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Abstract: Here, we report the Cu(II)-photocatalysed hydrocarboxylation of imines (C=N) from a series
of synthesized Schiff Base derivatives, namely (E)-1-(4-((4-methylbenzylidene)amino)phenyl)ethanone, (E)-1-
(3-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone, (E)-4-((5-bromo-2-hydroxybenzylidene)
amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, and (E)-1,5-dimethyl-4-((4-methylbenzylidene)
amino)-2-phenyl-1H-pyrazol-3(2H)-one, with carbon dioxide (CO2) to generate disubstituted amino
acids. Under mild conditions (atmospheric pressure of CO2, room temperature, and 30 W Blue LED
light), good to excellent yields confirming the formation of substituted amino acid unsaturated acid
derivatives were obtained. Single crystal X-ray diffraction (SC-XRD) and UV-Vis diffuse reflectance
spectroscopy (UV-Vis-DRS) confirmed the square pyramidal geometry of the Cu(II) photocatalyst.
Docking and DFT calculations of the substituted amino acid unsaturated acid derivatives showed
their potential as antimicrobial molecules.

Keywords: Schiff bases; CO2; α-unsaturated carboxylic acids; hydrocarboxylation; Cu(II) catalysts

1. Introduction

Carbon dioxide (CO2) is a greenhouse gas that is found in the atmosphere, and human
activities, such as energy generation by fossil fuel combustion, dominate CO2 emissions.
The release of large amounts of CO2 into the atmosphere poses an environmental problem
that must be addressed, paving a way for investigating routes that can allow for the use of
CO2. A route that deals with excess CO2 involves using it as a carbon synthon in organic
synthesis. Given carbon dioxide’s high kinetic and thermodynamic stability [1], activating
it using photoredox catalysts has enabled CO2 conversion via incorporation into organic
compounds [2,3]. In recent decades, transition-metal-catalysed carboxylation using CO2
has received considerable attention. To take inspiration from natural photosynthesis, this
study will focus on devising reaction routes for the fixation of CO2 with organic substrates
in the synthesis of α-amino acids via the use of photocatalysts. Ir(III)-based complexes have
been employed as choice photocatalysts owing to their strong absorption, long lifetimes of
their excited states, and high redox potentials. For example, [Ir(ppy)2(4,4′-tBu2-bpy)]PF6
(catalyst) efficiently promoted the hydrocarboxylation of an imine with CO2, producing the
desired product with an excellent yield [3]. Nonetheless, these photocatalysts are expensive,
which limits their applications [4]. In the search for an alternative metal-based catalyst,
copper has emerged as an attractive complement due to its redox properties [4]. Microbial
resistance against current drugs is a topic of serious concern and is predicted to worsen
in the coming years [5]. Considering the predicted increase in antibiotic resistance, the
development of new potent compounds with antibacterial activity is vital. The introduction
of amino acids to Schiff Bases via copper-catalysed hydrocarboxylation may offer improved
medicinal activity [6–9]. Furthermore, Schiff Bases and α-unsaturated carboxylic acids
are significant in the design of pharmaceuticals, since they possess an array of biological
properties [6–8]. Carboxylic acid (-COOH)-containing drugs play a major role in the medical
treatment of pain and diseases [8]. In this study, we set out to hydrocarboxylate synthesised
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Schiff Base derivatives, namely (E)-1-(4-((4-methylbenzylidene)amino)phenyl)ethenone (1),
(E)-1-(3-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethenone (2), (E)-4-((5-bromo-2-
hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (3), and (E)-1,5-
dimethyl-4-((4-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (4), with carbon
dioxide (CO2) to produce α-substituted amino acids under blue light irradiation by using
[Cu(phen)2Cl]. After the hydrocarboxylation of Schiff Bases, we achieved the highest
conversion rate of 60% of the substituted amino acid yield when using [Cu(phen)2Cl]
(100.57 mg) as a photocatalyst, CyNMe2 (2 mL), and MeCN (10 mL). It is worth mentioning
that, when the photocatalyst was not present, less than 5% carboxylation occurred. The
presence of COOH in the synthesised Schiff bases (α-substituted amino acids) influenced
the interaction with E. faecalis (4M7U) and DNA through hydrogen bonding and mixed
π-interactions.

2. Results and Discussion
2.1. Photocatalyst Characterization
2.1.1. UV-Vis and Band Gap

The UV portion of [Cu(phen)2Cl] was characterized by the intense ligand-centred (LC)
bands typical of the π–π* transitions of phenanthroline ligands between 250 and 300 nm
and a metal-to-ligand charge transfer (MLCT) near 400 nm. The d–d transition, observed
around 670 nm, suggested the formation of a pentacoordinate copper(II) centre in a square
pyramidal geometry (Figure S1a). The DFT-simulated UV-Vis data also presented strong
absorption bands in the 329–370 nm range (prominent in theoretical UV-Vis, Figure S1b)
typical of square-pyramidal geometry. Figure S2 shows that (αthv)0.5 versus hv had regions
with linear fitting. This indicates the indirectly allowed optical transitions in the ligand and
its complexes [9–12]. The extrapolation to the hv axis from the graph of (αthv)0.5 versus hv
presented band gaps of 0.54, 0.80, and 1.99 eV, thus confirming its high electron transfer
properties (Figure S2).

2.1.2. Crystal Structure: [Cu(phen)2Cl]

In the title complex, similar to reported data [13], the copper atom was five-coordinated
by four N atoms from two 1,10-phenanthroline ligands and one Cl atom attached at the
apical region, as shown in the ORTEP view (Figure 1). This complex crystallized in a
monoclinic crystal system and in a C2/c (No.15) space group (Table 1). The structure had a
number of large, interlinked voids (total void volume 1732 Å3, 33 % of the unit cell volume)
in which the solvent and/or counter ions were extensively disordered. Owing to this
extensive disorder, the nature of the solvent and/or counter ions could not be determined
with certainty. Platon’s squeeze routine was, therefore, used to remove the void residual
electron density. The residual electron density in the void was calculated to be 560 electrons
per unit cell, which equated to 70 electrons per asymmetric unit cell. A Cu(II) complex
was suggested by the NMR studies, which showed that the compound was paramag-
netic. Ethanol was used to prepare the crystals and, assuming that the counter ion was
chloride, suggested that the formula was [Cu(II)(phen)2Cl]Cl.2EtOH (C28H28Cl2CuN4O2,
587.01 g/mol). The Cu–N bond lengths were in the range of 1.9769(17)–2.1073(19) Å and
the Cu–Cl bond distance was 2.3368(7) Å (Table 2), which is consistent with the results of
previous studies [13,14]. The coordination geometry around the central Cu atom was a
distorted trigonal bipyramid with N11, N21 and Cl1 as the trigonal base and N12 and N22
as the apex atoms. Which is consistent with the observed τ value of 0.13 [15]. However,
the cis bond angles of the Cu atom with nitrogen ranged from 81.30(12)◦–95.01(12)◦, while
the trans angles ranged from 123.06(11)–175.88(13)◦, further corroborating the distorted
trigonal bipyramid geometry.
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Figure 1. Labelled diagram of [Cu(phen)2Cl]. Ellipsoids were drawn at 50% probability level.

