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Quorum sensing going wild

Mihael Spacapan,1,* Cristina Bez,1 and Vittorio Venturi1,*
SUMMARY

The first discovered and well-characterized bacterial quorum sensing (QS) system belongs to Vibrio fi-
scheri, which uses N-acyl homo-serine lactones (AHLs) for cell-cell signaling. AHL QS cell-cell communica-
tion is often regarded as a cell density–dependent regulatory switch. Since the discovery of QS, it has
been known that AHL concentration (which correlates imperfectly with cell density) is not necessarily
the onlyQS trigger. Additionally, not all cells respond to aQS signal. Bacteria could, viaQS, exhibit pheno-
typic heterogeneity, resulting in sub-populations with unique phenotypes. It is time to ascribe greater
importance to QS-dependent phenotypic heterogeneity, and its potential purpose in natura, with
emphasis on the division of labor, specialization, and ‘‘bet-hedging’’. We hope that this perspective article
will stimulate the awareness that QS can be more than just a cell-density switch. This basic mechanism
could result in ‘‘bacterial civilizations’’, thus forcing us to reconsider the way bacterial communities are en-
visioned in natura.

INTRODUCTION

Canonical bacterial cell-cell signaling systems consist of a ‘‘signaling’’ and ‘‘sensing’’ module, where the first produces a chemical signal, and

the second interacts with it. Many species undergo cell-cell communication, each with its own variety of cell-cell signals that regulate several

adaptive phenotypes.1 Cell-cell signaling systems are usually referred to by using the broad and well-established term ‘‘Quorum Sensing’’

(QS).2,3 In this perspective article, we will discuss the common proteobacterial LuxI-family N-acyl homoserine lactone (AHL) synthases and

the LuxR-family AHL-dependent transcriptional regulators2 as amodel example of ‘‘signaling’’ and ‘‘sensing’’, respectively. However, we think

that the insights provided here can be generalized and applied to bacteria that possess other types of QS mechanisms.

AHLs interact directly with the LuxR-family transcriptional regulators located in the cytoplasm. The LuxR-AHL complexes then bind to spe-

cific DNAmotifs upstream of target genes andmodulate gene transcription. The AHL synthase gene is usually one of the targets, thus gener-

ating a positive feedback loop.1,4 The purpose of QS is usually considered to be cell density sensing (which correlates imperfectly with AHL

concentration); at ‘‘quorum’’ (threshold of cell density) target gene expression is modulated. A ‘‘quorum’’, however, is often only one of the

many conditions that must bemet to triggerQS-regulated phenotypes. Supra-regulation of QS has been already reported at the discovery of

the first QS in Vibrio fischeri,5 where the QS response was shown to be dependent upon catabolite repression and cyclic adenosine mono-

phosphate (cAMP).6–9 Supra-regulation is also present in many other AHL QS systems.3,10–14; for example, the very well-studied AHL QS

response of the plant pathogen Agrobacterium tumefaciens is strongly influenced by the plant.15 Similarly, the two extensively studied hier-

archically organized AHL QS systems of Pseudomonas aeruginosa are part of a complex regulatory network involving many other regulators

(e.g., RpoS, RpoN, RsaL, .) which affect their expression.13,16 QS systems of other bacteria like Vibrio harveyi, Ralstonia solanacearum, and

Rhizobium leguminosarum, have also been evidenced to be under the control of other regulators, small RNAs and environmental

cues.11,12,17–19 Cyclic-di-guanosine monophosphate (cyclic-di-GMP) has been shown to play a role in triggering the QS response in Sinorhi-

zobium meliloti20,21 and P. aeruginosa.22 Some AHL QS systems feature an intergenic element between the luxI and luxR genes that most

often negatively and stringently affects the quantity of produced AHLs via regulation of the luxI family AHL synthase.23 The production of

signaling molecules is therefore not always turned on by default, as one could assume if considering QS as a mere cell-density switch. Pseu-

domonas fuscovaginae is one such example, where both of its AHL QS systems, while functional, do not produce AHLs in laboratory condi-

tions.24 Additionally, even when a QS signal is present, bacteria can often modulate the response. For example, Smith and Schuster25

described an anti-activator system in P. aeruginosa, which dampens the cellular response to the signal and with it prevents self-activation.

Elucidating the biological role of this supra-regulation of AHL QS systems and how it affects the cell-cell communication response of a bac-

terial community therefore still represents a major future challenge.

THE ARGUMENT FOR INHERENT PHENOTYPIC HETEROGENEITY OF QS REGULATION

Bacterial populations, where only a subset of clonal cells exhibits a biologically meaningful trait are considered to be phenotypically hetero-

geneous.26,27 If the entire population exhibits the trait, it will be considered phenotypically homogeneous. We consider a trait to be biolog-

ically meaningful when it significantly increases the fitness of a species under the selective pressure of its natural habitat (in natura). Phenotypic
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heterogeneity might arise in bacteria due to stochastic processes28 or due to active cellular mechanisms which makes it an evolvable trait.29

Here we will focus on phenotypic heterogeneity that arises due to QS. Furthermore, we will be presenting an argument for phenotypic het-

erogeneity as an inherent property of QS regulation in natura.

