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ABSTRACT

Background: During the COVID-19 pandemic, the Johns Hopkins University Center for Systems Science and Engineering (CSSE) established a
comprehensive database detailing daily mortality rates across countries. This dataset revealed fluctuating global mortality trends attributable to
COVID-19; however, the specific differences and similarities in mortality patterns between countries remain insufficiently explored. Consequently,
this study employs Fourier and similarity analyses to examine these patterns within the frequency domain, thereby offering novel insights into the
dynamics of COVID-19 mortality waves across different nations.

Methods: We employed the Fast Fourier transform to calculate the power spectral density (PSD) of COVID-19 mortality waves in 199 countries from
January 22, 2020, to March 9, 2023. Moreover, we performed a cosine similarity analysis of these PSD patterns among all the countries.

Results: We identified two dominant peaks in the grand averaged PSD: one at a frequency of 1.15 waves per year (i.e., one wave every 10.4 months)
and another at 2.7 waves per year (i.e., one wave every 4.4 months). We also found a cosine similarity index distribution with a skewness of —0.54
and a global median of cosine similarity index of 0.84, thus revealing a remarkable similarity in the dominant peaks of the COVID-19 mortality
waves.

Conclusion: These findings could be helpful for planetary health if a future pandemic of a similar scale occurs so that effective confinement measures
or other actions could be planned during these two identified periods.

1. Introduction

Although the Spanish flu occurred over 100 years ago [1-3], no nation was prepared for a pandemic of this scale in modern times.
This lack of preparation and the variety of transportation systems between nations contributed to the COVID-19 pandemic spreading
rapidly and affecting all countries worldwide. This, in turn, caused a total collapse in healthcare systems in many countries from the
onset of the disease [4]. Another contributing factor was the high virulence of the SARS-CoV-2 virus, which, combined with the
massive global population, facilitated a dramatic increase in infections in many countries within weeks [5]. Hence, the COVID-19
pandemic resulted in over 7 million deaths worldwide. In this context, the number of fatalities proves that the pandemic control
was unsuccessful without vaccination. Therefore, a systematic analysis of COVID-19 mortality patterns worldwide would be helpful for
future generations if a new pandemic of a similar scale could occur.
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2. Background

Fortunately, it is now possible to obtain data on the daily number of SARS-CoV-2 infections, active cases, and COVID-19 deaths
worldwide thanks to databases such as "Worldometer” and Johns Hopkins University CSSE [4]. These databases were created to
facilitate future studies on the factors contributing to the virus’s spread. For this reason, infections and confirmed COVID-19 deaths
have been geographically mapped in space and time [4,5]. In addition, data on climatic conditions, population density, population
composition, and human travel patterns have also been collected.

2.1. Literature review

Many studies have employed the Johns Hopkins University CSSE database and other databases to investigate various factors
influencing the COVID-19 pandemic. These factors include correlations between age and gender on COVID-19 incidence [6] and the
interplay between tourism and the virus’s spread [7]. Additionally, research has examined the relationship between weather condi-
tions, air pollution, SARS-CoV-2 transmission [8], and the impact of heat waves on the pandemic [9].

Qualitative observation of the graphs generated by the Johns Hopkins University CSSE database revealed that death waves shared
similar wave patterns in several countries. However, notable differences existed in various countries. For instance, a previous study
examined whether there are similarities in the graphs of COVID-19 mortality rates between Canadian provinces and the American
States [10]. Surprisingly, these authors found that most provinces and states are dissimilar in cumulative rates of COVID-19 mortality
from January to December 2020 [10], even the close ubication of the studied provinces. This led us to hypothesize that a systematic
similarity analysis of worldwide COVID-19 deaths in the frequency domain could help characterize global COVID-19 mortality waves
in detail. In this context, our approach is original. Moreover, to our knowledge, we emphasize that no similar reports in the literature in
this field examined this novel hypothesis.

Therefore, the objectives of this study were: 1) to use the Johns Hopkins University CSSE database to characterize the power
spectral density (PSD) of the worldwide mortality waves caused by COVID-19, and 2) to perform a similarity index analysis of these
PSD graphs among countries.

We utilized the PSD methodology because it can quantitatively identify the dominant frequencies of mortality waves more precisely
than the qualitative observation of the Johns Hopkins University CSSE COVID-19 database. Additionally, we employed the cosine
similarity analysis to precisely compare these dominant frequencies across different countries, thereby elucidating cross-national
variations in COVID-19 mortality patterns.