Table 1. Selected crystal data and details for the determination of the photocatalyst.

Compound [Cu(phen)2Cl]

Empirical formula C24H16ClCuN4
Formula weight 459.40

Estimated formula C28H28Cl2CuN4O2
Estimated moiety formula C24H16ClCuN4, Cl, 2(C2H6O)
Estimated formula weight 587.01

Crystal colour Green–purple
Crystal system Monoclinic

Space group C2/c (No.15)
Temperature (K) 296

a, b, c (Å)
23.2998(6)
30.2646(8)
7.4844(2)

α, β, γ (0) 90, 97.789(1), 90
V (Å3) 5229.0(2)

Z 8
F(000) 1872

ρcalc (g/cm3) 1.167
Radiation (Å) Moka 0.71073

Dataset 30:31; −40:40; −9:9
Theta Min–Max (De) 1.3, 28.3

Nref, Npar 6494, 271
Crystal Size (mm) 0.06 × 0.34 × 0.54

Min. and Max. Resd. Dens. (e/Angˆ3) −0.28, 0.32
R, wR2, S 0.0364, 0.1120, 1.01
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Table 2. Selected bond lengths and bond angles of [Cu(phen)2Cl].

Bond Length
Experimental (Å)

Bond angle
Experimental (◦)

Cu1-N11 2.1073(19) N11-Cu1-N12 81.21(7)
Cu1-N12 1.9872(17) N11-Cu1-N21 123.14(6)
Cu1-N21 2.0997(16) N12-Cu1-N21 95.15(7)
Cu1-N22 1.9769(17) N12-Cu1-N22 175.97(7)
Cu1-Cl1 2.3368(7) Cl1-Cu1-N11 115.28(5)

Cl1-Cu1-N12 91.24(5)

The crystal packing diagram for ([Cu(phen)2Cl] is depicted in Figure 2. There were
extensive intermolecular π . . . π ring interactions between the phenanthroline ligands with
centroid-to-centroid distances varying from 3.5493(13) to 3.8073(12) Å (Table 3). These
interactions, together with the intermolecular Cu1—Cl1 . . . π ring and C21—H21 . . . Cl1
interactions of 3.5854(10) and 2.76 Å, respectively, linked the complexes together in planes
parallel to the (1 0 0) plane. These intra- and inter-molecular interactions were effective in
stabilizing the crystal structure of these complexes and the formation of the 3D supramolec-
ular assemblies [16–18].
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Table 3. Selective hydrogen-bond, Y—X···π ring, and π···π stacking interactions for the crystal
structure of [Cu(phen)2Cl].

Interactions D—H (Å)
H···A

(Å)
D···A

(Å)
D—H···A

(º)
Y—X . . . π

(Å)
π···π
(Å)

C21-H21 . . . Cl1 i 0.93 2.76 3.648(3) 161
Cu1-Cl1 . . . Cg1 ii 3.5854(10)

Cg2 . . . Cg3 iii 0.93 2.58 3.498(7) 171 3.7006(13)
Cg4 . . . Cg1 i 3.6196(12)

i: 1
2−x,1/2−y,1−z; ii: x,y, − 1 + x; iii: x,1−y, −1/2 + z; Cg1 is the centroid of C21, C22, C22, C221, C211, and C212;

Cg2 is the centroid of N12 and C121 to C125; Cg3 is the centroid of C11, C12, C122, C121, C111, and C112; and
Cg4 is the centroid of N21 and C211 to C215.

2.2. Schiff Bases and Corresponding Amino Acid (Hydrocarboxylation)
2.2.1. Schiff Bases

The IR of the synthesized Schiff bases confirms the formation of an imines band
v(C=N) at 1640–1530 cm−1 [19], and C–H bands were observed at characteristic vibrations
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of 1450–1400, 1100–1090, and 760–720 cm−1 [20]. The absence of bands characteristic of
primary amine ν(NH) confirms the formation of the imine moiety. Furthermore, the 1H
NMR spectra confirm the proposed stoichiometry of the envisaged Schiff bases. The char-
acteristic C=N–H signal in the 1H NMR appeared at 8.36 ppm for 2. The proton signals
of compounds 3 and 4 for the C=N-H group were de-shielded, appearing at 9.56 and
9.76 ppm, respectively. The integration of the protons in each corresponding compound’s
1H NMR and respective coupling constants evidenced that the desired compounds were
afforded. Aromatic protons peaked as singlets, doublets, and multiplets. The information
obtained from 13C shows the disappearance of the aldehydic carbon (185–210 ppm) in the
spectra of the Schiff bases. The overall number of carbons in the spectra for the synthesized
Schiff bases was consistent with that desired for each Schiff base. DFT studies were con-
ducted to understand the frontier molecular orbitals of the synthesized Schiff bases. The
1H NMR, 13C NMR, and FT-IR of (I-1-(4-((4-methylbenzylidene)amino)phenyl)ethenone
(Figure S4), (E)-3-((4-(dimethylamino)benzylidene)amino)phenol (Figure S5), (E)-4-((4-
hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Figure S6), and
aI(E)-1,5-dimethyl-4-((4-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one
(Figure S7) can be found in the Supplementary Data section.

2.2.2. Hydrocarboxylation Reaction

The Schiff base ((E)-1-(4-((4-methylbenzylidene)amino)phenyl)ethenone (1) with a
methyl group yielded 58% of 2-(4-(dimethylamino)phenyl)-2-((3-hydroxyphenyl)amino)acetic
acid (5) after hydrocarboxylation with CO2. The substitution of the methyl group for
dimethylamino, an electron-donating group, produced 60.1% of 2-(4-(dimethylamino)phenyl)-
2-((3-hydroxyphenyl)amino)acetic acid (6) (Table 4).

