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IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U596, CNRS UMR7104,
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ABSTRACT

The fragile X mental retardation protein (FMRP)
is a RNA-binding protein proposed to post-
transcriptionally regulate the expression of genes
important for neuronal development and synaptic
plasticity. We previously demonstrated that FMRP
binds to its own FMR1 mRNA via a guanine-quartet
(G-quartet) RNA motif. However, the functional
effect of this binding on FMR1 expression was not
established. In this work, we characterized the
FMRP binding site (FBS) within the FMR1 mRNA by
a site directed mutagenesis approach and we inves-
tigated its importance for FMR1 expression. We
show that the FBS in the FMR1 mRNA adopts two
alternative G-quartet structures to which FMRP
can equally bind. While FMRP binding to mRNAs is
generally proposed to induce translational regula-
tion, we found that mutations in the FMR1 mRNA
suppressing binding to FMRP do not affect its trans-
lation in cellular models. We show instead that the
FBS is a potent exonic splicing enhancer in a mini-
gene system. Furthermore, FMR1 alternative spli-
cing is affected by the intracellular level of FMRP.
These data suggest that the G-quartet motif present
in the FMR1 mRNA can act as a control element
of its alternative splicing in a negative autoregula-
tory loop.

INTRODUCTION

The most frequent cause of inherited mental retardation,
fragile X syndrome, is caused by the absence of the RNA-
binding protein Fragile X Mental Retardation (FMRP).

In neurons, FMRP is associated with a limited subset of
brain mRNAs together with other proteins within large
ribonucleoparticles, the composition of which is still
incompletely known (1–3). Within these mRNPs, FMRP
is proposed to act as a regulator of translation or trans-
port of specific target mRNAs. However, the molecular
mechanisms of FMRP action on specific target mRNAs
are still poorly understood. As a clue to the function of
FMRP, the study of its mRNA targets appears an essen-
tial step. The guanine-quartet (G-quartet) structural motif
was identified as a high affinity determinant of the inter-
action of FMRP with mRNAs (4,5). RNA G-quartet is
not the only proposed target of FMRP since U-rich
sequences (6), a kissing-loop motif (7) and the BC-1
RNA (9) were also found to mediate the interaction of
FMRP with mRNAs. However, FMRP target mRNAs
bearing the kissing-loop motif have not yet been identified
and the interaction mediated via BC1 is under debate (8).
Thus, at present, G-quartet still appears as a main con-
sensus motif found in mRNAs of mammalian genes found
associated with FMRP (10,11), and/or demonstrated to be
affected by the absence of FMRP. Genes carrying poten-
tial or verified G-quartets include the microtubule asso-
ciated protein 1B MAP1B (12), the post-synaptic density
protein PSD95 (13,14), the catalytic subunit of protein
phosphatase 2A (PP2Ac) (15), or the amyloid precursor
protein APP (16), all important for neuronal development
and synapse plasticity. However, the role of the FMRP/
G-quartet interaction remains unclear as no direct evi-
dence of its effect on post transcriptional control has
been provided up to now and recent work indicated that
the association of FMRP with polyribosomes (17) would
not be mediated by G-quartets (7).

To address these questions, we analyzed in this work the
interaction between FMRP and its own mRNA, FMR1,
one of the best characterized targets of FMRP where the
G-quartet motif had been identified (2). Because the
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interaction between FMRP and its own mRNA was sug-
gestive of an autoregulatory loop, we tested whether
FMRP could control its own expression. To determine
the function of the FMR1 mRNA/FMRP interaction,
we performed mutations within the G-quartet motif of
the FMRP binding site (FBS) of FMR1, which abolished
FMRP binding in vitro without changing the amino acid
sequence of the protein and we examined at which level
the FMRP/FBS interaction could play a role. Our data
provide several lines of evidence for a role of the FBS and
its binding to FMRP in alternative splicing regulation of
the FMR1 gene.

