in the Supplementary Material.

ACKNOWLEDGEMENTS
The authors would like to thank Dr Zhenyu Xuan and Dr Richard
McCombie from the Genome Center of Cold Spring Harbor
Laboratory and Dr Andrew Smith at USC for providing us with data
and helpful suggestions. We would also like to thank Zheng Zhang
from ABI as well as graduate students Dazhe Meng and Zach Frazier
from USC for their helpful discussion.

Funding: National Institutes of Health Center of Excellence in
Genomic Sciences.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Applied Biosystems (2008a) Principles of di-base sequencing and the advantage

of color space analysis in the solid system. World Wide Web electronic
publication. Available at http://marketing.appliedbiosystems.com/images/Product
_Microsites/Solid_Knowledge_MS/pdf/SOLiD_Dibase_Sequencing_and_Color
_Space_Analysis.pdf

Applied Biosystems (2008b) Principles of di-base sequencing and the advantage of
color space analysis in the solid system. World Wide Web electronic publication.
Available at http://marketing.appliedbiosystems.com/images/Product_Microsites/
Solid_Knowledge_MS/pdf/SOLiD_Dibase_Sequencing_and_Color_Space_
Analysis.pdf

Applied Biosystems (2008c) SOLiDTM system application documentation: Ab
resequencing analysis pipeline (corona lite). World Wide Web electronic
publication. Available at http://solidsoftwaretools.com/gf/project/corona/

Bennett,S. (2004) Solexa ltd. Pharmacogenomics, 5, 433–438.
Buhler,J. et al. (2003) Designing seeds for similarity search in genomic DNA. In Journal

of Computer and System Sciences. ACM Press, FL, USA, pp. 67–75.
Burkhardt,S. and Karkkainen,J. (2001) Better filtering with gapped q-grams. In

Proceedings of the 12th Symposium on Combinatorial Pattern Matching (CPM’01).
Israel.

Campagna,D. et al. (2009) Pass: a program to align short sequences. Bioinformatics,
25, 967–968.

Eaves,H.L. and Gao,Y. (2009) MOM: maximum oligonucleotide mapping. Bioinfor-
matics, 25, 969–970.

Jiang,H. and Wong,W.H. (2008) SeqMap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics, 24, 2395–2396.

Kent,W.J. (2002) BLAT–the BLAST-like alignment tool. Genome Res., 12, 656–664.
Kim,Y.J. et al. (2009) ProbeMatch: rapid alignment of oligonucleotides to genome

allowing both gaps and mismatches. Bioinformatics, 25, 1424–1425.
Kucherov,G. et al. (2005) Multiseed lossless filtration. IEEE/ACM Trans. Comput. Biol.

Bioinform., 2, 51–61.
Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol., 10, World Wide Web electronic
publication.

Li,H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25, 1754–1760.

Lin,H. et al. (2008) Zoom! zillions of oligos mapped. Bioinformatics, 24, 2431–2437.
Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using

mapping quality scores. Genome Res., 18, 1851–1858.
Li,M. et al. (2004) PatternHunter II: highly sensitive and fast homology search. J.

Bioinform. Comput. Biol., 2, 417–439.
Li,R. et al. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24,

713–714.

2520

http://marketing.appliedbiosystems.com/images/Product
http://marketing.appliedbiosystems.com/images/Product_Microsites/
http://solidsoftwaretools.com/gf/project/corona/

[14:11 2/9/2009 Bioinformatics-btp486.tex] Page: 2521 2514–2521

PerM

Ma,B. and Yao,H. (2008) Seed optimization is no easier than optimal Golomb
ruler design. In Asia Pacific Bioinformatics Conference (APBC). Available at
http://sunflower.kuicr.kyoto-u.ac.jp/apbc2008/acceptpaper.html paper 19.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.
Bioinformatics, 18, 440–445.

Malaysian Genomics Resource Center (2009) SXOligoSearch. World Wide
Web electronic publication. Available at http://synasite.mgrc.com.my:8080/sxog/
NewSXOligoSearch.php

Mardis,E.R. (2007) ChIP-seq: welcome to the new frontier. Nat. Methods, 4, 613–614.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and

comparison with gene expression arrays. Genome Res., 18, 1509–1517.
Myers,G. (1999) A fast bit-vector algorithm for approximate string matching based on

dynamic programming. J. ACM, 46, 395–415.
Nicolas, F. and Rivals, E. (2008). Hardness of optimal spaced seed design. J. Comput.

Syst. Sci., 74, 831–849.
Noé,L. and Kucherov,G. (2004) Improved hit criteria for DNA local alignment. BMC

Bioinformatics, 5, 149–149.
Ondov,B.D. et al. (2008) Efficient mapping of applied biosystems solid sequence data

to a reference genome for functional genomic applications. Bioinformatics, 24,
2776–2777.

Quinlan,A.R. et al. (2008) Pyrobayes: an improved base caller for SNP discovery in
pyrosequences. Nat. Methods, 5, 179–181.

Ronaghi,M. et al. (1998) A sequencing method based on real-time pyrophosphate.
Science, 281, 363–363.

Rumble,S.M. et al. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS
Comput. Biol., 5, e1000386.

Shendure,J. and Ji,H. (2008) Next-generation DNA sequencing. Nat. Biotechnol., 26,
1135–1145.

Smith,A.D. et al. (2008) Using quality scores and longer reads improves accuracy of
Solexa read mapping. BMC Bioinformatics, 9, 128–128.

Sun,Y. and Buhler,J. (2005) Designing multiple simultaneous seeds for DNA similarity
search. J. Comput. Biol., 12, 847–861.

The MarthLab (2009) Mosaik. World Wide Web electronic publication.
Xu,J. et al. (2006) Optimizing multiple spaced seeds for homology search. J. Comput.

Biol., 13, 1355–1368.
Yang,I.-H. et al. (2004) Efficient methods for generating optimal single and multiple

spaced seeds. In BIBE ’04: Proceedings of the 4th IEEE Symposium on
Bioinformatics and Bioengineering. IEEE Computer Society, Washington, DC,
p. 411.

2521

http://sunflower.kuicr.kyoto-u.ac.jp/apbc2008/acceptpaper.html
http://synasite.mgrc.com.my:8080/sxog/