Table 4. Schiff base synthesis and desired hydrocarboxylation products.

Schiff Base Synthesis
(Protocol 1)

Visible Light Hydrocarboxylation
(Protocol 2)

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 6 of 20 
 

 

Table 4. Schiff base synthesis and desired hydrocarboxylation products. 

Schiff Base Synthesis 
(Protocol 1) 

Visible light Hydrocarboxylation 
(Protocol 2) 

 

 

Protocol 2: Schiff Bases 1–4 (0.86 mmol), catalyst, (100.57 mg, 0.17 mmol), BIH (76.26 mg, 0.34 mmol), 
excess CyNMe2 (2mL, 13.35mmol), and MeCN (10 mL). Where BIH is 1,3-dimethyl-2-phenyl-2,3-
dihydro-1H-benzo[d]imidazole, Cu cat is ([Cu(phen)2Cl, CO2 is Carbon dioxide, CyNMe2 is N,N-
Dimethylcyclohexylamine, CH3CN is Acetonitrile EtOH is absolute ethanol and rt is room temper-
ature. 

2.2.3. Mechanistic Pathway of Cu(II) Photocatalyst 
A simple UV-Vis experiment was conducted to explore the mechanism of the Cu(II) 

catalyst. The UV–vis spectra indicated that the Cu2+ catalyst was able to absorb visible 
light (UV-Vis absorption study showed that, before irradiation, there was a peak present 
at ~450 nm (metal-to-ligand charge transfer) and ~740 nm (d–d transition)); hence, the hy-
drocarboxylation reaction was likely initiated by the irradiation of Cu2+ by light to produce 
its excited state, Cu2+*. The introduction of a base and BIH in the presence of LED light 
resulted in a decrease in the intensity of the peak between 650 and 800 nm, thus confirm-
ing the disappearance of d–d transitions due to electron transfer from the base to the metal 
centre (Cu(II)), giving rise to Cu(I) that did not contain the d–d transitions found in Cu(II). 
The disappearance of the d–d transition region, therefore, confirmed the conversion of 
Cu(II) to Cu(I) through electron donation (Figure S3). Below is the proposed reaction path-
way for the synthesis of hydrocarboxylated compounds 5-8 (Figure 3) [3]. 
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catalyst. The UV–vis spectra indicated that the Cu2+ catalyst was able to absorb visible 
light (UV-Vis absorption study showed that, before irradiation, there was a peak present 
at ~450 nm (metal-to-ligand charge transfer) and ~740 nm (d–d transition)); hence, the hy-
drocarboxylation reaction was likely initiated by the irradiation of Cu2+ by light to produce 
its excited state, Cu2+*. The introduction of a base and BIH in the presence of LED light 
resulted in a decrease in the intensity of the peak between 650 and 800 nm, thus confirm-
ing the disappearance of d–d transitions due to electron transfer from the base to the metal 
centre (Cu(II)), giving rise to Cu(I) that did not contain the d–d transitions found in Cu(II). 
The disappearance of the d–d transition region, therefore, confirmed the conversion of 
Cu(II) to Cu(I) through electron donation (Figure S3). Below is the proposed reaction path-
way for the synthesis of hydrocarboxylated compounds 5-8 (Figure 3) [3]. 
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Pyrazol-based molecules with methyl (Me) and hydroxyl (OH) groups were also ex-
amined. The hydrocarboxylation of the molecule with Me into the N-phenyl ring molecule
(3) reacted to provide 45.7% of 2-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-
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yl)amino)-2-(4-hydroxyphenyl)acetic acid (7) after 24 h. The reaction of the pyrazol-based
molecule with OH–Ph (4) produced the hydrocarboxylated product 2-((1,5-dimethyl-3-
oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino)-2-(p-tolyl)acetic acid (8) with a yield of
50.7%, thus indicating that the electron-donating properties of the OH group may have
influenced the increased yield under similar reaction conditions (Table 4). Generally, where
yields were lower, by-products derived from the imine reduction were observed (1H and
13C NMR data of the hydrocarboxylated products are provided in the Supplementary Data
section, Figures S4–S11).

2.2.3. Mechanistic Pathway of Cu(II) Photocatalyst

A simple UV-Vis experiment was conducted to explore the mechanism of the Cu(II)
catalyst. The UV–vis spectra indicated that the Cu2+ catalyst was able to absorb visible
light (UV-Vis absorption study showed that, before irradiation, there was a peak present
at ~450 nm (metal-to-ligand charge transfer) and ~740 nm (d–d transition)); hence, the
hydrocarboxylation reaction was likely initiated by the irradiation of Cu2+ by light to
produce its excited state, Cu2+*. The introduction of a base and BIH in the presence of
LED light resulted in a decrease in the intensity of the peak between 650 and 800 nm, thus
confirming the disappearance of d–d transitions due to electron transfer from the base
to the metal centre (Cu(II)), giving rise to Cu(I) that did not contain the d–d transitions
found in Cu(II). The disappearance of the d–d transition region, therefore, confirmed the
conversion of Cu(II) to Cu(I) through electron donation (Figure S3). Below is the proposed
reaction pathway for the synthesis of hydrocarboxylated compounds 5–8 (Figure 3) [3].
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2.2.4. FT-IR

1,10-Phenanthroline exhibited absorption bands in the regions of 1519–1643 ṽ (C=N)
and 2095–3091 ṽ (C-H). While the corresponding copper(II) complex (Cat) showed ab-
sorption bands at 3355 ṽ(OH), 3068 ṽ (CH), 2981 ṽ(CH), 2344 ṽ(CH), 1602 ṽ(C=N), 1428
ṽ(C=N), and 424 ṽ(Cu–N) (Figure S3). The presence of ṽ(OH) confirmed the presence
of water in the coordination sphere of the complex. Numerous weak absorption bands
were observed in the range of 3080–2350 cm−1 and were assigned to the C–H stretching of
1,10-phenanthroline rings. The observed C=N band shift in the complexes was due to the
coordination of the nitrogen ligands to copper(II) atoms [21,22]. The complexes presented
a ṽCu–N band between 424 and 414 cm−1.
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2.3. Theoretical Studies
2.3.1. Chemical Descriptors of [Cu(phen)2Cl]

The HOMO−LUMO gap, which describes electric transport properties [23–25], showed
that the HOMO energies originated from the aromatic rings of [Cu(phen)2Cl], while the
LUMO energies originated from the copper and chlorine atoms coordinating to the phenan-
throline rings (Figure 4A). The MESP map of the complex (Figure 4B) showed the two
1,10-phenanthrolines in a greenish-yellow colour, thus representing a slight electron-rich-a
zero potential [26].
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Figure 4. Images showing the (A) Highest occupied molecular orbital (HOMO) and Lowest un-
occupied molecular orbital (LUMO) and (B) Molecular electrostatic potential (MESP) plots of
[Cu(phen)2Cl].

