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Abstract. Hepatocyte nuclear receptor 4 α (HNF4α) is known 
to be a master transcription regulator of gene expression in 
multiple biological processes, particularly in liver develop‑
ment and liver function. To date, the function of HNF4α in 
human cancers has been widely investigated; however, the 
critical roles of HNF4α in tumorigenesis remain unclear. 
Numerous controversies exist, even in studies from different 
research groups but on the same type of cancer. In the present 
review, the critical roles of HNF4α in tumorigenesis will be 
summarized and discussed. Furthermore, HNF4α expres‑
sion profile and alterations will be examined by pan‑cancer 
analysis through bioinformatics, in order to provide a better 
understanding of the functional roles of this gene in human 
cancers.
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1. Introduction

Hepatocyte nuclear receptor factor 4 α (HNF4α; NR2A1) is 
a highly conserved orphan member of the nuclear receptor 
superfamily. It was first cloned by Frances Sladek in James 
Darnell's laboratory for nuclear factor expression in the liver 
and was demonstrated to act as a central regulator of gene 

expression in certain types of cells that play critical roles 
in metabolic homeostasis, including hepatocytes, entero‑
cytes and pancreatic β cells (1). In humans, HNF4α gene 
is widely expressed in the liver, kidney, pancreas, stomach, 
small intestine and colon (2), is located on chromosome 20 
and comprises at least 12 exons. Two promoters of HNF4α, 
named P1 and P2, have been identified to drive the expres‑
sion of at least six different splicing variants, HNF4α1‑α3 
and HNF4α7‑α9 (2‑4). Four variants have been well char‑
acterized: HNF4α1 and HNF4α2 from the P1 promoter 
and HNF4α7 and HNF4α8 from the P2 promoter. HNF4α3 
(P1‑driven) and HNF4α9 (P2‑driven), which both have a 
different F domain, are less well characterized, although 
some recent studies reported that these isomers are expressed 
in human pancreas and may play a role in the development 
of diabetes (4).

HNF4α is classified as an orphan nuclear receptor for which 
ligand has not been found yet, and its regulatory role remains 
unclear (5). Previously, research on HNF4α ligands have 
reported conflicting evidence. For example, long‑chain fatty 
acids have been shown to bind as acyl‑CoA thioesters to the 
ligand binding pocket of HNF4α and to act as transactivators 
or antagonists, depending on their chain length and satura‑
tion (6‑9). However, these fatty acids are bound firmly and not 
exchangeable, and seem to bind irreversibly to the receptor, 
suggesting that they might act more as structural co‑factors 
than classical regulatory ligands (10,11). Conversely, HNF4α 
expressed in mammals was shown to be bound to the essential 
fatty acid linoleic acid (LA; C18:2), which is considered as a 
potential endogenous ligand of HNF4α (12). Although this 
binding is reversible, it does not appear to have any signifi‑
cant effects on the transactivation function of HNF4α (5,12). 
Recently, several synthetic HNF4α antagonists were reported 
to bind to the ligand binding domain (LBD) of HNF4α with 
high affinity and to regulate the expression of known HNF4α 
target genes. In particular, these antagonists were found to be 
selectively cytotoxic to cancer cells in vitro and in vivo (1,13). 
For example, one small molecule, 1‑(2'‑chloro‑5'‑nitrobenzene
sulfonyl)‑2‑methylbenzimidazole (BIM5078), which has been 
discovered by a novel high‑throughput screening for insulin 
promoter modulators (14) exhibited a dose‑response inhibition 
of the expression of known HNF4α target genes (1). BIM5078 
was demonstrated to be structurally similar to FK614, which is 
a PPARγ agonist formerly described as a therapeutic agent for 
type II diabetes (15). BIM5078 may directly bind and interact 
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with the LBD of HNF4α repress target genes and may be 
cytotoxic to hepatocellular carcinoma cells (1).

