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Abstract

The microbial communities colonize the mucosal immune inductive sites could be captured

by hosts, which could initiate the mucosal immune responses. The aggregated lymphoid

nodule area (ALNA) and the ileal Payer’s patches (PPs) in Bactrian camels are both the

mucosal immune inductive sites of the gastrointestinal tract. Here, the bacteria community

associated with the ALNA and ileal PPs were analyzed using of 16S rDNA-Illumina Miseq

sequencing. The mutual dominant bacterial phyla at the two sites were the Bacteroidetes,

Firmicutes, Verrucomicrobia and Proteobacteria, and the mutual dominant genus in both

sits was Prevotella. The abundances of the Fibrobacter, Campylobacter and RFP12 were

all higher in ALNA than in ileal PPs. While, the abundances of the 5-7N15, Clostridium, and

Escherichia were all higher in ileal PPs than in ALNA. The results suggested that the host’s

intestinal microenvironment is selective for the symbiotic bacteria colonizing the corre-

sponding sites, on the contrary, the symbiotic bacteria could impact on the physiological

functions of this local site. In ALNA and ileal PPs of Bactrian camel, the bacteria which colo-

nized different immune inductive sites have the potential to stimulate different immune

responses, which is the result of the mutual selection and adaptation between microbial

communities and their host.

Introduction

Commensal microbiota densely colonize the mammalian gastrointestinal mucosal surface.

They can even reach 1012 cells/g and the number of species is up to 500–1000 in colon contents

[1–3], and their encoding genes are more than their hosts’ genome [4]. These complex micro-

bial communities play an important role in host’s immune system. For instance, commensal

segmented filamentous bacteria could promote the development of Peyer’s patches (PPs), stim-

ulate the response of T helper 17 (Th17) cells and the production of T-dependent IgA [5] in

small intestine. Moreover, some Clostridium could induce regulatory T (Treg) cells to exert

the systemic anti-inflammatory effect [6, 7]. Furthermore, bacterial metabolites such as short

chain fatty acids (SCFAs) can promote the differentiation of the B cells, enhance the
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production of host’s antibodies [8], and improve the proliferation and function of intestinal

colonic Treg cells in special pathogen free (SPF) mice and sterile animals [9]. Also, some cer-

tain Bacteroides could promote the colonization of intraepithelial lymphocytes (IELs) and

secretion of interleukin 6 (IL-6) [10]. Therefore, the intestinal flora and their metabolites not

only provide necessary nutrition for the host and compete with pathogenic bacteria for the

same colonization niche, but also play an important role in regulating adaptive and natural

immune response of the host [11, 12].

Nodule-likePPs, an organized lymphoid tissue, mainly distributed in the ileal mucosa

and submucosa, are the classic inductive site for gastrointestinal mucosal immunity to

capture antigens, induce mucosal immune responses and regulate mucosal immune

homeostasis [13, 14]. Interestingly, there is a large area of aggregated lymphoid nodule

area (ALNA) in the abomasum of Bactrian camels, which was firstly reported by Wen-hui

Wang [15, 16]. This triangle-like structure starts from ventriculi neck and back along the

ventral wall of the curvature ventriculi minor and is composed of the reticular mucosal

folds region (RMFR) and longitudinal mucosal folds region (LMFR) [15, 17]. Further-

more, ALNA, an organized lymphoid tissue, with the same histological characteristics as

the ileal PPs, is a unique and important area of the mucosal immune inductive site in Bac-

trian camel abomasum [15, 18].

At present, the studies on the bacterial community in the gastrointestinal tract of camels

mainly focused on rumen, intestines, and/or feces, and the results suggested that the composi-

tion of microbial community in the rumen of a camel was similar to other ruminants with dif-

ferences in the abundance, meanwhile, there were different metagenomic profiles in different

digestive tract regions [19, 20]. However, the studies about the different mucosal immune

inductive sites of gastrointestinal tract has only received few attentions. Hence, based on our

previous histological and structural studies of ALNA and ileal PPs in Bactrian camels [16, 18,

21–23], 16S rDNA-Illumina Miseq sequencing was used to comparatively analyze the bacteria

community characteristics in ALNA and ileal PPs of Bactrian camels, moreover, the biological

information hidden in them were revealed in this study.