2.3.2. Chemical Descriptors of Schiff Bases and Envisaged Unnatural α-amino Acids

Schiff base 2 and hydrocarboxylated product 6 presented the highest EHOMO = −8.25
and −8.47 eV, while compound 7 (Table 5) has the highest ELUMO =−0.16 eV. Therefore,
2 and 6 can donate electrons to an electron-poor species, while 7 has the propensity to accept
electrons. The MESP plots show that the aromatic rings were of neutral potential, and
the functional groups COOH and HC=N had a red surface corresponding to electron-rich
groups. The hydrogens on NCH3 had a blue surface and thus represented regions that
were electron-deficient. The images depicting the HOMO–LUMO (A) and MESP mapping
(B) of compounds 1–8 is provided in Figures 5–12.

Table 5. Frontier molecular orbital energies of the synthesized compounds.

Parameter CAT 1 2 3 4 5 6 7 8

EHOMO (eV) −6.86 −9.04 −8.25 −8.55 −8.51 –9.29 –8.47 –9.02 –8.81
ELUMO (eV) −0.94 −1.12 –0.20 −0.42 −0.30 –0.77 –0.16 –0.82 −0.66
∆Egap (eV) 5.92 7.92 8.05 8.13 8.21 8.52 8.31 8.20 8.15

I (eV) 6.86 9.04 8.25 8.55 8.51 9.29 8.47 9.02 8.81
A (eV) 0.94 1.12 0.20 0.42 0.30 0.77 0.16 0.82 0.66
µ (eV) −3.90 –5.08 –4.23 –4.49 –4.41 −5.03 −4.31 –4.92 −4.74
χ (eV) 3.90 5.08 4.23 4.49 4.41 5.03 4.31 4.92 4.74
η (eV) 2.96 3.96 4.03 4.07 4.11 4.26 4.16 4.10 4.08
S (eV) 0.34 0.25 0.25 0.25 0.24 0.24 0.24 0.24 0.25
ω (eV) 22.51 3.26 2.22 2.48 2.37 2.97 2.23 2.95 2.75

CAT = ([Cu(phen)2Cl].
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of one molecule when bound with an active site of another molecule to form a stable com-
plex, such that the free energy of the overall system is minimized [27]. In this study, mo-
lecular docking was conducted to determine the mode of the interaction with enzyme 
E. faecalis DHFR (4M7U) and relative orientation of the B-DNA dodecamer (1BNA) with 
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Figure 12. Images showing the (A) Highest occupied molecular orbital (HOMO) and Lowest unoccu-
pied molecular orbital (LUMO) and (B) Molecular electrostatic potential (MESP) plots of 8.

2.3.3. Docking Studies

Molecular docking is a computational technique that predicts the relative orientation of
one molecule when bound with an active site of another molecule to form a stable complex,
such that the free energy of the overall system is minimized [27]. In this study, molecular
docking was conducted to determine the mode of the interaction with enzyme E. faecalis
DHFR (4M7U) and relative orientation of the B-DNA dodecamer (1BNA) with synthesized
compounds 1–8 and antibiotics (trimethoprim and ciprofloxacin) as standard drugs [28,29].
The standard drugs were chosen on the basis that they bore some similar functional groups
to those of the synthesized compounds. Ciprofloxacin bore CO2H functionality, which was
also present in 5–8, and trimethoprim bore the imine (C=N) group, which was also present
in Schiff bases 1–4. Furthermore, these standard drugs exhibited greater bioavailability,
higher plasma concentrations, and increased tissue penetration, as reflected in their greater
volume of distribution [28].

G-score was used as the typical measure of the docking results. A more negative
G-score represented the best-docked compounds, i.e., better binding affinity. The glide
module of Schrödinger suite 2022-1 was used to dock synthesized compounds 1–8 and
the two standard drugs into the active site of E. faecalis DHFR (4M7U), downloaded from
the protein data bank (https://www.rcsb.org/structure/4M7U, accessed on 6 Septem-
ber 2022), with a resolution of 2.10 Å. The docking results showed that the synthesized
compounds, particularly α-unsaturated amino carboxylic acids 5–8, all exhibited a more

https://www.rcsb.org/structure/4M7U
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negative G-score than the two standard drugs. Furthermore, 5 was the best-docked com-
pound, evidenced by the G-score of −5.93 kcal/mol, E-model of −59.663 kcal/mol, and
ligand efficiency of −0.281 kcal/mol (Table 6). Schiff bases 1–3 displayed more negative
G-scores than that exhibited by ciprofloxacin (G-score = −4.228 kcal/mol), yet lower scores
than that of trimethoprim (G-score = −5.837 kcal/mol). The least-docked compound to
the enzyme 4M7U was observed on Schiff base 4, with a G-score of −3.255 kcal/mol,
E-model of −29.960 kcal/mol, and ligand efficiency of −0.140 kcal/mol (Table 6). Prime
MM-GBSA calculations were carried out using the Glide pose viewer files generated
from the glide calculations to estimate the relative binding affinity of the ligands (synthe-
sized compounds and standard drugs) to the receptor 4M7U, and the results are reported
in kcal/mol. As such, the MM/GBSA binding energies were the estimated free energies
of binding, and a more negative value indicates stronger binding [30]. Along with the
binding free energies (∆G Bind), other values estimated include the electrostatics interac-
tion energy or coulomb (∆G Coulomb), Van der Waals interaction energy (∆G vdW), and
generalized Born electrostatic solvation energy ∆G Solv_GB, among others (Table 7). As
such, synthesized α-unsaturated amino carboxylic acid 7 with a binding free energy of
−41.45 kcal/mol exhibited the best binding affinity, while Schiff base 2 had a binding free
energy of −29.23 kcal/mol. Compound 8 exhibited the highest Van der Waals interaction
energy (∆G vdW = −37.97 kcal/mol), while the standard drug Ciprofloxacin exhibited the
highest generalized Born electrostatic solvation energy (∆G Solv_GB = 50.27 kcal/mol).