MATERIALS AND METHODS

Plasmids and constructions

Plasmid pTL1 (18) was used to transiently or stably express
FMR1 longest isoform 1 in the various cell lines described
in text. Flag and cMyc tags were introduced in frame at
N-terminus of FMR1 to give pTL1-Flag-FMR1 and pTL1
cMyc-FMR1. Mutations disrupting G-quartet within the
FBS were introduced into pTL1-Flag-FMR1 using Quick
Change Site Directed Mutagenesis kit (Stratagene, Cedar
Creek, TX, USA). Primers used for mutagenesis are given
in Supplementary Material available online. The SXN13
minigene constructions (19) were produced by inserting
dsDNA fragments of FBS within exon 2 using SalI/
BamHI sites. Plasmid pTAP–FMRP was constructed by
inserting FMR1 Iso1 in frame at its N-terminus with TAP
tag of pBS 1539 (20) into MluI site of pTRE2 vector
(Clontech, Mountain View, CA, USA).

Cell culture and transfections

HeLa cells and FMR1�/� mouse embryonic immortalized
fibroblasts (21) were cultured in DMEM supplemented
with 10% fetal bovine serum, 100 mg/ml penicillin–
streptomycin. PC12 Tet-On cells (Clontech) were grown
in RPMI supplemented with 10% horse serum, 5% fetal
bovine serum, 125 mg/ml hygromycin, 100mg/ml of peni-
cillin–streptomycin, in a 5% CO2 incubator at 378C. PC12
Tet-On cells were stably transfected with pTAP–FMRP
using Lipofectamine (Invitrogen, Carlsbad, CA, USA)
according to manufacturer recommendations. The pHyg
resistance vector was used in the cotransfection as a selec-
tion marker. Transfected cells were cultured in medium
containing 125 mg/ml hygromycin and 1 mg/ml doxycyclin,
and individual double stable selected cells were tested for
the presence of the TAP–FMRP fusion protein by western
blot using 1C3 anti-FMRP. PC12 Tet-On clone ‘1’ was
selected for its tight regulation of TAP-FMRP expression.
To induce exogenous human FMRP Iso1 expression in
stably transfected cell lines, doxycyclin was added to
cells to a final concentration of 250 ng/ml for 48 h.

For the determination of SXN minigene splicing
efficiency, HeLa cells or FMR1�/� mouse embryonic
immortalized fibroblasts at 40% confluency were trans-
fected with 1.5mg SXN vector using JetPEI (Polyplus)
in 60mm diameter plates. After 24 h, total RNA was
extracted using Genelute mammalian total RNA kit

(Sigma, Steinheim, Germany) and 5 mg was used for exten-
sion with the SXN primer described below.

Primer extension

Primer extensions to detect G-quartet structure within
RNAs were performed as described in (4) using primer
50-TCCATCTGTTGTTCTCCTTT for FMR1 and
50-AGAACCTCTGGGTCCAAGGGTAG for SXN
minigene Exon 2.

RNA-binding assays

RNA-binding assays were performed using RNAs T7
in vitro transcribed labeled with [a-32P]ATP. Affinities
were determined using competition gel shift assays
with GST–FMRP as described previously (4). Briefly,
32P-labeled FMR1 mRNA fragment N19 encompassing
the FBS was incubated with 0.1 pmol GST–FMRP in
the presence of increasing concentrations of unlabeled
N19 or mutant N19-�G4 competitor RNA.

Polysomes preparation

Polysomes were prepared from four 10 cm diameter con-
fluent HeLa cell plates. Twenty minutes before harvest,
90 mg/ml cycloheximide was added to cultures. Cells were
lyzed in 200mM Tris–HCl pH 7.5, 5mM MgCl2, 100mM
KCl, 10U/ml RNasin (Promega, France), 1mM DTE,
0.5% NP40 at 48C. Supernatant of 10min centrifugation
at 13 000 r.p.m. was loaded onto 15–45% sucrose gradient
run 2 h at 36 000 r.p.m. at 48C. Polysomal fractions were
precipitated with 0.1M NaCl and 2.5 vol. ethanol and the
mRNAs from these fractions were purified with GenElute
Mammalian Total RNA kit (Sigma).

In situ hybridization

In situ hybridization were performed as described in (22)
using oligonucleotide modified with fluorophore CY3
(GE Healthcare, France) and directed against the Flag
sequence of exogenous FMR1 (50-CTTGTCATCGTCG
TCCTTGTAGTCCATGAATTCGCCCTATA).