HNF4α is a highly conserved member of the nuclear 
receptor superfamily of ligand‑dependent transcription 
factors, acts as a homodimer and plays a critical role in early 
liver morphogenesis, fatal liver development, liver differentia‑
tion and metabolism by regulating the transcription of genes 
involved in each of these biological processes (5,16‑18). 
Numerous studies have also reported the central role of HNF4α 
in regulating a number of genes, such as cytochrome P450 
genes (CYP2C8, CYP2C9, CYP2C19, CYP7A1, CYP3A4 and 
CYP8B1) that essential for the xenobiotic and drug metabo‑
lism, to protect individuals from toxic effects and provide 
key building blocks and nutrients to promote the growth or 
maintain the survival of the organism (5,19‑21). Due to its 
multiple functions, HNF4α is described as a master regulator 
in multiple signal channels. For example, HNF4α‑deficient 
embryonic livers showed decreased expression of most hepatic 
factors, including apolipoprotein B, liver fatty acid‑binding 
protein and microsomal triglyceride transfer protein as well as 
retinol‑binding protein, which indicated that HNF4α is a hepa‑
tocyte differentiation factor critical for maintaining normal 
liver structure and normal liver development (12,22‑25).

Similarly, HNF4α was demonstrated to promote the 
differentiation of intestinal epithelial cells (26) and embryonic 
development of the colon in mice (27). HNF4α also serves 
an important role in hepatic progenitor cells differentiation 
by governing the expression of the transcription factors, 
including forkhead box protein A2, (T‑Box transcription 
factor 3), hematopoietically‑expressed homeobox protein, 
GATA4 and GATA6 that control the hepatocyte cell devel‑
opment and regeneration (28). Other studies reported that 
ectopic expression of HNF4α significantly inhibits the prolif‑
eration of HEK293 (29) and pancreatic INS‑1β‑cells (30). 
Furthermore, HNF4α may act as a mesenchymal‑to‑epithelial 
transition (MET)‑inducing factor in hepatocytes (31‑33), and 
accumulated evidence indicates that HNF4α is involved in 
inflammatory networks (34,35).

The present review will summarize the expression patterns, 
alterations and regulatory effects of HNF4α in human cancers, 
and introduce the novel functions of this ancient receptor.

2. Expression pattern of HNF4α in human cancers

Using the Broad Institute Fire Browse portal (http://firebrowse.
org/), we investigated the expression patterns of HNF4α gene 
in 38 human cancers compared with normal controls. The 
results demonstrated that the levels of HNF4α transcription 
varied among different types of cancer (Fig. 1). Compared 
with the matched normal tissues, HNF4α expression was 
upregulated in 11 types of tumors tissue and downregulated 
in 14 types of tumors tissue. The expression of HNF4α was 
the highest in liver hepatocellular carcinoma and the lowest 
in pheochromocytoma and paraganglioma. In both types of 
cancer, HNF4α was decreased in cancer tissues compared 
with normal tissues. These findings indicated that the expres‑
sion of HNF4α may be regulated in tissue‑specific and cancer 
type‑dependent manners. Because there are two promoters 
(P1 and P2) of HNF4α gene, the differential expression pattern 
and dysregulation of HNF4α in cancer cells could be partially 

due the alternative promoter use and splicing (36‑38). The 
distribution of differential promoter‑driven HNF4α isoforms 
have been well defined using immunohistochemical analysis, 
which was associated with the pathogenesis of certain types 
of cancer (36). For example, downregulation of P1‑driven 
HNF4α isoforms expression is involved in tumor metastasis 
and poor prognosis of colorectal cancer (CRC) (37). Some 
studies on gastric cancer suggested that P1‑driven HNF4α 
isoforms negative expression may be considered as a useful 
marker for mucin phenotypic classification (38). In addition, 
HNF4α appears to encode multiple isoforms from both 
promoters by selective splicing, with different transcriptional 
functions (39‑41). However, the precise regulation mechanism 
of differential promotor‑driven HNF4α isoforms in human 
carcinogenesis is not fully understood.