Table 6. Energies of Schiff bases (1–4) and α -unsaturated amino carboxylic acids (5–8) with enzyme
E. faecalis DHFR (4M7U) and B-DNA dodecamer (1BNA).

G−Score E−Model Ligand Efficiency

Receptor/DNA 4M7U 1BNA 4M7U 1BNA 4M7U 1BNA

1 −4.759 −3.434 −41.752 −30.420 −0.264 −0.191

2 −4.557 −5.815 −39.811 −52.597 −0.252 −0.178

3 −4.891 −3.976 −47.146 −33.735 −0.213 −0.173

4 −3.255 −4.995 −29.960 −53.619 −0.140 −0.067

5 −5.902 −2.420 −59.663 −21.008 −0.281 −0.122

6 −5.931 −4.013 −58.006 −27.247 −0.280 −0.129

7 −5.656 −2.369 −62.981 −27.070 −0.217 −0.130

8 −5.626 −2.603 −63.009 −26.668 −0.216 −0.112

Trimethoprim −5.837 −4.289 −45.603 −32.005 −0.248 −0.160

Ciprofloxacin −4.228 −3.369 −45.719 −27.134 −0.132 −0.136

The docking results of Schiff base 1 into the active site of E. faecalis DHFR (4M7U)
revealed the involvement of the hydrogen bonding interaction between 4M7U and amino
acid residue SER100 (1.86 Å) (Figure 13). Schiff base 2 exhibited π–cation interactions
with the amino acid residue ARG44 (6.26 Å) and strong hydrogen bond interactions with
amino acid residue SER65 (1.80 Å) (Figure S12). A hydrogen bond interaction between 3
and residues ALA45 (2.69 Å) and SER65 (2.05 Å) was observed. Schiff base 4 interacted
with residues of 4M7U via hydrogen bonding with VAL101 (2.73 Å) and GLY99 (2.68 Å).
Synthesized α-unsaturated amino carboxylic acids 5–8 interacted with the protein 4M7U
with more than one hydrogen bond. For instance, the oxygen atom on 5 interacted with
residues VAL102 (2.04 Å), ARG44 (2.60 Å), SER65 (1.88 Å), and THR64 (2.07 Å). Unfavourable
π-alkyl interactions between 5 and residue SER65 with bond lengths of 2.38 and 2.29 Å were
also displayed. Hydrogen bonding occurred between compound 6 and residues GLU105
(1.75 Å) and SER65 (2.63 Å) (Figure S16). There was a weak interaction between 7 and amino
acid residue ARG44 corresponding to π-cation interaction. Carboxylic acid 7 also interacted
with amino acids via hydrogen bonding through THR126 (1.90 Å), ALA45 (1.80 Å), THR46
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(2.60), and GLY99 (2.60 Å). Carboxylic acid 8 also interacted with the binding residues via
hydrogen bonding with residues ALA45 (1.83 Å) and THR46 (2.60 Å). The hydrogen bonds
and mixed π-interactions of Schiff bases (1–4) and those of α-unsaturated amino carboxylic
acids (4–8) with Enterococcus faecalis enzyme (4M7U) are presented in Table 8. The 3D and
2D interaction images of standard drugs and compounds 2–8 with 4M7U are provided in
the Supplementary Data.

Table 7. Binding free energy components for 4M7U-ligand complexes calculated by MM-GBSA analysis.

Ligands
Enterococcus Faecalis

4M7U (kcal/mol)

∆GBind ∆GCoul ∆Gcov ∆GHbond ∆GPack ∆Glipho ∆GSolv_GB ∆GVdW

Schiff Bases

1 −39.21 −15.43 1.73 −0.59 0.00 −15.39 22.13 −31.67

2 −29.23 −7.95 0.25 −0.53 0.00 −12.53 18.34 −26.80

3 −39.21 −22.95 6.04 −1.77 −0.08 −14.51 24.14 −30.08

4 −39.73 −18.96 2.22 −0.63 −0.05 −15.19 24.49 −31.61

α-unsaturated aminocarboxylic acids

5 −37.87 −16.63 3.41 −3.06 −0.12 −11.16 22.98 −33.29

6 −37.64 −23.74 1.67 −2.04 −0.19 −12.64 31.33 −32.02

7 −41.45 −29.35 10.04 −2.27 0.00 −14.79 29.71 −34.79

8 −39.27 −23.82 10.13 −1.67 0.00 −15.51 29.57 −37.97

Control

Trimethoprim −36.94 −34.03 2.39 −3.18 −0.97 −8.45 30.82 −23.51

Ciprofloxacin −31.72 −40.54 0.42 −2.22 −1.27 −9.99 50.27 −28.39

∆G Bind: Binding free energy; ∆G Coul: Coulomb or electrostatic interaction energy; ∆Gcov: Covalent bonding
correction, ∆GHbond: Hydrogen bonding correction, ∆GPack: π–π packing correction, ∆Glipho Lipophilic interaction
energy, ∆G Solv_GB: Generalized Born electrostatic solvation energy, ∆G vdW: Van der Waals interaction energy.
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Table 8. Hydrogen bonding and mixed π-interactions of Schiff bases (1–4) and α-unsaturated amino
carboxylic acids (4–8) with Enterococcus faecalis enzyme (4M7U) and B-DNA dodecamer (1BNA).