3. Methods

We employed the Johns Hopkins University CSSE COVID-19 database on GitHub.com (full_data.csv) to obtain the COVID-19 daily
death counts for n = 229 countries from January 22, 2020, to March 9, 2023.

3.1. Inclusion and exclusion criteria

This is a retrospective observational study in which we analyzed daily COVID-19 death time series from 199 countries to obtain a
PSD. We excluded 30 countries due to low COVID-19 deaths and the inability to obtain a peak in the PSD from their time series.

3.2. Power spectral density (PSD) and cosine similarity index analysis

The PSD is obtained from the Fourier transform and its complex conjugate. The PSD describes power distribution across different
frequencies (i.e., in the frequency domain). MATLAB was used to calculate the PSD of each country’s time series of COVID-19 death
counts as follows:

Power Spectral Density for country i = PSD; wherei =1 ton

Because the PSD graphs have a characteristic shape that could be compared among countries, the PSD data for each country i was
then used as a vector defined as:

PSD; = (Y1,Y2, ...,Yn);

where Y1, Y2, .., Yn are the PSD values in the vertical axis of a PSD graph. Hence, we computed the cosine similarity index between all
pairs of countries i and j worldwide (n = 199 countries) with these PSD vectors. This was the algorithm employed:

Cosine_Similarity_Index (i,j) = dot (PSD;, PSD;) / (norm ((PSD;)* (PSD;))

These cosine similarity indexes were plotted on a similarity matrix map to identify countries with notable differences in similarity
index compared to the majority.


https://github.com/owid/covid-19-data/tree/master/public/data/jhu
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The group of 199 countries analyzed in the present study and listed in alphabetical order. Countries highlighted in green (n = 17) correspond to
those nations with PSDs of low cosine similarity index below 0.71. The other countries highlighted in yellow (n = 188) correspond to those nations
with PSDs of a high cosine similarity index above 0.71.

1) Afghanistan
2) Albania
3) Algeria
4) Andorra
5) Angola
6) Anguilla

7) Antigua and Barbuda
8) Argentina

9) Armenia

10) Aruba

11) Australia

12) Austria

13) Azerbaijan

14) Bahamas

15) Bahrain

16) Bangladesh

17) Barbados

18) Belarus

19) Belgium

20) Belize

21) Benin

22) Bermuda

23) Bhutan

24) Bolivia

25) Bonaire S. E. and Saba
26) Bosnia and Herzegovina
27) Botswana

28) Brazil

29) British Virgin Islands
30) Brunei

31) Bulgaria

32) Burkina Faso

33) Burundi

34) Cambodia

35) Cameroon

36) Canada

37) Cape Verde

38) Cayman Islands

39) Central African Rep.
40) Chad

41) Chile

42) China

43) Colombia

44) Comoros

45) Congo

46) Costa Rica

47) Cote d'lvoire

48) Croatia

49) Curacao

50) Cyprus

51) Czechia

52) Dem. Rep of Congo
53) Denmark

54) Djibouti

55) Dominica

56) Dominican Republic
57) Ecuador

58) Egypt

59) El Salvador

60) Equatorial Guinea
61) Eritrea

62) Estonia

63) Eswatini

64) Ethiopia

65) Faeroe Islands
66) Fiji

67) Finland

68) France

69) French Polynesia
70) Gabon

71) Gambia

72) Georgia

73) Germany

74) Ghana

75) Gibraltar

76) Greece

77) Greenland

78) Grenada

79) Guatemala

80) Guinea

81) Guinea-Bissau
82) Guyana

83) Haiti

84) Honduras

85) Hong Kong
86) Hungary

87) Iceland

88) India

89) Indonesia
90) Iran

91) Iraq

92) Ireland

93) Isle of Man
94) Israel

95) Italy

96) Jamaica

97) Japan

98) Jordan

99) Kazakhstan
100) Kenya

101) Kiribati
102) Kosovo
103) Kuwait

104) Kyrgyzstan
105) Laos

106) Latvia

107) Lebanon
108) Lesotho
109) Liberia

110) Libya

111) Liechtenstein
112) Lithuania
113) Luxembourg
114) Madagascar
115) Malawi

116) Malaysia
117) Maldives
118) Mali

119) Malta

120) Mauritania

121) Mauritius

122) Mexico

123) Moldova

124) Monaco

125) Mongolia

126) Montenegro

127) Montserrat

128) Morocco

129) Mozambique
130) Myanmar

131) Namibia

132) Nepal

133) Netherlands

134) New Caledonia
135) New Zealand
136) Nicaragua

137) Niger

138) Nigeria

139) North Macedonia
140) Norway

141) Oman

142) Pakistan

143) Palau

144) Palestine

145) Panama

146) Papua New Guinea
147) Paraguay

148) Peru

149) Philippines

150) Poland

151) Portugal

152) Qatar

153) Romania

154) Russia

155) Rwanda

156) Saint Kitts and Nevis
157) Saint Lucia

158) S. Vinc. and the Gre.
159) San Marino

160) Sao Tome and Princ.