Western and northern blots

Immunoblot analyses were performed with 1C3 antibody
(1/2000), anti-Flag (1/1000 Sigma), anti-cMyc (1/500,
Ozyme, France) and anti-bactin (1/1000) as described (18).
Northerns were performed according to (23). Radio-

active probes were prepared using kit ‘dsDNA all-in-
one-random-prime’ (Sigma) with FMR1-30 UTR and 28S
rRNA encoding cDNAs.

Real-time PCR

Total RNA (1 mg) prepared with Genelute mammalian
total RNA kit (Sigma) was retrotranscribed with
SuperscriptIII (Invitrogen) using random priming, and
real-time PCR were performed using the Brilliant SYBR-
Green QPCR Core Reagent Kit (Stratagene) on MX4000
apparatus (Stratagene). The following oligonucleotides
were used for qRT–PCR.16Ra 50-GTGGACGATTATC
TGTTCGGGAA, R15/16 50-CGTCGTTTCCTTTGAA
GCC, P14/15F 50-GATATACTTCAGGAACTAATTC,
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p14/15.1F 50-GATATACTTCAGCTCCAACAG, p14/
15.2F 50-GATATACTTCAGAATCTGACC, 11/13F
50-CAAAAGTCCAGAGGGGGATG, 50UTR-FMR1.F
50-GCGAGGAAGGACGAGAAGAT, 50UTR-FMR1.R
50-TGGTGGGAATCTCACATCATGG, R13/15 50-CA
GAATTAGTTCCTTTAAGTAG, R13/15.1 50-GTGGT
CAGATTCTTTAAGTAG, R13/15.2 5-CTGTTGGAG
CTTTAAGTAG, F-GAPDH 50-GGATGCAGGGATG
ATGTTC and R-GAPDH 50-TGCACCACCAACTGC
TTAG.

2D- PAGE

Protein extraction and first dimension: cells were har-
vested by centrifugation and resuspended in 10mM Tris,
1mM EDTA and 250mM sucrose. Lysis was performed
with rehydration buffer (7M urea, 2M thiourea, 4%
CHAPS, 0.4% ampholytes, 20mM DTT). DNA was
eliminated by 3min sonication. A total of 100mg of pro-
teins were diluted in 135 ml of rehydratation buffer, which
were used to rehydrate Biorad ReadyStrip IPG pH 3–10
strips. Isoelectric focusing 30min at 500V and 250Vh,
30min at 1000V and 500Vh and 1 h at 4000V and
8000Vh using the MultiphorII system (GE Healthcare).
Second dimension: strips were equilibrated for 20min
in 50mM Tris–HCl pH 8.8, 6M urea, 30% glycerol,
2% SDS, 50mM DTT. Strips were placed on vertical
1.0mm 10% SDS polyacrylamide gels and sealed with
0.5% agarose sealing solution. Electrophoresis was per-
formed in standard running buffer at 150V for 1 h.

RT–PCR

Total RNA was prepared from cortices of 10 days old
wild-type (Wt) or FMRP�/� male mice using Trizol
reagent (Invitrogen) followed by RNeasy purification
(Qiagen, Hilden, Germany) and their synaptoneuro-
somal fractions were prepared according to (24). Total
RNA (1 mg) was retrotranscribed with SuperscriptIII

(Invitrogen) using random priming. One microliter of
RT reaction (1/10) was used to perform PCR reactions
in 25 ml reaction volume with the following primers: F13
50-GTGGGAACAAAAGACAGCATCG, R15 50-CCT
CTGCGCAGGAAGCTC, R4 CACCAACAGCAAG
GCTCTTT, F2-3 50-TTGAAAACAACTGGCAACCA,
F-GAPDH and R-GAPDH. Reactions were performed
as follows, initial denaturation 3min at 958C, then 30 s
at 958C, 30 s at 608C and 30 s at 728C, with 40 cycles.