Enterococcus Faecalis (PDB id: 4M7U) with
Interacting Residues

B-DNA Dodecamer (PDB id: 1BNA) with
Interacting Nucleotides

Entry Hydrogen Bond (Å) π-Interactions (Å) Hydrogen Bond (Å) π-π Stacking (Å)

Schiff bases

1 SER100 (1.86) - DA6 (2.27) DA5 (5.23), DG4 (4.80)

2 GLY18 (1.74) GLY18 (2.30) π-alkyl DA18 (2.37) DC3 (5.21)

3 ALA45 (2.69), SER65
(2.05), (1.80) ARG44 (6.26) π-cation DT19 (1.89), DC3 (1.97) DG4 (5.00)

4 VAL101 (2.73), GLY99
(2.68) - DG4 (2.75) DG4 (5.14), DC3 (5.24)

α-unsaturated aminocarboxylic acids

5
VAL102 (2.04), ARG44

(2.60), SER65 (1.88),
THR64 (2.07)

SER65 (2.38), (2.29)
π-alkyl DC3 (1.65) -

6 GLU105 (1.75),
SER65(2.63) - DC3 (2.07), DC21 (2.74),

DT19 (1.78) -

7
ALA45 (1.80), THR46
(2.60). GLY99 (2.60),

THR126 (1.90)
ARG44 (6.52) π-cation DC3(1.64), DC21 (2.74) -

8 ALA45 (1.83), THR46
(2.60) DC3 (1.69), DC21 (2.33) -

Control

Trimethoprim SER65 (2.04), ARG44
(1.93) ARG44 (5.78) π-cation DC3 (1.91), DG4 (1.92) -

Ciprofloxacin ASP125 (1.80), VAL101
(2.11), THR46 (2.20) - DG4 (2.24), DA18 (2.55),

DA17 (1.60) DA18 (4.74)

The sequence of DNA base pairs defines the characteristics of individuals, ranging
from physical traits to disease susceptibility [31]. Notably, the double helix of DNA is
of great length and short diameter, consisting of minor and major groove regions. The
minor groove is narrow and shallow, only about 10 Å in width. The major groove is
deeper and wider, approximately 24 Å in width [32]. It has been reported in the literature
that small organic and inorganic molecules bind to DNA and influence several biological
processes, such as transcription and replication. These molecules can modify, inhibit, or
activate the functioning of DNA, acting as therapeutics for the treatment and prevention
of diseases. Other studies have also characterized a variety of molecules that interact
with DNA, which are classified as antibiotic, antitumor, antiviral, or antiprotozoal agents.
Hence, it is important to investigate the interaction between drugs or drug prototypes
and DNA to understand their mechanism of action at the molecular level [33–37]. Hence,
the synthesized compounds 1–8 and standard drugs were docked to DNA dodecamer
(1BNA) obtained from protein data (https://www.rcsb.org/structure/1BNA, accessed on
6 September 2022) to determine the relative orientation of the docked compounds in the
DNA. The evaluation of the docking data with DNA reflected that all of the compounds
formed bonds in the minor groove, including ciprofloxacin. Trimethoprim was observed to
bind in the major groove (Figure S28). The structures of ciprofloxacin and trimethoprim
are presented in Figure S30. Schiff base 2, with a G-score of −5.815 kcal/mol, represented
the best-docked compound and was surrounded by several nucleotides, namely DA18,
DT19, DT20, DC3, DG2, DG4, DA5, and DA6, in the major groove of DNA (Figure 14).
Furthermore, Schiff base 2 exhibited hydrogen bonding with nucleotides DA18 (2.37 Å)

https://www.rcsb.org/structure/1BNA
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and DC3 (5.21 Å) Table 8. The least-docked compound 7 had a G-score of −2.369 kcal/mol,
E-model of −62.981 kcal/mol, and ligand efficiency of −0.130 kcal/mol, and exhibited
hydrogen bonding with the nucleotides DC3 (1.64 Å) and DC21 (2.74 Å). Ciprofloxacin,
with a G−score of −3.369 kcal/mol, only showed better binding affinity than that of α-
unsaturated amino carboxylic acids 5, 7, and 8. Only two compounds (2 and 4) exhibited
better binding affinity than Trimethoprim (G-score of −4.289 kcal/mol). MM−GBSA
binding free energy analysis was carried out on the synthesized compounds and standard
drugs to assess the affinity of the ligands to DNA dodecamer (1BNA), and the contributing
factors calculated are mentioned in Table S1. Among all of the studied complexes, the
ciprofloxacin and DNA complex showed the highest binding free energy (∆G Bind =
−36.19 kcal/mol), while α-unsaturated amino carboxylic acid 8 displayed the lowest
binding free energies (∆G Bind = 0.23 kcal/mol). Schiff base 2, however, displayed the
highest binding free energy among all of the synthesized compounds, even higher than
that of trimethoprim. Schiff base 2 also exhibited the highest lipophilic interaction energy
(∆Glipophilic = −8.24 kcal/mol). All compounds displayed a value of 0.00 kcal/mol for
hydrogen bonding correction (∆GHbond and π-π packing correction (∆GPacking).
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2.3.4. ADMET Properties

All the screened compounds agreed with Lipinski’s rule of five, and only one com-
pound, α-unsaturated amino carboxylic acid 7, exhibited one violation of Jorgensen’s rule
of three. The pharmacokinetic ADME properties play a significant role in the determination
of the safety and efficacy of drug-like compounds. Thus, properties, such as the molecular
weight (MW), polar surface area (PSA), and Caco-2 cell permeability in nm/s (QPPCaco),
were evaluated and compared with the values obtained for the reference drugs, trimetho-
prim and ciprofloxacin (Table 9). Molecules violating more than one of these rules could
have a problem in terms of their bioavailability [38]. Furthermore, all other quantities were
within the recommended limit for drug-like properties (Table S2).
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Table 9. ADMET properties of the studied compounds.

Entry 1 2 3 4 5 6 7 8 Trimethoprim Ciprofloxacin

Mw 237.30 240.31 307.35 305.38 283.33 286.33 353.38 351.41 290.32 331.34
#stars 0 0 0 0 0 0 0 0 0 1
WPSA 0 0 0 0 0 0 0 0 0 31.43

Volume (A3) 889.07 879.93 1005.64 1051.19 969.90 950.591 1151.07 1182.23 930.09 1013.05
QPpolrz (A3) 29.70 28.86 34.57 36.62 31.86 30.32 40.02 41.58 27.50 34.40

EA (eV) 0.94 0.46 0.54 0.49 0.39 −0.02 0.27 0.27 −0.092 0.76
QplogPoct 11.42 11.97 10.71 14.86 16.12 17.09 23.09 21.15 17.52 17.79
QplogPw 5.52 6.60 10.16 7.81 10.52 11.43 15.87 13.31 12.11 9.94

QplogPo/w 3.59 3.55 2.79 3.82 2.98 2.69 0.25 1.23 0.91 0.280
QplogS −4.17 −4.21 −3.81 −4.44 −4.06 −3.32 −4.10 −4.85 −2.85 −3.79

QPPCaco
(nm/s) 2670.97 2535.63 1248.80 4244.01 117.72 88.16 10.26 36.48 2396.80 12.98