3. Alterations of HNF4α in human cancers

The frequency of HNF4α gene alterations, including muta‑
tion, deletion, fusion and amplification, was determined 
across multiple types of cancer using the cBioPortal for 
Cancer Genomics database (http://www.cbioportal.org), 
which contains 147 common cancer studies that included the 
clinicopathological characteristics of almost 23,000 patients. 
All searches were carried out according to the online 
instructions of cBioPortal website. By pan‑cancers analysis, 
we found that amplifications and mutations were the most 
common alterations of HNF4α in human cancers, particularly 
in colorectal and uterine cancers (Fig. 2). Notably, HNF4α 
alterations were mostly observed in one of the CRC studies 
(TCGA, Pan‑Can) (42), in which HNF4α was altered in 
59 cases of 594 patients (9.93%), where 48 cases (81.4%) of 
these alterations were amplifications. As a core transcrip‑
tion factor, HNF4α was demonstrated to be associated with 
the tumorigenesis and development of CRC (43). However, 
the expression and functional role of HNF4α in CRC was 
controversial (44). It was reported that HNF4α expression is 
downregulated in CRC specimens and is positively correlated 
with pT typing, lymph node metastasis, distant metastasis and 
clinical stage in patients with CRC (45). Furthermore, HNF4α 
plays an inhibitory role in the progression of colon cancer by 
interacting with Wnt/β‑catenin/transcription factor 4 (TCF4) 
pathway and influencing apoptosis and cell cycle progres‑
sion (45). In addition, P2‑driven HNF4α has been shown to 
promote inflammation and carcinogenesis in colon (40,44). 
Numerous proteins, including RAD50, PARP1 (double strand 
break repair protein, poly(ADP‑ribose) polymerase 1) and 
DNA‑PKCS (DNA‑dependent protein kinase) have been 
demonstrated to interact with HNF4α in order to improve the 
response of CRC cells to DNA damage (46). These different 
functional roles and controversial reports may be due at least 
in part to the different transcriptional or translational changes 
in HNF4α gene.

The protein expression level, sub‑nuclear distribution 
and post‑translational modifications (PTMs) of HNF4α 
are also critical determinants of its transactivation potency. 
Yokoyama et al (47) analysed the PTMs in HNF4α proteins 
by mass‑spectrometry (MS) and identified eight PTMs, 
including phosphorylation sites (S142, T166, S167 and S436), 
ubiquitylation sites (K234 and K307) and an ubiquitination 
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and acetylation site at K458. Zhou et al (48) reported that 
the stability of HNF4α was regulated by SUMOylation 
in a human embryonic stem cell‑based model, and that it 
serves a critical role during hepatocellular differentiation. 

Daigo et al (49) validated and identified several phosphoryla‑
tion sites (Ser134, Ser133, Ser158 and Thr420 + Ser427) of HNF4α 
by MS/MS neutral loss ion spectra analysis, suggesting a 
contribution of phosphorylation status alterations to the 

Figure 2. HNF4α alterations in cancer. HNF4α alterations, including mutations, deletions, copy number gains and amplifications, were performed across 
multiple cancer types using the cBioPortal for Cancer Genomics database (http://www.cbioportal.org). Results showed that the alterations of HNF4α mainly 
included amplification and mutations. HNF4α alteration was mostly observed in one colorectal cancer study (TCGA, Pan‑Can), in which HNF4α was notably 
altered in 59 out of 594 patients (9.93%), and 48 cases (81.4%) of these alterations were amplifications. HNF4α, hepatocyte nuclear receptor 4 α.

Figure 1. HNF4α differential plot. HNF4α was surveyed in 38 human cancers through the Broad Institute Fire Browse portal (http://firebrowse.org/). Columns 
represented the accurate quantification of gene and isoform expression from RNA‑Seq data. Results showed that the level of HNF4α transcripts varied in 
different types of cancer. The highest level of HNF4α expression was observed in (LIHC). The expression of HNF4α was up‑regulated in 11 cancers and 
down‑regulated in 14 cancers as compared with their matched normal tissues. LIHC, liver hepatocellular carcinoma; HNF4α, hepatocyte nuclear receptor 4 α; 
RSEM, RNA‑Seq by expectation‑maximization.
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multi‑functional roles of HNF4α. Due to the development 
and application of high‑throughput genomic and proteomic 
technologies, the expression and modification of HNF4α have 
become the focus of attention in the recent decades. However, 
the post‑transcriptional role of HNF4α in the carcinogenesis 
process remains unclear.