Materials and methods

Ethics statement

All experimental procedures were approved by the Animal Care and Use Committee (IACUC)

of College of Veterinary Medicine of Gansu Agricultural University (Approval No:

GSAU-AEW-2016-0005). All efforts were made to minimize animal suffering.

Experimental design and sample collection

All Bactrian camels were distributed in Minqin county, Gansu province, China. They

mainly eat Agriophyllum pungens, Ceratoides latens, and Nitraria tangutorum etc. when

grazing time. All the six healthy pubertal Alashan Bactrian camels (3 to 5 years old, 3 males

and 3 females) were randomly selected, anaesthetised intravenously with sodium pentobar-

bital (20 mg/kg), and exsanguinated until death. After the abdominal cavity was opened, the

whole abomasum (from cardia to pylorus) and ileum were cut, and their food residues were

gently washed with sterilized saline, then the mucus was quickly scraped from the mucosal

surface of ALNA (including RMFR and LMFR) and ileal PPs in each Bactrian camel under a

sterile operation. A total of 18 samples were collected from the above three locations of six

Bactrian camels, and quickly put into the 2.5 ml cryopreserved tube and kept in liquid nitro-

gen for further use.
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Extraction of genome DNA

The total genome DNA was extracted from samples using the TIANamp Stool DNA Kit

(TIANGEN, China) according to manufacturer’s instructions. 1% agarose gels were used to

detect the integrity and impurity in the extracted bacterial DNA samples. The purity and con-

centration were tested by NanoPhotometer spectrophotometer (IMPLEN, Munich, Germany)

and Qubit 2.0 Flurometer (Life Technologies, Carlsbad, CA, USA), respectively. According to

the concentration, DNA was diluted to 1 ng/μL using sterile water.

PCR amplification and sequencing

The V3-V4 hypervariable regions of the bacteria 16S rRNA gene were amplified with primers

341F (5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-GACTACHVGGG-TATCTAATCC-
3’) [24] on the GeneAmp1 PCR System 9700 (Applied Biosystem, USA). All PCR reactions

were carried out in 30 μL reactions with 15 μL of Phusion1High-Fidelity PCR Master Mix

(Biolabs, New England); 0.2 μM of forward and reverse primers, and about 10 ng of template

DNA. Thermal cycling was consisted of initial denaturation at 95˚C for 3 min, followed by 25

cycles of denaturation at 95˚C for 30 s, annealing at 55˚C for 30 s, and elongation at 72˚C for

30 s, finally 72˚C for 5 min. The same volume of 1× loading buffer (contained SYB green) was

mixed with PCR products and electrophoresis on 2% agarose gel was operated for detection.

Samples with bright main strip about 460 bp (V3-V4) were chosen for further experiments.

PCR products were mixed in equidensity ratios. Then the mixture of PCR products were puri-

fied with GeneJET Gel Extraction Kit (Thermo Scientific, Waltham, MA, USA). Sequencing

libraries were generated using NEB Next1UltraTM DNA Library Prep Kit for Illumina (NEB,

USA) following manufacturer’s recommendations and index codes were added. The library

quality was assessed on the Qubit@ 2.0 Fluorometer (Life Technologies, CA, USA) and Agilent

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). At last, the library was sequenced on

an Illumina MiSeq platform and 250 bp paired-end reads were generated. All the sequencing

data were deposited in the National Center for Biotechnology Information Sequence Read

Archive (NCBI SRA) under accession no. PRJNA624714.