#metab 1 2 2 2 4 6 4 4 5 0
%Human Oral

Absor 100 100 100 100 81.46 77.53 46.52 62.09 78.08 48.51

PSA 39.24 35.097 62.99 40.68 85.21 87.30 112.60 90.10 98.46 98.88
Rule of 3 0 0 0 0 0 0 1 0 0 1
Rule of 5 0 0 0 0 0 0 0 0 0 0

3. Materials and Methods
3.1. General Chemistry Methods

A Vario EL Cube Elemental Analyzer was used for the CHNS analysis of the Schiff
bases. A Bruker Tensor 27 platinum ATR-FTIR spectrometer was used to record the infrared
spectra of molecules in the wavelength range of 4000–400 cm−1. UV-Vis was recorded on a
Shimadzu UV-VIS-NIR Spectrophotometer UV-3100 (solid reflectance) within a wavelength
range of 200–800 nm; the Energy gap Eg of [Cu(phen)2Cl] was also determined from the
UV-Vis data. A Bruker APEX II CCD diffractometer with graphite-monochromated Mo
Kα radiation at 298 K with APEX2 [39] software was used for data collection. The cell
refinement and data reduction were carried out using SAINT [39]. Crystal data were
corrected for absorption effects using the numerical method implemented in SADABS [39].
SHELXT-2018/2 [40] and SHELXL-2018/3 were used to solve the structures by dual-space
methods and refined by least-squares procedures, respectively. Crystal structure diagrams
were drawn with ORTEP-3 [41].

3.2. Photocatalyst Synthesis
Copper (II) Complex

A modified method from the literature was followed [42] by reacting a solution of two
equivalents of 1,10-phenanthroline in ethanol–H2O (90:10) solution with one equivalent
of CuCl2.H2O under reflux for 3 h. The solid precipitate formed upon completion was
filtered off, and the filtrate was kept at room temperature and allowed to evaporate slowly,
yielding high-quality greenish-purple crystals suitable for X-ray analysis. [Cu(phen)2Cl]:
colour, purple; FT-IR (cm−1): 3355 v(OH), 3051 v(CH), 1628 v(C=N), 1584 v(C=N), and
485 v(Cu–N).

3.3. Schiff Bases
3.3.1. Synthesis of (E)-1-(4-((4-methylbenzylidene)amino)phenyl)ethanone (1)

An experimental method from the literature [43] was adopted for the synthesis of the
title compound using 4-methylbenzaldehyde (2 g, 16.64 mmol), 4′-aminoacetophenone
(2.25 g, 16.64 mmol), and EtOH (30 mL). The resulting mixture was heated under reflux
overnight and cooled; then, the light-yellow solid was separated, filtered off, and recrystal-
lized from acetone. Yield, 2 g (50.6%). IR (KBr): ṽ = 2980 v(CH), 2896 v(CH) 1664 v(C=O),
and 1582 v(C=N). 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 8.00 (s, 2H), 7.81 (s, 2H), 7.26
(d, J = 29.9 Hz, 4H), 2.61 (s, 3H), 2.44 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 197.09, 162.00,
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157.02, 142.95, 134.95, 133.25, 129.64, 129.33, 120.89, 26.31, and 21.28. Anal. Calc. for
C16H15NO: C, 80.98; H, 6.37; and N, 5.90; Found: C, 80.27; H, 6.50; and N, 5.77.

3.3.2. Synthesis of (E)-3-((4-(dimethylamino)benzylidene)amino)phenol (2)

The experimental procedure employed for the synthesis of 1 was followed using 4-
(dimethylamino)benzaldehyde (4.66 g, 31.23 mmol) and 3-aminophenol (3.41 g, 31.23 mmol)
in EtOH (50 mL). The crude product obtained after filtration was recrystallized using
acetone to produce a yellow solid. Yield, 4.96 g (66.21%). IR (KBr): ṽ = 3644 v(OH), 2986
v(CH), 2903 v(CH), 2827 v(CH), 1680 v(C=C), and 1582 v(C=N). 1H NMR (400 MHz, DMSO)
δ 9.52 (s, 1H), 8.36 (s, 1H), 7.74 (d, J = 8.7 Hz, 2H), 7.18 (t, J = 8.1 Hz, 1H), 6.74 (d, J = 8.7 Hz,
2H), 6.66 (s, 3H), and 2.96 (s, 6H). 13C NMR (101 MHz, DMSO) δ 160.24, 158.56, 154.22,
152.77, 130.73, 130.24, 124.28, 112.60, 112.07, 111.89, 108.35, and 40.11. Anal. Calc. for
C15H16N2O: C, 74.97; H, 6.71; N, 11.66; and O, 6.66. Found: C, 72.58; H, 7.12; and N, 11.29.

3.3.3. Synthesis of
(E)-4-((4-hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (3)

Briefly, 4-hydroxybenzaldehyde (3 g, 24.56 mmol) and 4-aminoantipyrine (4.99 g,
24.56 mmol) were reacted in EtOH (50 mL). On completion, a light-yellow solid was
produced. Yield, 5.75 g (76.2%). IR (KBr): ṽ = 3581 v(OH), 3024 v(CH), and 1584 v(C=N).
1H NMR (400 MHz, DMSO) δ 9.98 (s, 1H), 9.56 (s, 1H), 7.71 (d, J = 7.2 Hz, 2H), 7.50 (d,
J = 6.3 Hz, 2H), 7.45–7.28 (m, 3H), 6.91 (d, J = 7.2 Hz, 2H), 3.08 (s, 3H), and 2.46 (s, 3H).
13C NMR (101 MHz, DMSO) δ 160.44, 156.01, 152.51, 134.71, 129.99, 127.06, 124.57, 117.90,
116.34, 35.97, and 10.28. Anal. Calc. for C18H17N3O2: C, 70.34; H, 5.58; N, 13.67; and O,
10.41. Found: C, 63.64; H, 6.24; and N, 12.48.