161) Saudi Arabia
162) Senegal

163) Serbia

164) Seychelles
165) Sierra Leone
166) Singapore

167) Slovakia

168) Slovenia

169) Somalia

170) South Africa
171) South Korea
172) South Sudan
173) Spain

174) Sri Lanka

175) Sudan

176) Sweden

177) Switzerland
178) Syria

179) Taiwan

180) Tajikistan

181) Tanzania

182) Thailand

183) Togo

184) Trini. and Tobago
185) Tunisia

186) Turkey

187) Turks and C. Islands
188) Uganda

189) Ukraine

190) U. Arab Emirates
191) United Kingdom
192) United States
193) Uruguay

194) Uzbekistan
195) Venezuela

196) Vietnam

197) Yemen

198) Zambia

199) Zimbabwe
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3.3. Statistical analysis

Finally, we obtained a histogram of these cosine similarity indexes to identify the type of statistical distribution for the data. Then,
skewness was calculated with the formula for Pearson’s second coefficient [11] as follows:

Skewness = 3 (mean - median)/(standard deviation)

For statistical comparison, we separated two groups of cosine similarity index using a threshold “Th” defined by “Th = mean-std,”
where “std” is the standard deviation. This threshold helped identify countries with a low cosine similarity index below “mean-std” and
countries with a high cosine similarity index above “mean-std.” Because data were not normally distributed, we employed a non-
parametric Mann-Whitney U test to compare the incidence between these two groups of cosine similarity indexes.

4. Results

We analyzed the daily COVID-19 death toll in 199 countries from January 22, 2020, to March 9, 2023, using data from the Johns
Hopkins University CSSE database. Following an alphabetic order, we numbered the countries from 1 to 199, as illustrated in Table 1.
We calculated the PSD of these time series per country. Fig. 1A shows examples of time series from eight countries, whereas Fig. 1B
shows the respective PSD. Note that some countries exhibit a dominant peak around a frequency of one peak per year. After obtaining
the PSD for all the countries listed in Table 1, we calculated the grand average of all PSD (n = 199 countries), shown in Fig. 2. In this
global PSD, there are two dominant peaks of COVID-19 mortality waves, the first occurring at a frequency of 1.15 peaks per year and
the second at 2.7 peaks per year.

After examining the examples in Fig. 1B, we noted some similarities in the PSD shape among these eight countries, which suggested
that there would probably also be differences in the PSD shape among all 199 countries. Therefore, we computed the cosine similarity
index between the PSD of all pairs of countries worldwide. The cosine similarity indexes obtained from PSD-shape comparisons are
shown in the cosine similarity index matrix in Fig. 3. The consecutive numbers in the horizontal and vertical axes represent the number
assigned to each country according to Table 1. For clarity, we obtained the histogram of all cosine similarity indexes illustrated in
Fig. 3. Such a histogram is shown in Fig. 4. It demonstrates the distribution of these cosine similarity indexes. The reader can observe
that this distribution is negatively skewed. We calculated this distribution’s global cosine similarity index parameters, obtaining mean
= 0.82, median = 0.84, mode = 0.87, standard deviation = std = 0.11, and skewness = —0.54.

After inspecting the colors in Fig. 3, we can note some lines in the “green” color spectrum. These lines correspond to values below a
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Fig. 1. Examples of COVID-19 mortality waves and their power spectral density (PSD). A. Examples of time series showing a high number of
COVID-19 deaths per day from eight countries. B. Normalized PSD is calculated from the time series shown in the left panel. Note that these
countries exhibit a dominant peak around a frequency of one peak per year.
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(one wave every 10.4 months)

70000 1.15 (1/year)

35000 (one wave every 4.4 months)

2.7 (1/year)

PSD of Number of COVID-19 Deaths (au)

0 1 2 3 4 5
Frequency (1/year)

Fig. 2. Global COVID-19 mortality waves worldwide. The purple trace is the grand average of the power spectral density (PSD) obtained from the
COVID-19 mortality time series for 199 countries. The traces in grey color represent the standard deviation. Note the two dominant COVID-19
mortality waves occurring at frequencies of 1.15 waves/year (i.e., one wave every 10.4 months) and 2.7 waves/year (i.e., one wave every 4.4
months). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Cosine Similarity Matrix (All Data)