Sequencing data processing and analysis

The raw data were filtered to obtain clean reads by removing adapter-polluted and low-quality

(average quality lower than 19 with PHRED algorithm) reads and the reads with N bases > 5%

etc. The Q30 percentages of the clean reads were all greater than 85% after filtering. According

to overlap of the clean data, we spliced the paired reads using the PEAR (v0.9.10) software

[25]. After merging, the sequences were removed chimeras and clustered into operational tax-

onomic units (OTUs) with UCLUST [26] based on a 97% pairwise identity. Subsequently, the

RDP classifier (v2.2) was used to annotate the taxonomic information for each representative

sequence against the Greengene database (201305) [27]. Alpha diversity indices, including

Chao 1, Shannon, and Simpson were calculated with MOTHUR V1.31.2 software [28]. Rare-

faction curves of Observed species were plotted using R (v3.1.1) software. Beta diversity analy-

sis used to investigate the diversity between different groups was performed with QIIME

(v1.80) [29]. The hierarchical clustering using Bray-Curtis distances based on relative abun-

dance of species was done to cluster the data set. And the difference among the groups were

analyzed by the principal coordinate analysis (PCoA) based on the distance matrices of

weighted UniFrac. Species composition analysis including Venn diagrams and composition

diagrams of the microbiota were performed using R (v3.1.1) software. Venn diagrams were

generated to visualize the OTUs shared among the three groups. In addition, we plotted the

community bar graphs which present what microorganisms in a taxonomy level and the
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relative abundance of each microbe in each sample. Kruskal–Wallis test analysis were used to

determine if there were statistically significant differences among the alpha diversity indices

data and the relative abundances data of microbial taxa using IBM SPSS v. 23.0. (SPSS, Chi-

cago, USA). Statistical significance was accepted as p< 0.05 and extreme significance was

accepted as p< 0.01, adjusted for ties. The phylogenetic tree analysis were completed with

FASTTREE V2.1.3 [30]. Besides, in order to identify the major contributor bacteria in each

group, LEfSe analysis was performed by online LEfSe software [31].

Results

Sequencing data and microbial alpha-diversity

After the quality control, a total of 872,650 sequence reads were obtained from all the samples

and grouped into 2,017 OTUs at the 97% similarity cut-off level. There was a similar pattern in

the rarefaction curves: the number of OTUs of all samples gradually increased with the

increase of the number of measured sequences, furthermore the curves became more gentle

and the increasing trend became smaller, indicating that most of species existing in each sam-

ple were observed (Fig 1).

The alpha-diversity of the microbial communities in ALNA and ileal PPs of Bactrian camels

was estimated by Chao, Shannon and Simpson indices which are listed in Tables 1 and S1. The

results revealed that the Chao, Shannon and Simpson indices in LMFR and RMFR were all

extremely higher than in ileal PPs (P<0.01), but there was no significant difference in Chao,

Shannon and Simpson indices between LMFR and RMFR (P>0.05) in Fig 2.

Fig 1. Rarefaction curves of each sample from LMFR, RMFR and ileal PPs of Bactrian camels calculated at the

species level. Horizontal axis: the amount of effective sequencing data; vertical axis: the observed number of

operational taxonomic units (OTUs). Total sample abundance estimates were calculated by abundance estimators

Observed species. LMFR: longitudinal mucosal folds region; RMFR: reticular mucosal folds region; PPs: ileal Payer’s

patches.

https://doi.org/10.1371/journal.pone.0239987.g001
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OTUs distribution of the microbial community in the LMFR, RMFR and

ileal PPs

In order to understand the similarities of microbial community in the LMFR, RMFR and ileal

PPs of Bactrian camels, hierarchical clustering analysis was performed based on Bray-Curtis

distances generated from the OTU abundance. The results showed that the all samples could

be grouped into two clusters: ALNA (LMFR and RMFR) and ileal PPs clusters (Fig 3). Among

the clusters, the grouped LMFR and RMFR samples indicated that they had similar bacteria

compositions. In addition, we performed PCoA of weighted UniFrac distance based on the

OTUs of the microbial communities. It can be seen from PCoA scatter plot that PPs group was

obviously separated from LMFR and RMFR groups (Fig 4).