3.3.4. Synthesis of
(E)-1,5-dimethyl-4-((4-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (4)

The experimental procedure employed for the synthesis of (E)-4-((5-bromo-2-hydroxy
benzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one was used in the synthe-
sis of the title compound using 4-methylbenzaldehyde (2 g, 16.64 mmol) and aminoan-
tipyrine (3.38 g, 16.64 mmol) in EtOH (30 mL). Upon completion, a yellow solid was
recovered through filtration. Yield, 4.04 g (79.6%). IR (KBr): ṽ = 2993 v(CH), 2923 v(CH),
1659 v(C=O), and 1577 v(C=N). 1H NMR (400 MHz, CDCl3) δ 9.76 (s, 1H), 7.78 (d, J = 7.4 Hz,
2H), 7.49 (t, J = 7.2 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.32 (t, J = 7.1 Hz, 1H), 7.24 (d, J =
7.5 Hz, 2H), 3.12 (s, 3H), and 2.44 (d, J = 31.3 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 161.09,
157.59, 152.24, 141.06, 135.38, 134.71, 129.62, 127.77, 124.57, 118.55, 36.03, 21.36, and 10.29.
Anal. Calc. for C19H19N3O: C, 74.73; H, 6.27; N, 13.76; and O, 5.24. Found: C, 73.77; H, 7.02;
and N, 13.72.

3.4. Hydrocarboxylation Reaction

The Schiff bases (0.86 mmol), catalyst, (100.57 mg, 0.17 mmol), BIH (76.26 mg, 0.34 mmol),
excess CyNMe2 (2mL, 13.35mmol), MeCN (10 mL), and a magnetic stirring bar were added
to an oven-dried 50 mL round-bottomed flask. The mixture was purged with N2 for
2 min to evacuate the dissolved gases, and then purged with CO2 for 5 min to saturate
the solution with CO2. The mixture was placed under a 30 W blue LED light source
with constant stirring at room temperature for 24 h. The method for the synthesis of
1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) is provided in the Supple-
mentary Data section.

3.5. Theoretical Studies
3.5.1. DFT Calculations

Molecular orbital calculations were conducted with full-geometry optimization of the
catalyst and synthesized compounds (Schiff bases and unnatural α-amino acids) using
the semi-empirical MO-G PM6 with the aid of the SCIGRESS package from Fijitsu (SCI-
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GRESS version FQ 3.5.0). Three-dimensional molecular electrostatic potential (3D MESP)
maps were also obtained from the optimized structures [44,45]. The highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies,
which determine chemical reactivity [9–11,46–49], are presented in the Supplementary Data
section. Discussions of the global reactivity descriptors, such as the ionization potential
(I), electron affinity (A), chemical potential (µ), electronegativity (χ), global hardness (η),
global softness (S), and global electrophilicity (ω) values [12–14,16], are also presented in
the Supplementary Data section. The molecular electrostatic potential (MEP) [17], which
displays the electron-rich and -deficient regions of a molecule, is also presented in the
Supplementary Data section.

3.5.2. Docking Calculations

Three-dimensional crystal structures of E. faecalis DHFR (4M7U) co-crystallized with
nicotinamide adenine dinucleotide phosphate (NADPH) [50] and B-DNA dodecamer
(1BNA) [51] were obtained from the protein databank. The protein preparation wizard in
Schrödinger suite 2022-1 was used to prepare 4M7U and 1BNA for docking calculations by
refining the bond orders, adding hydrogens, deleting water molecules beyond 5 Å, filling
missing loops using Prime, and generating states using Epik at pH 7.4. Protein minimization
was performed using an OPLS4 force field with the RMSD of the crystallographic heavy
atoms kept at 0.30 Å. In the case of 4M7U, the binding site was revealed by selecting the
co-crystallized ligand (NADPH) and then creating a receptor grid with a docking length of
20 Å [46].

The possible binding sites of the B-DNA dodecamer (1BNA) were examined using
Site Map, where 15 site points were analysed and then the site maps were cropped at 4 Å
from the nearest site point. Amongst the various possible sites, the site with a higher score
was used as the target site to generate the standard receptor grid for docking [47]. Docking
and calculations were executed in the extra precision (XP) mode of Glide. The ligands
with the highest negative Glide scores had more binding affinity toward 4M7U and 1BNA.
To determine the free energy of binding for compounds 1–8 and standard drugs in the
respective complexes, post-docking energy minimization studies were performed using
Prime molecular mechanics-generalized Born surface area (MM-GB/SA) in Schrödinger
2022-1. The energy for the minimized XP docked pose of ligand–receptor complexes
was calculated using the OPLS4 force field and generalized Born/surface area (GB/SA)
continuum VSGB 2.0 solvent model [48].

3.5.3. ADMET Determination

Synthesized compounds 1–8, ciprofloxacin, and trimethoprim were prepared by as-
signing the bond length, bond angle, and possible ionization states at pH 7, and then
optimized using the Ligprep module of the Schrödinger 2022–1 molecular modelling
platform with an OPLS4 force field. Calculating the Qikprop scores, minimized ligands
(Ligprep output) were given as the input in the Qikprop module for the determination of
the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties [49].

4. Conclusions

We developed the catalytic hydrocarboxylation of Schiff bases using a copper(II)
complex ([Cu(phen)2Cl], photocatalyst) with carbon dioxide (CO2) to generate substituted
amino acids under mild reaction conditions. The Cu(II) ion of [Cu(phen)2Cl] is linked to
four nitrogen (N) atoms of two 1,10-phenanthrolines and one chlorine atom in a slightly
distorted square pyramidal geometry. The crystal packing revealed several intra- and
inter-molecular hydrogen bonding interactions. The low energy gap (0.54, 0.80, and 1.99
eV) determined via DFT suggested a higher charge transfer when activated. The Schiff
bases were successfully hydrcarboxylated with CO2 using the Cu(II) photocatalyst. The
hydrocarboxylation reaction was successful in the presence of Cu(II), with the desired
product yields in the range of 45 to 60%. The irradiation of Cu2+ confirmed its ability to
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absorb light and subsequent excitation of Cu2+*, which cause electron loss (e−) and result in
the formation of the Cu(I), as confirmed by the disappearance of d–d transitions in the UV-
Vis spectra. Both Schiff bases and α-substituted amino acids presented comparable binding
free energies with E. faecalis (4M7U) similar to those of reference drugs (ciprofloxacin
and trimethoprim). Compounds 1–8 presented groove binding with a DNA dodecamer
(1BNA). The docking studies predicted the ligand–protein interaction through the complex
formation and binding sites of the target proteins.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15101240/s1. CCDC 2204542 contains the crystallographic
data of [Cu(phen)2Cl]. These data can be obtained freely from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/structures (accessed on 6 September 2022). Reference [52] is cited in
the supplementary materials.
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