RESULTS

The FBS contains two independent G-quartet structures
stabilized by adenines

FMRP specifically binds to its own mRNA both in vitro
(4,25,26) and in cells (27). The binding site of FMRP on its
mRNA, here called the FBS, consists of a G-quartet motif
present in the C-terminal coding region of FMR1 mRNA
(4). The G-quartet motif is formed by the stacking of
several guanine tetrad units. Adenines were also suspected
to contribute to the structure in the FBS by forming inter-
calating adenine quartets. To investigate the function of

the interaction between FMRP and its own mRNA, we
constructed a series of mutants to inhibit FMRP/FBS
interaction by disrupting the G-quartet structures.
Previous work had suggested the presence of two distinct
G-quartet structures (4). To test this hypothesis, two
sets of mutations were constructed to disrupt either one
or both potential structures, called �G1 and �G2
(Figure 1A). In a first step, mutations were essentially
substitutions of As to Cs and Us at the wobble position
of codons to preserve the encoded FMRP protein
sequence and to test the contribution of adenines. The
presence of G-quartets in the RNAs was indicated by
the presence of potassium-dependent stops of reverse tran-
scription as previously described (4). �G1 mutation,
located around position 1613, suppressed the 1613 (G1)
stop while the stop at position 1647 (G2) remained
unchanged (Figure 1B). Conversely, �G2 mutations had
the opposite effect, with the 1613 stop unchanged and the
stop 1647 suppressed. These results indicate that two inde-
pendent G-quartet structures exist in the FBS. Moreover,
because the mutations left the guanine content of the FBS
essentially unchanged while substituting several adenines,
our results support a role for the adenines in stabilizing
both FBS G-quartets. This stabilization effect can be
explained by the formation of A-tetrads stacking within
the G-quartet structure as previously proposed (4).
When both sets of mutations were combined in mutant
�G(1þ 2), the stop at position 1647 reappeared while
the stop at position 1613 remained absent (Figure 1B).
The reappearance of a G-quartet structure at G2 position
within the �G(1þ 2) RNA despite the presence of muta-
tions �G2 could be explained by the fact that the double
mutant generated a different and more stable G-quartet
structure because the G-content was essentially not
affected by the mutations.

FMRP binding to its own mRNA has no impact on
FMR1 translation

We tested next the ability of these different mutant RNAs
to interact with FMRP by gel shift assay as previously
described (4). The mutant RNAs (�G1 and �G2)
bound to FMRP with the same affinity as for the Wt
FBS (data not shown). This indicated that FMRP equally
binds one or the other structure. To completely disrupt
G-quartet formation within FBS, a new set of mutations,
consisting essentially of A to C substitutions at the wobble
position of codons and favoring hairpin structures, was
performed (Figure 2A). The mutations were inserted
in full length FMR1 mRNA and the disruption of the
G-quartet structure was confirmed by reverse transcrip-
tase (RT) elongation test (Figure 2B). We have shown
previously that a 425-long RNA fragment (N19) of
FMR1 mRNA containing the FBS recapitulated a
Wt-binding efficiency (4). To confirm the loss of interac-
tion of FMRP on �G4-FBS, the mutations were inserted
also in the N19 fragment (N19-�G4) and its interaction
with FMRP was tested using gel shift assay (Figure 2C).
The binding efficiency of N19-�G4 RNA was found to
be decreased by more than a 100-fold compared with
Wt N19 RNA (Figure 2D). This level of interaction,
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in the micromolar range, was assigned to nonspecific bind-
ing as previously determined (4).

The impact of the disruption of G-quartet structures
within the FBS was then analyzed in various cell types
[HeLa, Cos-7, and fibroblasts from FMR1�/� mice (21)]
by transiently or stably expressing FMR1 bearing �G4
mutation. In these cells no difference in FMRP protein
level could be detected between the cells expressing Wt
or �G4 FMR1 (Figure 3A). Also, no difference could be
detected between Wt and mutant FMR1 mRNA levels
(Figure 3B). Furthermore, although mRNAs bearing
G-quartets had been reported to be differently asso-
ciated with polyribosomes in the absence of FMRP (10),
we could not detect a change in the association of
�G4-FMR1 mRNA with polysomes both in HeLa and
in FMR1�/� mouse fibroblasts (Figure 3C). Finally,
we did not observe any significant difference between
Wt and �G4 FMR1 mRNAs localization in HeLa cells
(Figure 3D). Thus, we concluded that the interaction
between FMRP and the FBS had no detectable impact
on FMR1 mRNA stability, translation and localization
in the tested cells.