Venn diagram was made according to the overlapping OTUs among the LMFR, RMFR and

ileal PPs, then the mutual and unique OTU numbers were calculated in each group. The

results showed that the OTU counts were 1207 in LMFR, 1178 in RMFR, and 1086 in ileal PPs;

520 OTUs were shared among the above three sites and accounted for 43.1%, 44.1% and

47.9%, respectively. Between LMFR and RMFR, there were 901 identical OTUs accounted for

74.6% and 76.5%, respectively. Between LMFR and PPs, there were 529 identical OTUs

accounted for 43.8% and 48.7%, respectively. Besides, between RMFR and PPs, there were 544

identical OTUs accounted for 46.2% and 50%, respectively (Fig 5). We can conclude that the

number of identical OTUs between LMFR and RMFR were more than between LMFR and

PPs and between RMFR and PPs.

Table 1. Number of clean sequence reads and OTUs and the values of alpha diversity indices in each group.

Sample Nseqs NOTUs alpha diversity

chao1 shannon simpson

RMFR 98502.67±6913.04 630.83±58.79 678.23±60.92 7.28±0.28 0.98±0.005

LMFR 96245.00±3965.22 631.50±68.01 679.92±64.70 7.24±0.40 0.98±0.009

PPs 96135.67±3329.56 358.83±106.09 374.35±112.90 5.69±1.33 0.90±0.095

Note: Nseqs indicates the number of sequence clean reads; NOTUs indicates the number of OTUs; the data are expressed as mean ± SD.

LMFR: longitudinal mucosal folds region; RMFR: reticular mucosal folds region; PPs: ileal Payer’s patches.

https://doi.org/10.1371/journal.pone.0239987.t001

Fig 2. The alpha-diversity comparison among LMFR, RMFR and ileal PPs three sites. (a) Chao index, (b) Shannon index and (c) Simpson index. P<0.01 indicates

extremely significant difference between two groups connected with lines, and P>0.05 indicates not significant difference. LMFR: longitudinal mucosal folds region;

RMFR: reticular mucosal folds region; PPs: ileal Payer’s patches.

https://doi.org/10.1371/journal.pone.0239987.g002
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Microbial composition in the LMFR, RMFR and ileal PPs at phylum and

genus levels

All sequences were identified and subjected to different taxonomic levels. The results

showed that 14 phyla and 46 genera in RMFR, 14 phyla and 41 genera in LMFR, and 16

phyla and 59 genera in PPs were detected (S2 and S3 Tables). At the phylum level, the

most prevalent 12 phyla in all samples were Bacteroidetes, Firmicutes, Verrucomicrobia,

Proteobacteria, Lentisphaerae, Fibrobacteriae, SR1, EluSimicrobia, Spirochaetes, Teneri-

cutes, Cyanobacteria and TM7 contributing smaller proportions of the sequencing reads.

The rest of phyla were also presented but at lower abundance rates (Fig 6A). Then Krus-

kal–Wallis tests were performed on the phyla-level taxa, 5 phyla have a significant differ-

ence in abundance in at least one group (FDR-corrected Kruskal–Wallis test: p < 0.05)

(Fig 6C). There were no significant differences among the levels of Bacteroidetes, Firmi-

cutes, Verrucomicrobia, Proteobacteria, SR1, Lentisphaerae, Tenericutes, Cyanobacteria

and TM7. Bacteroidetes, Firmicutes, Verrucomicrobia and Proteobacteria were the

mutual predominant phyla of RMFR, LMFR and ileal PPs and accounted for 66.03% in

RMFR, 68.46% in LMFR, 71.62% in ileal PPs respectively (Fig 6B). The abundance of

Fibrobacteres, Elusimicrobia and Spirochaetes in ALNA (both RMFR and LMFR) were

significantly higher than in ileal PPs. Unexpectedly, the abundance of Fusobacteria was

higher in ileal PPs.

To further characterize taxonomic differences, the most prevalent 25 genera were charac-

terized (Fig 7A), then we performed Kruskal–Wallis tests on genus-level taxa, (Fig 7B and 7C).