4. Regulatory roles of HNF4α in human cancers

Increasing evidence indicated that disruption of HNF4α 
expression is widely involved in the initiation and develop‑
ment of numerous types of human cancer, including gastric, 
hepatocellular and colorectal carcinomas (36). Many studies 
have focused on clarifying the regulatory role and underlying 
mechanism of HNF4α in cancer. However, there have been 
conflicting reports about the role of HNF4α in promoting and 
inhibiting cancer in humans.

Tumor suppressive role of HNF4α. HNF4α is the main regu‑
lator of liver specific gene expression and has strong tumor 
suppressive activity. The tumor suppressive effect of HNF4α 
was determined after discovering that HNF4α expression 
was lost or significantly decreased in several human cancers, 
and that restoration of HNF4α expression could inhibit cancer 
cell proliferation in different types of cancer, including mouse 
liver cells (50‑53), intestinal cancer (54), lung endothelial cells 
and embryonic cancer (55), islet tumor cells (30) and embry‑
onic kidney cells (29). However, the underlying mechanism of 
HNF4α‑mediated tumor inhibition is not fully understood. The 
mechanisms by which HNF4α can inhibit cancer in humans are 
therefore summarized in the present review (Fig. 3 and Table I).

A recent study from our group demonstrated that HNF4α 
expression is decreased in prostate cancer cells, and that ectopic 

overexpression of HNF4α could significantly inhibit prostate 
cancer cell proliferation, induce cell‑cycle arrest at G2/M phase 
and trigger the cellular senescence via activation of p21 signal 
pathway in a p53‑independent manner and direct transactivation 
of cyclin‑dependent kinase inhibitor 1, suggesting that HNF4α 
might have a tumor suppressor role in prostate cancer cells (56). 
Hwang and Sladek (57) reported that HNF4α competes with the 
oncoprotein c‑Myc for targeting the p21 promoter in order to 
activate its expression, which could significantly inhibit HCC 
and colorectal carcinoma cell proliferation. These findings 
confirmed the critical role of p21 protein in HNF4α‑mediated 
tumor growth inhibition. The loss of HNF4α expression may 
therefore be considered as a key event in the development and 
progression of cancer; however, its underlying mechanism 
remains to be further investigated. Previous studies on the 
HNF4α gene knockout mouse model reported the negative 
correlation between deletion/deletion expression of HNF4α and 
activation of c‑MYC network, which involves many pro‑growth 
genes, such as bone morphogenetic protein 7 (58), FUS RNA 
binding protein, SET nuclear proto‑oncogene, ribonucleotide 
reductase regulatory subunit M2 and Myc (59,60). Cyclin D1 
was also demonstrated to directly bind to HNF4α and cause 
a decrease in downstream genes expression (61). Previous 
studies in renal cell carcinoma reported that decreased HNF4α 
expression is positively correlated with e‑cadherin expression, 
suggesting a poor prognosis in patients (62‑64). Furthermore, 
HNF4α expression is blocked by mutated IDH, which could 
promote biliary cancer progression (65). Previous studies in 
hepatocellular carcinoma (HCC) demonstrated that HNF4α 
exhibits a decreased expression pattern, which could inhibit 
hepatocellular carcinoma growth by downregulating miR‑122 
expression and inhibition of the ADAM metallopeptidase 
domain 17 and NOTCH signal pathway (52,66,67).