The FBS is a potent exonic splicing enhancer

A number of facts brought us to examine next a potential
implication of the FBS in splicing. Firstly, the FBS is
located nearby to alternatively spliced sites of FMR1
(Figure 4A). Secondly, because of its high purine content,
the sequence of the FBS has analogies to an ESE consen-
sus (28). Third, because of its shuttling activity, FMRP
has been proposed to bind mRNAs already in the nucleus
and therefore should be able to interact with pre-mRNAs
(29,30).
The ability of the FBS to act as an ESE in vivo was

tested by using the SXN13 minigene system (19) derived
from the �-globin gene and composed of four exons,
one of which (exon 2) being alternatively spliced
(Figure 4B). The presence in exon 2 of a sequence with
ESE properties (12MU3) induced exon 2 inclusion and
resulted in a longer mRNA product (Figure 4C and E).
A fragment of the FBS still able to form a G-quartet
structure or its corresponding �G4 mutant was inserted
within the second exon of the minigene to determine its
ESE properties (Figure 4C and D). After transient trans-
fection in HeLa cells of the plasmids bearing the different
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Figure 1. Presence of two independent G-quartets in FBS. (A) Sequence of Wt and mutants (�G1, �G2, �G1þ 2) FBSs. The mutations are
indicated in bold. The position of the two major stops of RT at 1613 and 1647 (þ1 being A of start codon), in presence of 150mM KCl, are
shown. The circles above the sequences indicate the status of RT stop as determined in (B) (black circle, stop; open circle, absence of stop).
(B) Autoradiograph of reverse transcriptions performed on full-length Wt or mutant FMR1 mRNA constructs and after separation on denaturing
PAGE (see Material and methods section for details). The cation-dependent arrests at positions 1613 and 1647 reveal the 30 edges of two distinct
G-quartet structures. Lanes K and Na: extensions performed with 150mM KCl and NaCl, respectively. The position and status of RT stops is shown
with the circles as in (A). Sequencing lanes for mutants are shown. The full-length extension products seen on upper part of gel (top) reflects the
strength of the different G-quartet structures.
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minigene constructions, RT elongation was directly per-
formed on the total RNA extracted from the cells using a
50 end 32P-labeled oligodeoxynucleotide priming within
exon 3 of the minigene. The ESE properties of the FBS
fragment were evaluated by measuring the ratio between
the long RT product (bearing exon 2) and the short RT
product (without exon 2) of the alternative splicing of the
globin minigene. While the 12MU3 sequence was capable
to specify exon 2 inclusion in about 80% of the splicing
events (Figure 4E), the G4-FBS fragment induced a com-
plete inclusion of the exon 2. Meanwhile, exon 2 was
totally excised in �G4-FBS mutant. These data indicated
that the FBS had potent exonic splicing enhancing proper-
ties on a minigene and these properties were linked to its
ability to form a G-quartet structure.

The overexpression of one FMRP isoform alters FMR1
alternative splicing pattern in PC12 cells

The fact that the FBS had a potent ESE activity in
a minigene suggested that FMRP could regulate its own

splicing by binding to FBS. To verify this hypothesis,
we first tested whether the splicing efficiency of a globin
minigene bearing the FBS fragment could be influenced
by FMRP. Splicing of SXN13-G4-FBS minigene was ana-
lyzed in FMR1�/� mouse fibroblasts (21). In these cells,
the expression of either FMRP major cytoplasmic iso-
form 7 or nuclear isoform 6 (18) by transient or stable
transfection, had no detectable influence on SXN13-
G4-FBS expression (data not shown). An absence of
effect of FMRP on the minigene system could be due to
the fact that the FBS was out of its natural context or had
a too strong ESE effect on minigene splicing.