The abundance of Prevotella (accounted for 4.67% in the RMFR, 5.64% in the LMFR, 3.09% in

Fig 3. The hierarchical cluster analysis of Bray–Curtis distances generated from taxa tables summarized at the

operational taxonomic unit (OTU) level. LMFR: longitudinal mucosal folds region; RMFR: reticular mucosal folds

region; PPs: ileal Payer’s patches.

https://doi.org/10.1371/journal.pone.0239987.g003

PLOS ONE Microbes of ANLA and ileal PPs of Bactrian camels

PLOS ONE | https://doi.org/10.1371/journal.pone.0239987 October 8, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0239987.g003
https://doi.org/10.1371/journal.pone.0239987


the ileal PPs) was the highest, and there were no differences among the three sites. Sixteen gen-

era showed significant differences in abundances among the three sites: the abundances of

Fibrobacter, RFN20, Campylobacter, BF311, Ruminococcus, Desulfovibrio and Pyramidobacter
in the RMFR and LMFR were significantly higher than in ileal PPs, but the abundances of

Escherichia, Bacteroides, 5-7N15, Akkermansia, Epulopiscium, Phascolarctobacterium, rc4-4
and Turicibacter in ileal PPs were higher than in RMFR and LMFR (Fig 7B), Moreover, the

LEfSe analysis results showed that Fibrobacteres, Campylobacter and RFP12 were the main

contributing bacteria in ALNA, while 5-7N15, Clostridium, and Escherichia were the main

contributing bacteria in ileal PPs (Fig 8).

Fig 4. Weighted version of UniFrac-based principal coordinate analysis (PCoA) plot with PC1 and PC3 at the operational

taxonomic unit (OTU) level among LMFR, RMFR and ileal PPs. LMFR: longitudinal mucosal folds region; RMFR: reticular mucosal

folds region; PPs: ileal Payer’s patches.

https://doi.org/10.1371/journal.pone.0239987.g004
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Discussion

The relationship between the host and common dominant bacteria

The PPs were mainly distributed in the terminal ileum. They played an important role in the

regulation of the digestive tract mucosal immune homeostasis through capturing the antigen

and mainly inducing the IgA production. ALNA, a special organized lymphoid tissue, was dis-

covered in the abomasum of Bactrian camels [16]. The structure of ALNA is highly similar to

ileal PPs. In this study, the common dominant bacteria colonized the mucosa surface of the

ALNA and ileal PPs were the same as in the intestine of other animals, such as dromedary

[20], Bactrian camel [19], cattle [32], sheep [33] and horse [34]. There are several reasons for

this phenomenon: first, the similar microenvironment of the intestine, such as the same tem-

perature (maintained at about 37–40˚C) in vivo [35], which provided the foundation for the

stable reproduction of microorganisms; second, the similar chyme components, for the herbi-

vores, including large amounts of plant cellulose, fructose, starch granules, etc.[3, 36], which

could provide similar nutrients for the microorganisms; third, similar strategies of the immune

defense, for instance in different herbivores, the classical cell for capturing antigens was the

microfolds cell (M cell), and the dominant immunoglobulin (Ig) located in the lumen was

SIgA [37], rather than other Ig molecules. Conversely, if these factors significantly changed,

the intestinal flora could dramatically change accordingly. Therefore, these common predomi-

nant bacteria had been activated and selected by the host’s internal environment, chyme and

immunity together.

Accordingly, these common predominant bacteria also played a crucial role in the host’s

nutrient absorption and immune defense, such as synthesizing glycoside hydrolase and poly-

saccharide lyase, promoting the degradation of the fibrosome, fructose, starch, etc., and pro-

viding the five-carbon or six-carbon sugars [36, 38]; the bacterial components (such as LPS

[39]) and metabolites (such as SCFAs [40, 41], antimicrobial peptides [6, 42], etc.) were impor-

tant in the regulating host energy metabolism and intestinal development and maintaining

Fig 5. Venn profile of microbiota OTUs in the LMFR, RMFR and ileal PPs of Bactrian camels. LMFR: longitudinal

mucosal folds region; RMFR: reticular mucosal folds region; PPs: ileal Payer’s patches.

https://doi.org/10.1371/journal.pone.0239987.g005
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intestinal epithelial integrity etc. [43–46], as well as stimulating and regulating the maturation

and differentiation of the host immune system [10].

Hence, the characteristics of these common predominant bacteria were universal in differ-

ent mammals gastrointestinal tract, and which was the result of mutual adaptation and domes-

tication between host and intestinal flora [47, 48], and reflected the consistency of co-

evolutionary between the host and the intestinal flora in some degree [49].