Figure 3 Tumor suppressive role of HNF4α. Schematic diagram depicting the published mechanisms of the tumor suppressive role of HNF4α in cancer. 
(A) HNF4α is involved in EMT and stemness regulation through Wnt/β‑catenin signalling pathway. (B) HNF4α is regulated by miRNAs, affecting the metabolic 
enzymes and cellular biology via NOTCH signalling pathway. (C) HNF4α could induce cell cycle arrest and inhibit cell proliferation by competing binding 
of p21 promotor region to c‑Myc protein. (D) HNF4α regulates non‑coding RNA expression to control the metastasis gene expression through YAP/Hippo 
pathway and NF‑κB signalling. ADAM17, ADAM metallopeptidase domain 17; Bmp7, bone morphogenetic protein 7; CDKN1A, Cyclin Dependent Kinase 
Inhibitor 1A; EMT, epithelial‑mesenchymal transition; Fus, FUS RNA binding protein; HNF4α, hepatocyte nuclear receptor 4 α; miR, microRNA; Rrm2, 
ribonucleotide reductase regulatory subunit M2; Set, SET nuclear proto‑oncogene.
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Previous studies demonstrated that non‑coding RNAs 
(ncRNAs), including micro (mi)RNAs, long ncRNAs and 
circular (circ)RNA, serve important roles in the regulation 
of HNF4α‑mediated transcriptional level (68‑70) (Fig. 3B). 
Takagi et al (71) reported that HNF4α expression is decreased 
in HepG2 cells and is negatively regulated by miR‑24‑mediated 
mRNA degradation and miR‑34a‑mediated transcriptional 
suppression, affecting therefore the expression of metabolic 
enzymes and cellular biology (68,72). miR‑34a, miR‑34c‑5p 
and miR‑449a are reported to share the same target elements 
located at two distinct locations within the 3'‑UTR of 
HNF4α, which overexpression could significantly repress 
HNF4α protein level by blocking mRNA translation (68,73). 
Koh et al (74) demonstrated that high expression level of 
miRNAs from let‑7 family could regulate self‑renewal and 
differentiation pathways by suppressing the downstream target 
HNF4α. It was reported that HNF4α expression is decreased 
in HCC via nuclear factor kappa B (NF‑κB) mediated miR‑21 
upregulation (70). In addition, decreased expression of HNF4α 
could promote HCC metastasis by regulating the expression 
and translocation of RelA and affecting NF‑κB activation (70). 
Zhan et al (75) demonstrated that HNF4α could bind to the 
promotor region of circRNA_104075 to stimulate its expres‑
sion, and that circRNA_104075 can act as a ceRNA able to 
upregulate YAP‑Hippo pathway by absorbing miR‑582‑3p. 
ncRNAs are the most abundant regulatory factors that possess 
great post‑transcriptional regulatory potential. However, the 

underlying mechanism by which miRNAs act and regulate 
HNF4α expression remains to be further investigated.

HNF4α has been reported to suppress hepatocyte 
epithelial‑mesenchymal transition (EMT) and cancer 
stem cell generation via inhibition of β‑catenin signalling 
pathway (45,53). EMT is a critical developmental process 
during cancer invasion and metastasis. Wnt‑β‑catenin signal‑
ling pathway plays a crucial role in triggering EMT progression 
in both embryonic development and tumorigenesis (33,76,77). 
Previously, HNF4α was reported to be a potential EMT regu‑
lator in HCC cells (77), since its ectopic expression induces 
MET and blocks HCC progression (25). Previous studies 
demonstrated that the repression of mesenchymal program of 
HNF4α is subsequent to inhibition of Snail (31) and competi‑
tion with β‑catenin for binding to TCF4 in HCC cells (77,78). 
Other studies also indicated that HNF4α expression is lost 
or significantly decreased in cirrhotic tissues and decreased 
in HCC tissues compared with healthy tissues (50,53,79). 
Restoration of HNF4α expression by an adenovirus‑mediated 
gene delivery system could attenuate hepatocyte EMT during 
hepatocarcinogenesis through inhibition of Wnt/β‑catenin 
signalling pathway (77,80,81), significantly reducing the 
proportion of cells with stem cell gene expression and CD133+ 

and CD90+ cells, which are considered as tumor stem cells in 
the start and development of HCC (82). These findings high‑
lighted the central role of HNF4α in the Wnt‑β‑catenin/snail 
signalling pathway involved in the EMT/MET progression, 

Table I. Tumor suppressive roles of HNF4α.

Cancer type Expression pattern Main findings Refs.