We then tested the influence of an overexpression of
FMRP on FMR1 pre-mRNA splicing. The FBS is located
close to two alternative splice sites within exon 15 of
FMR1. The 30 side of the FBS is located 110, 74 or 35
nucleotides downstream of the three different acceptor 50

ends of exon 15 (4,31). The alternative splicing occurring
at these three sites leads to six types of exon 15 variants,
depending whether exon 14 is skipped or not. These three
acceptor sites are used in different proportions in various

AGAGGAGACGGACGGCGGCGUGGAGGGGGAGGAAGAGGACAAGGAGGAAGAGGACGUGGAGGAGGCUUC
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Figure 2. The disruption of G-quartets within FMR1 mRNA abolishes the interaction with FMRP. (A) Nucleotide sequences of the Wt or the
G-quartet-less FMR1 mutant construction (�G4) with its amino acid sequence. Underlined nucleotides indicate the nucleotides mutated in �G4.
(B) Cation-dependent arrest of reverse transcription showing the absence of G-quartet in �G4 ‘full-length’ FMR1 mRNA. (C) Competition
experiments to compare the relative binding strength of FMRP for a 425-nt long RNA fragment encompassing the Wt FMRP binding site N19
and the mutant �G4-N19 by gel shift assay. Lane ‘–’ is control without competitor RNA. Position of free and FMRP-complexed 32P-labeled N19
RNA is shown. The molar concentration of unlabeled competitors is given at the top of figure. (D) Graph depicting the fraction of bound labeled
N19 RNA plotted against competitor RNA concentrations as determined from C. Each point is the mean with standard deviation of at least three
independent experiments.
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tissues (32) suggesting the possibility of regulation at this
level. Because the FBS is highly conserved (4) we tested
the possible impact of FMRP/FBS interaction in rat cells.
Rat phaeochromocytoma PC12 cells stably transfected
with a tagged human isoform 1 FMRP (iso-1h) under
the control of the inducible promoter Tet-On were used
(PC12-10 cells). We tested in these cells, the effect of iso-1h
FMRP increase on endogenous (rat) FMR1 mRNA
alternate splicing. Upon induction of iso-1h expression
(Figure 5A) by doxycyclin treatment of the cells, the
total amount of FMR1 mRNAs (ratþhuman) was
found increased over 30-fold compared to its basal level
in PC12 cells (Figure 5B left). Meanwhile, the global
level of endogenous FMR1 mRNAs (rat) was not affected
(Figure 5B right). The splicing events taking place around
the FBS site within the endogenous FMR1 were analyzed
by qRT–PCR using rat specific primer sets (Figure 6A).
Our data showed that the products of exon 15 first accep-
tor site usage (including the longest isoform 1, the most
frequent isoform 7 and isoforms 13 and 17) were
decreased over 2-fold (Figure 6B). This decrease was con-
comitant with an increase in minor isoforms, products of
exon 15 second and third acceptor site usage (1.4- and
1.8-fold respectively), including the minor isoforms 2, 3,
8, 9, 14, 15, 18 and 19. Thus, the overexpression of the
full-length FMRP isoform alters FMR1 splicing events
around the FBS in a manner that indicates a displacement
of the equilibrium between major and minor isoforms.
These data are in agreement with the hypothesis that
FMRP binding to the FBS plays a role in regulating
FMR1 splicing.
We examined also the splicing events leading to exon 14

skipping. Upon overexpression of the full-length FMRP,
all transcripts lacking exon 14 were found decreased
by 2-fold. Although the splicing events leading to exon
14 skipping are likely in relationship with those occurring
between exons 14 and 15, they are quite rare events com-
pared with the latter [(26) and our data not shown].
To confirm the alterations of FMR1 expression seen at
the RNA level upon iso-1h overexpression, we analyzed
FMRP isoform expression by western blotting after 2D
PAGE. The use of monoclonal anti-FMRP 1C3 antibody
(recognizing an N-terminal epitope) indeed revealed
significant differences in FMRP isoforms upon iso-1h
overexpression (Figure 6C). The identification of each
protein spot is however extremely difficult due to the com-
plexity of splice products. The highest product visible only
in iso-1h expressing cells (Figure 6C, right, spot a) could
correspond to the exogenous iso-1h transferred ineffi-
ciently due to its higher molecular weight. Spots b
and d, which showed a broadening in the PC12-10 cells
compared to PC12, likely contained several isoform spe-
cies of similar molecular weight. The origin of spot c,
which appeared in PC12-10 cells was unknown. Most
remarkable is the decrease of spot f, which could corre-
spond to the shortest FMRP isoforms 10 and 11 (48 and
47 kDa respectively) that were found decreased at mRNA
level. Altogether, these data showed that an overexpres-
sion of one FMRP isoform was able to alter FMR1 alter-
native splicing pattern both at RNA and protein level.
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cells (6� 106 cells) were transfected with the indicated amount plasmids
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extracts using probes specific of pTL1 encoded FMR1 mRNAs and
of 28S rRNA as internal control. The pBS is control lane without
FMR1 encoded plasmid. No difference is observed between Wt and
�G4 expression levels. (C) Localization of Wt and mutant �G4
FMR1 mRNAs in polyribosomes of HeLa cells. In the upper part is
depicted a typical profile of polyribosomes separated on a 15–45%
linear sucrose gradient registered at 254 nm optical density. The lower
graphic represents the quantification by qRT–PCR of the FMR1
mRNA in the indicated pooled fractions using GAPDH mRNA as
internal control. No significant difference was observed between Wt
and �G4-FMR1 mRNAs in their localization in the different ribosome
subsets. Similar results were obtained in the FMR1�/� cells. (D) Intra-
cellular localization of Wt and �G4 mRNAs by fluorescence in situ
hybridization in HeLa cells. Cy3 labeled anti-Flag oligo-deoxynucleotide
probe (Flag) revealed a similar cytoplasmic and perinuclear localization
for both mRNAs. DAPI staining of the nuclei is shown.
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The splicing pattern of FMR1 exon 15 is altered in
the cortex of FMR1�/�mice