Fig. 3. A cosine similarity matrix for COVID-19 mortality was obtained by comparing all pairs of power spectral density (PSD) graphs for 199
countries listed in Table 1. The right vertical bar represents the cosine similarity index scale from 0 to 1. The numbers on the horizontal and vertical
axes of this matrix represent the countries listed in alphabetical order in Table 1. Matrix regions shaded towards yellow indicate pairs of countries
with high PSD similarity, while regions shaded towards green indicate low similarity.

cosine similarity index of 0.71, i.e., below the threshold Th = mean-std = 0.82-0.11 = 0.71 of the negatively skewed distribution
shown in Fig. 4. We found that these “green” color spectrum lines correspond to 17 countries, as highlighted in green in Table 1. Some
examples of the COVID-19 mortality time series and PSD obtained from these countries are illustrated in Fig. 5. A notable qualitative
characteristic of these COVID-19 mortality time series in Fig. 5A is that the number of COVID-19 deaths per day does not exhibit
COVID-19 mortality waves as those illustrated in Fig. 1A. Another feature of these countries in Fig. 5A is that they exhibited COVID-19
mortality waves in the PSD with multiple peaks (Fig. 5B), thus exhibiting a different behavior in the COVID-19 mortality waves. For
instance, China exhibited multiple dominant peaks and fewer COVID-19 deaths (see first panel of Fig. 5B). Fig. 6 is the grand average of
the PSD obtained from these 17 countries with a cosine similarity index below 0.71. Note the absence of the two dominant peaks found
in the global grand average of the PSD previously shown in Fig. 2.

Moreover, we found n = 182 countries exhibiting a high cosine similarity index above the threshold Th = mean-std = 0.71, which
can be identified as those values in the “yellow” color spectrum in Fig. 3. The grand average of the PSD for these 182 countries is shown
in Fig. 7.

Finally, we examined whether there is a statistically significant difference in the number of counts related to cosine similarity
indexes below Th = 0.71 versus those associated with cosine similarity indexes above Th = 0.71. Both data groups are illustrated with
parentheses in Fig. 4. A non-parametric Mann-Whitney U test revealed a statistically significant difference p < 0.0001 between both
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Fig. 4. The histogram of the cosine similarity indexes was obtained from the cosine similarity index matrix shown in Fig. 3. This histogram shows a
negatively skewed distribution of the cosine similarity indexes for 199 countries with a skewness of —0.54. The formula Th = Mean-Std was used to
calculate the threshold “Th” to separate a data group with low cosine similarity (green parenthesis) and a data group with high cosine similarity

(yellow parenthesis). Std is for standard deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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Fig. 5. It has the same format as Fig. 1 but for eight countries with a cosine similarity index below the threshold = mean-std = 0.71. A. Examples of
time series showing a relatively low number of COVID-19 deaths per day from eight countries. B. Normalized power spectral density (PSD) is
calculated from the time series shown in the left panel. These countries exhibit a multi-peak behavior in their PSD, occurring at different
frequencies.
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Fig. 6. It has the same format as Fig. 2, but the grand average of the power spectral density (PSD) was obtained from 17 countries that exhibited a

similarity index below 0.71. Note a multipeak behavior in the COVID-19 mortality waves occurring at different frequencies from 0.4 to 4.7 COVID-
19 mortality waves per year.
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Fig. 7. It has the same format as Fig. 2 but for n = 182 countries with a cosine similarity index above the threshold = mean-std = 0.71. The
averaged power spectral density (PSD) for these 182 countries still exhibits two dominant peaks at similar frequencies of 1.03 and 2.62 peaks per
year, as the grand averaged PSD for 199 countries.

datasets. This result reveals that it helped define a cosine similarity index threshold of mean-std = 0.71 as a criterion to justify the
grand averaged PSD of countries with higher (Fig. 7) and lower (Fig. 6) cosine similarity indexes.

5. Discussion

We analyzed the time series of COVID-19 mortality due to COVID-19 with a PSD. We identified two dominant peaks in the grand
average of the PSD of 199 countries: one at a frequency of 1.15 waves per year (i.e., one wave every 10.4 months) and another at 2.7
waves per year (i.e., one wave every 4.4 months). After performing a cosine similarity analysis in the PSD shape for all countries, we
found that most of these countries, n = 182, exhibited a similar PSD shape with a high cosine similarity index above the threshold Th =
mean-std = 0.71, with two dominant peaks: one at 1.03 (i.e., one wave every 11 months) and another at 2.62 waves per year (i.e., one
wave every 4.5 months). However, we found that n = 17 countries exhibited a distinct PSD with a low cosine similarity index below the
threshold Th = mean-std = 0.71, with the feature that they exhibited a multipeak PSD shape.