The relationship between different inductive sites and significant

differential bacteria

At the genus level, there were significant differences in the relative abundance of the bacteria

colonized ALNA and ileal PPs, which were mainly caused by Fibrobacteres in ALNA and Clos-
tridium (SMB53) and Escherichia in ileal PPs. It was mainly related to the following reasons.

First, the effects from the pH, bile salts and oxygen content, for example, the pH is about 5.55

(acidic) in the camel’s abomasum, but it is about 7.73 (alkaline) in the ileum [50]. The oxygen

content is lower in the ileum than in the abomasum usually. The gram-negative bacteria have

stronger tolerance of bile salts than gram-positive bacteria [51]. And in the gastrointestinal

tract, the ileum is an important site for bile acids resorption, but the abomasum is not. Second,

the difference from the component’s ratio of chyme from grazing plants etc., with the chyme

Fig 6. The relative abundance of phylotypes at the phylum in the samples from LMFR, RMFR and ileal PPs. (a) Composition and relative abundance of

microbes at the phylum level for each sample. (b) Composition and mean relative abundance of microbes at the phylum level for each site. (c). Kruskal-

Wallis test for differences in these microbial taxa among three sites at the phylum level. LMFR: longitudinal mucosal folds region; RMFR: reticular mucosal

folds region; PPs: ileal Payer’s patches.

https://doi.org/10.1371/journal.pone.0239987.g006
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advances backward in the gastrointestinal tract, the nutrients are gradually digested and

absorbed, so the composition ratio of chyme are different, though they are all mainly from

plants cellulose and their influences on the immunity were not clear. Third, there were differ-

ences in the mucus. In the abomasum, the average thickness of the mucus was about 700 μm,

and mainly constituted by the MUC6 and MUC5AC, which were secreted by the mucous cells

and epithelial cells, respectively. However, in the ileum, the average mucous thickness was

about 150–300 μm, and were formed by the MUC2 [52]. Therefore, at the physiological condi-

tions, the differences of them (such as pH, bile salts, the oxygen content, component’s ratio of

chyme and the mucus) were the main factors that affect the bacteria at the genus level.

As well, the main differential bacteria could impact on the physiological functions. For

example, the F. succinogenes was an important symbiotic bacterium that could degrade cellu-

lose in the rumen of ruminants [36], and its metabolite succinic acid could successfully induce

the ILC2 type immune response by the specific receptor [53]; and the Bacteroides could pro-

duce a weak agonistic activity of LPS (LPSBV), which could induce the semi-mature of the

CD11c + bone marrow-derived dendritic cells, and this response did not induce the pro-

inflammatory factors expression [39]. Moreover, some researches have shown that the lymph

nodes located in the different intestinal segments perform “segmental” immune regulation on

Fig 7. The relative abundance of phylotypes at the genus level in the samples from LMFR, RMFR and ileal PPs. (a) Composition and relative abundance

of microbes at the genus level for each sample. (b) Composition and mean relative abundance of microbes at the genus level for each site. (c). Kruskal-Wallis

test for differences in these microbial taxa among three sites at the genus level. LMFR: longitudinal mucosal folds region; RMFR: reticular mucosal folds

region; PPs: ileal Payer’s patches.

https://doi.org/10.1371/journal.pone.0239987.g007
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the intestine, for instance, the different immune responses were found in the different intesti-

nal segments of mice attacked by pathogens, such as Salmonella [54]. And in our study, the

abundance of the Fibrobacteres in the ALNA were significantly higher than in ileal PPs, the

abundances of the Clostridium (SMB53) and Escherichia in ileal PPs were significantly higher

in ALNA. Therefore, the colonization of the local differential bacteria makes the whole diges-

tive tract mucosal immune homeostasis different among different intestinal segments.

In addition, some intestinal bacteria were not identified in this study, so the biological

information hided in them needs further research and exploration. However, the results of the

present study will lay a foundation for further research the role of microbial flora on gastroin-

testinal mucosal immunity.
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