Following the observation that an overexpression of
FMRP in cells leads to an alteration of its splicing at
exon 15, we tested next whether the absence of FMRP
could lead to similar defects. Thus, we analyzed the spli-
cing pattern of FMR1 mRNAs in Wt and FMR1�/� mice
where FMRP protein is absent but FMR1 mRNA is still
expressed. FMR1�/� mice have been produced by the
insertion of a neomycin cassette within exon 5 (33). The
exon 15 splicing events were analyzed by RT–PCR
(Figure 7A) on total RNA extracted from cortices of 10-
days old Wt and FMR1�/� mice as well as in the synapto-
neurosomal fractions (SN) of these extracts where FMRP
function is considered to be prominent (34). In parallel,

RT-PCRs were also performed on another part of FMR1
mRNA (exon 3, Figure 7D) and on GAPDH mRNA
(Figure 7E) for normalization. As previously reported,
while FMRP protein expression was abolished in
FMR1�/� (Figure 7C), FMR1 mRNA remained
expressed, although reduced to about 65% of Wt level
(Figure 7A and 7D, compare lanes 3 to 4 and 5 to 6),
possibly due to NMD events. RT–PCR performed
across exon 15 (Figure 7A) revealed three bands corre-
sponding to the three isoforms produced by the alternative
branching of exon 14 and exon 15. Not surprisingly the
isoforms lacking exon 14 are not detected in these PCR
conditions because they are much less frequent events (26).
Comparison of Wt and FMR1�/� exon 15 RT-PCR pro-
ducts (Figure 7B) revealed a marked difference concerning
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the smaller products that correspond to minor spliced
mRNAs variants. Thus, these exon 15 minor splices dis-
appeared in FMR1�/�, both in total cortical extracts and
in SN fractions (Figure 7A lanes 4 and 6). These data
indicate that FMRP absence alters the splicing pattern
of FMR1 exon 15 in the cortex. While an overexpression
of FMRP led to an increase of exon 15 minor splices, the
absence of FMRP had the opposite effect. Altogether
these data support a role for FMRP in the control of its
own splicing at exon 15.

DISCUSSION

In this work, we analyzed the functional impact of the
interaction between FMRP, the protein absent in the fra-
gile X syndrome and the binding site identified in its own
mRNA (4). We previously demonstrated that the FBS is
located within the region encoding the RGG domain of
FMRP. One main structural feature of this site is its abil-
ity to adopt a guanine quadruplex or G-quartet motif.
We showed here that the structure of the FBS was more
complex than initially thought. Thus, we identified two
independent G-quartet structures in the FBS. Mutations
that abolished either one or the other structure (mutant
�G1 and �G2) had no impact on FMRP binding effi-
ciency in the context of a 425-nt long fragment (N19),
indicating that FMRP can indistinctly bind to either one
or the other structure. Furthermore, we showed that