We could speculate that the two COVID-19 mortality waves occurring at a periodicity of 11 months and 4.5 months may correlate to
the holiday periods, in which higher inter-country and intra-country human mobility exists. This suggestion aligns with mathematical
models predicting the impact of human mobility on epidemics spread during holidays. These models highlight that while inter-regional
mobility could trigger epidemic spread, the diffusion effect of intra-regional mobility was primarily responsible for outbreaks within a
city [12]. In this context, it is possible that the differences in the COVID-19 mortality PSD waves among countries could be due to
differences in governmental regulations, population density, weather conditions, and shared population activities without
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confinement.

The observed similarities in the COVID-19 mortality PSD patterns among most countries validate the global nature of the pandemic,
reflecting potential common factors influencing COVID-19 mortality rates (Figs. 1 and 3). However, the notable differences in PSD
patterns among a subset of countries (Fig. 6) versus another set of countries (Fig. 7) highlight the potential influence of different local
factors, such as public health policies. Other factors, such as healthcare system resilience and population behavior, among other
unknown factors, could also influence the differences in the COVID-19 mortality waves. Future studies will be necessary to uncover
these factors. In this context, future research should identify other pandemic variables exhibiting a periodicity every 11 and 4.5
months.

We searched the literature for biological variables related to this periodicity every 11 and 4.5 months. We only found that infections
in aquatic parasitic copepods (Ch. Quaternia) are increased with a periodicity of every 11 and 3 months in the oceanographic con-
ditions of the Pacific Ocean associated with the 2015-2016 El Nino [13]. The readers may note the parallelism in the periodicity of
infection parameters in Ch. Quaternia and the periodicity of COVID-19 mortality due to SARS-CoV-2 infection in humans.

The findings from both the literature [4-9] and the current study underscore the importance of global data collection and analysis
tools, such as the Johns Hopkins University CSSE database, in monitoring and understanding pandemic trends. The variability in
COVID-19 mortality patterns across countries emphasizes the need for tailored public health responses considering local conditions
and capabilities. Furthermore, identifying common COVID-19 mortality waves suggests potential areas for international collaboration
in pandemic preparedness and response in case a similar pandemic of a similar scale could occur. In this context, our study offers a
quantitative characterization of mortality waves during the COVID-19 pandemic, which could be helpful for future modeling studies
and provide critical lessons for managing future global health crises.

5.1. Limitations

A limitation of our study is the possibility that the counts of daily COVID-19 deaths are over- and under-estimated. Reports suggest
that COVID-19 deaths were not counted adequately during the pandemic in several countries [14]. Another limitation is that we did
not analyze correlations with potential factors that could influence the high and low cosine similarity in the periodicity of the
COVID-19 mortality waves, such as governmental regulations, population density, weather conditions, and shared population ac-
tivities without confinement, among other factors.

5.2. Future work

In addition, future modeling strategies will be necessary to understand the dynamic of the pandemic in different contexts and
comorbidities, such as the fractal fractional COVID-19 models [15] or novel stochastic SIRS (susceptible, infectious, recovered)
epidemic models [16,17]. Furthermore, other regional studies in different countries, such as South Africa [18-20], Portugal [21],
Turkey [22], and Italy [23], could be analyzed in the context of the PSD or cosine similarity index methods.

6. Conclusion

We conclude that the PSD analysis of COVID-19 mortality time series across 199 countries revealed patterns in COVID-19 mortality
waves characterized by two dominant peaks at frequencies of 1.15 and 2.7 waves per year. Moreover, the quantitative analysis using
the cosine similarity index to compare the PSD shapes among countries uncovers a broad similarity in COVID-19 mortality patterns,
with a significant portion of countries exhibiting high cosine similarity indices. However, it also identifies a subset of countries with
distinct COVID-19 mortality wave patterns, as indicated by lower cosine similarity indices and multiple peaks in their PSDs. This
divergence suggests variability in how different populations were impacted by and responded to the pandemic. Furthermore, the
methodology employed here, using PSD analysis and the cosine similarity index, offers a novel approach to quantitatively assess global
and local patterns of COVID-19 mortality, complementing previous qualitative observations found in the Johns Hopkins University
CSSE database [4]. Hence, our findings could contribute to planetary health by guiding effective confinement measures and other
actions during future pandemics of similar scale, particularly in the two identified periods.
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