Hepatocellular carcinoma  Downregulated i) HNF4α expression is progressively decreased Lazarevich et al (50)
  in rat model of liver carcinogenesis (50,53). Ning et al (53,70)
  ii) HNF4α‑NF‑κB feedback circuit, including
  miR‑124, miR‑7 and miR‑21, exhibits a powerful
  predictive efficiency of patient prognosis (70).
Colon carcinoma Downregulated i) Decrease expression of HNF4α plays a  Yao et al (80)
  critical role in the aggravation of colon carcinoma Saandi et al (54)
  by promoting epithelial‑mesenchymal transition
  via the Wnt/β‑catenin signaling pathway and by
  affecting apoptosis and cell cycle progression (80).
  ii) HNF4α exerts a tumor suppressor function in
  the colon and its loss of function facilitates tumor
  progression (54).
Prostate cancer Downregulated HNF4α has a tumor suppressor role in prostate  Wang et al (56)
  cancer via a mechanism of p21‑driven cellular
  senescence (56).
RCC  Downregulated HNF4α expression is downregulated in RCC  Gao et al (62)
  tissues compared with normal tissues, is positively
  correlated with E‑cadherin expression, and
  indicates a poor prognosis in patients (62).
Biliary cancer Downregulated Mutated isocitrate dehydrogenase blocks HNF‑4α Saha et al (65)
  expression and promotes biliary cancer (65).

HNF4α, hepatocyte nuclear receptor 4 α; RCC, renal cell carcinoma; miR, microRNA.
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which could be a critical inhibitory mechanism for 
tumorigenesis.

Oncogenic roles of HNF4α. Considering the differences in the 
biologic properties of experimental systems and tumor samples, 
increased conflicting reports about the role of HNF4α in HCC 
progression and in several other types of cancer (51,83‑87; 
Table II) have been observed. The known oncogenic roles of 
HNF4α in human cancers are summarized in Fig. 4.

Darsigny et al (88) demonstrated that HNF4α is significantly 
upregulated in CRC tissues compared with adjacent normal 
epithelial tissues and serves a critical role in promoting gut 
tumorigenesis by directly targeting the promoter of cytochrome 
P450 family 2 subfamily B member 6 protein and glutathione 
S‑transferase kappa 1 gene against spontaneous and 5‑fluo‑
rouracil chemotherapy‑induced production of ROS in CRC 
cell lines, indicating the oncogenic role of HNF4α in human 
carcinogenesis (89). Another study on human primary muci‑
nous tumors demonstrated that increased HNF4α expression is 
associated with higher tumor grade, suggesting a carcinogenic 
role of HNF4α in mucinous tumors (90). Similarly, a study 
on neuroblastoma (NB) reported that HNF4α expression is 

significantly upregulated in clinical neuroblastoma tissues as an 
independent prognostic factor for poor patient outcomes (91). 
HNF4α knockdown can suppress the invasion, metastasis and 
angiogenesis of NB cells in vitro and in vivo through down‑
regulating matrix metalloproteinase 14 (MMP‑14) by direct 
binding to the promoter region of MMP‑14, an inhibitory effect 
that can be neutralized by ectopic expression of HNF4α (91). 
HNF4α was also found to be upregulated in all invasive muci‑
nous adenocarcinoma (IMC) of the lung determined according 
to tissue array, indicating that HNF4α could be considered 
as a useful marker for IMC of the lung (92). HNF4α expres‑
sion was also found to be increased in paediatric NB tissues 
and negatively regulated by miR‑34a to promote cancer cell 
proliferation and invasion (93). A study in pancreatic cancer 
(PDAC) indicated that HNF4α is increased in cancer tissues 
compared with adjacent tissues (94). HNF4α is required for 
pancreatic cancer cell proliferation and promotes resistance to 
gemcitabine by downregulating hENT1 (94).

Recent studies have reported that HNF4α is significantly 
upregulated in gastric cancer (GC), head and neck squamous 
cell carcinoma and pancreatic adenocarcinoma tissues 
compared with normal tissues (94,95). In particular, HNF4α 

Table II. Oncogenic role of HNF4α.

Cancer type Expression pattern Main findings Refs.