several adenines of the FBS play a role in the differential
stability of the G-quartet structures, supporting the initial
hypothesis that the structure involves intercalating ade-
nine quartets (4) and as already observed for other G-
quartet structures (35). Substitution of these adenines by
pyrimidines does not however prevent formation of a
G-quartet structure within the FBS and does not affect
binding to FMRP in vitro. The elimination of both struc-
tures (mutant �G4), while keeping the encoded protein
sequence unchanged, dramatically reduced FMRP bind-
ing to a non specific level and confirmed the absolute
requirement for a G-quartet for efficient binding. We
then tested the impact of mutation �G4 within the context
of full FMR1 mRNA in cells. Surprisingly, no effect of
G-quartet absence could be detected neither on mRNA
translation and localization nor on polyribosomes associa-
tion in HeLa cells. Thus, these observations do not sup-
port a role in a translationally controlled autoregulatory
loop of the binding of FMRP to its own mRNA as initi-
ally proposed (4). The fact that the FBS site is purine-rich
and localizes close to alternative splicing sites was sugges-
tive of its potential function as a splicing regulator of
FMR1. Indeed, mammalian ESEs were identified initially
as purine-rich sequences that associate with specific SR-
family proteins and promote the utilization of adjacent
splice sites (28). When a fragment of the FBS that retained
its ability to form a G-quartet was tested in a minigene
system, a strong exonic splicing enhancer activity was
observed. This activity was completely abolished in a
mutant that had lost its ability to form the G-quartet
although it kept a G-rich sequence (�G4). Thus, our
data indicate that the FBS is a potent ESE and interest-
ingly, the ESE activity of FBS seems to rely on its ability
to adopt a G-quartet structure. These data suggest that the
FBS may be a control element of FMR1 alternative spli-
cing and the binding of FMRP could play a role in the
control. Indeed, we showed that the equilibrium between
short and long FMRP isoforms produced by exon 15
alternative splicing is altered by manipulating the level
of FMRP protein (either by overexpression of the longest
isoform 1 or in FMR1 KO cells where the FMR1 mRNA
is still expressed). This supports the idea that FMRP bind-
ing to the FBS site controls the ratio between the different
isoforms in an autoregulatory loop. The binding of
FMRP longest isoform 1 on the FBS could counteract
or modulate its ESE function (for instance by interfering
with SR proteins) such as to favor the minor site inclusion.
The two alternative G-quartet structures are equidistant
(39 and 36 nt respectively) from the two alternative spli-
cing sites in exon 15, suggesting that they could act as a
molecular switch for controlling exon 15 alternative spli-
cing. However, one cannot exclude at present that the
observed effect of FMRP on the alternative splicing of
its own mRNA may be indirect, involving for instance
the translational control by FMRP of splicing factors.
The biological significance of a modulation of FMR1

alternative splicing is presently unclear in particular
because it is not known whether the different isoforms
of FMRP, some of which being present in very low
amount, have different functions. Still a variation in
their ratio is likely to have implication for the function
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of FMRP. For instance, the isoforms lacking the 50 end of
exon 15 produced by the alternative splicing at second and
third acceptor sites both lack serine 499, the major known
phosphorylation site of FMRP (36,37). This phosphoryla-
tion site was shown to modulate FMRP association to

mRNAs in drosophila (37) and to affect translation in
mammalian cells (36). Based on our observations,
increased FMRP binding to FBS would result in a
decrease in the synthesis of FMRP major isoforms (carry-
ing a complete exon 15) together with an increase of minor
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isoforms (lacking serine 499) downregulating FMRP func-
tion in a negative autoregulatory loop.

In conclusion, while we could not show a translational
effect of FMRP binding to its own FMR1 mRNA, our
data support the implication of the FMRP/G-quartet
interaction on the regulation of FMRP alternative splicing
around exon 15. The fact that perturbations of the intra-
cellular level of FMRP leads to modulation of exon 15
isoforms expression in a way susceptible to alter their
RNA-binding properties suggests the existence of a possi-
ble autoregulatory loop. Our data suggest also that
FMRP might be involved in splicing regulation of other
genes containing G-quartet motifs in their protein coding
sequence. This should be particularly prominent in neu-
rons where FMRP is expressed at its highest level and
even locally in dendrites where FMRP is present and spli-
cing has been proposed to occur (38).
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