HCC  Upregulated HNFα is upregulated in HCC samples compared with Xu et al (51)
  distal non‑tumorous tissues from the same patients (51) Cai et al (86)
  Expression of P2 promoter derived‑HNF4α (P2‑HNF4α)
  is significantly increased in HCC tissues compared with
  non‑tumorous tissues. High P2‑HNF4α expression is
  significantly associated with HCC poor differentiation
  and vascular invasion (86).
Gut neoplasia Upregulated HNF4α is upregulated in colorectal cancer tissues  Darsigny et al (88)
  compared with adjacent normal epithelial tissues.
  HNF4α could be a potential therapeutic target during
  intestinal tumorigenesis (88).
NB Upregulated HNF4α exhibits oncogenic activity that affects the Xiang et al (91)
  aggressiveness and angiogenesis of NB through activating
  the transcription of matrix metalloproteinase‑14 (91).
GC Upregulated HNF4α is specifically upregulated in GCs (96) and  Chang et al (96)
  regulates GC metabolism through directly targeting Xu et al (95)
  isocitrate dehydrogenase 1 gene (95).
Prostate cancer  Upregulated HNF4α is upregulated in LNCaP‑ and VCaP‑derived  Wang et al (100)
  prostatospheroids. HNF4α may play a role in stemness
  regulation of prostate cancer stem cells (100).
PDAC Upregulated HNF4α expression is increased in PDAC tissues. Patients  Sun et al (94)
  with higher HNF4α expression display worse prognosis (94).
Paediatric Upregulated Expression of HNF4α is increased in paediatric  Li and Chen (93)
neuroblastoma  neuroblastoma tissues. HNF4α expression is negatively
  regulated by miR‑34a, which promotes cell proliferation
  and invasion (93).

HNF4α, hepatocyte nuclear receptor 4 α; HCC, hepatocellular carcinoma; NB, neuroblastoma; GC, gastric cancer; PDAC, pancreatic ductal 
adenocarcinoma.
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acts by sustaining an oncogenic metabolism in GC via the 
direct binding to the promoter region of isocitrate dehydroge‑
nase‑1 (IDH‑1), which is a key enzyme for TCA cycle required 
for GC development (95). However, mutated IDH‑1 and IDH‑2 
can inhibit HNF4α to block hepatocyte differentiation and 
promote the development of premalignant biliary lesions and 
progression to metastatic HCC (65). Chang et al (96) reported 
that HNF4α is upregulated by AMPK signalling and acts as 
an upstream regulator of the WNT signal pathway through 
its target gene Wnt family member 5A in GC. In addition, 
the overexpression of HNF4α in GC tissues is significantly 
associated with tumor stage and lymph node metastasis in 
patients with GC, which may cause drug resistance to multiple 
chemotherapeutics due to regulation of cell apoptosis and 
Bcl‑2 expression (97). Nakajima et al (98) demonstrated that 
HNF4α is a direct target gene of kruppel like factor 5/GATA 
binding protein (GATA)4/GATA6 that can interact with 
GATA6 and contribute to the development of mucinous‑type 
lung adenocarcinomas and GC (99). A previous study from 
our laboratory demonstrated that HNF4α can be significantly 
upregulated in prostate cancer cells‑derived prostatospheroids, 
suggesting that HNF4α may also work in the regulation of 
prostate cancer stem cells (100). In summary, HNF4α had 
demonstrated an upregulation pattern and an oncogenic 
role in many types of cancer, suggesting that HNF4α may 
be considered as a therapeutic target in numerous human 
carcinomas.

5. Conclusions

As an important regulator of tumorigenesis and tumor develop‑
ment, HNF4α is expressed at different levels in different types 

of tumor and serves various roles that are tissue‑specific. This 
suggests the ubiquitinal expression patterns of HNF4α and 
the changes in HNF4α expression, as well as the controver‑
sial mechanisms that may be involved in cancer progression, 
which provide further clues to the better understanding of 
HNF4α role in cancer. Over the years, numerous studies have 
provided significant advances in the role of HNF4α in human 
cancers; however, the underlying mechanisms involved remain 
unclear and require urgent further investigation. Considering 
the different roles of HNF4α isoforms in the transcriptional 
control of cell proliferation, EMT, stemness and other cellular 
processes in different types of cancer, further research should 
focus on the potential therapeutic approaches of targeting 
HNF4α.
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GSTA4, GATA binding protein 4; GSTk1, glutathione S‑transferase kappa 1; hENT1, human equilibrative nucleoside transporter 1; IDH‑1, isocitrate dehy‑
drogenase 1; IDH‑2, isocitrate dehydrogenase 2; MMP‑14, matrix metalloproteinase 14; MMP‑2, matrix metalloproteinase 2; ROS, reactive oxygen species; 
TCA, tricarboxylic acid; WNT5A, Wnt family member 5A.
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