Youk and Lim30 have observed that when autoinducing systems feature a positive feedback loop mechanism, like the one present in the

majority of AHLQS systems,4 a homogeneousQS responsewill be observed. This would suggest thatQS, in specific circumstances, promotes

phenotypic homogeneity (e.g., in a laboratory setting where the signal is rather stable). However, in the same article,30 when an active mech-

anism that degrades the signal was introduced, the auto-induced response exhibited phenotypic heterogeneity. QS signals in natura are sub-

ject to many factors affecting their stability and presence,31 as opposed to a laboratory environment. Additionally, many bacteria feature

mechanisms with which QS signals are actively degraded.32 Therefore, we speculate, that if an autoinducing signalingmechanism with a pos-

itive feedback loop evolved in natura, where signal stability is most likely low,31 it evolved to promote phenotypic heterogeneity, because it is

a biologically meaningful trait.

By taking all the above into account, we argue, thatQS regulationwill inherently result in phenotypic heterogeneity in natura. This aspect of

QS should therefore be considered, and we propose that phenotypic heterogeneity represents the ‘‘default’’ state of QS regulation. In most

environments where signal stability is low andQS is under additional supra-regulation, this is likely to serve as a bacterial differentiationmech-

anism. Phenotypic homogeneity, on the other hand, occurs in bacteria, in which their QS system evolved to minimize its inherent phenotypic

heterogeneity.
CHRONOLOGICAL CONSIDERATIONS OF QS RESEARCH

The LuxI/R system of V. fischeri was the first AHL QS system to be discovered33 and therefore one of the best characterized. This symbiotic

bacterium can be found within the bobtail squid’s light organ.34 The squid recruits and grows the bacterium35; AHL levels increase with bac-

terial cell density, and at ‘‘quorum’’ bacteria will switch on bioluminescence.36 The termQS is now used for bacterial AHL signaling and for cell-

to-cell communication in general,2,3 although additional conditions other than the ‘‘quorum’’ must also be met in V. fischeri for luminescence

induction.5–9 This is most commonly not emphasized in favor of simplified explanations that mostly consider cell density as the predominant

factor in bacterial QS regulation. The additional regulatory controls, however, have strong implications for the biological significance of QS.

The additional trigger conditions are met in the squid’s light organ or in the laboratory environment, but it might not always be so in natura.

QS might therefore have other modes of function on top of being a cell-density switch (e.g., phenotypic heterogeneity, oscillative QS

response patterns, or a combination of both). QS regulation is shaped by selective pressure that is present in the specific environment bac-

teria inhabits (e.g., soil) which is often significantly different than the ones that are present in the bobtail squid’s light organ.

We speculate, that natural selectionmost probably maximizes luciferase production by V. fischeri as experiments by Bose et al.37 support.

The squid purges 95% of its symbiotic population on a daily basis,34 so we assume that the selective pressure exerted on the bacterium is

strong. QS regulation can be greatly affected by selecting for phenotypes under QS regulation,38 and the squid’s light organ could be doing

just that. Squid with light organs that fail to properly select for luciferase-producing V. fischeri could struggle surviving and passing on their

genes due to their dim light organ. Therefore, we speculate that the squid’s light organ has evolved to ‘‘domesticate’’ the bacterium, and any

QS heterogenic response that might arise is probably minimized in order to maximize luminescence. Therefore, we presume, that if the AHL

QS system of V. fischeri synchronizes luminescence in its populations toward homogeneity, it is because of the environment the bacterium

finds itself in. Controversially, even if the averageQS response of V. fischeri appears to approach homogeneity, recent research has indicated

that in an artificial setting, V. fischeri will still exhibit a certain degree of phenotypic heterogeneity39,40 We argue, that this is so, because

V. fischeri’s QS system is actually inherently heterogenic; the squid’s light organ merely minimizes this heterogeneity (possibly by selecting

the strain and manipulating the growth conditions in its light organ). This would further support the idea that QS regulated phenotypes are

inherently heterogeneous. Therefore, if the speculation we provide above turns out to be true, a QS-driven phenotypically homogeneous

response should not be considered an inherent property of QS systems; phenotypic heterogeneity, on the other hand should be. We argue

that a homogenized QS response (to various degrees) should be considered as one of the extreme possible outcomes of inherently hetero-

geneous QS regulation. Consequently, other bacteria, that possess a QS system, might not necessarily use it to homogenize a populational

response, because they find themselves occupying a different environment, with different selective pressures compared to the squid’s light

organ.

The selective pressure, applied by the squid to V. fischeri inhabiting its light organ is similar to the selective pressure applied by humans to

other bacteria when exploited for industrial purposes. In this case, it is wanted that most bacteria exhibit the desired uniform community

phenotype at a maximum level.41 An ideally uniform and homogeneous bacterial population is a highly desired scenario in such settings.

Another well-studied AHL QS system is the one of P. aeruginosa, which is mostly considered in the context of human pathogenicity. The

habitat of P. aeruginosa clinical isolates, most commonly the lung of a patient with cystic fibrosis,42 is significantly different from other envi-

ronmental conditions where one might find similar strains of the same genus and with similar QS systems. Additionally, Smith and Schuster25

have recently shown that P. aeruginosa possesses an active mechanism that synchronizes QS-regulated phenotypes by preventing self-

sensing. Maybe such an active mechanism evolved because in CF lungs a phenotypically homogeneous QS response is more optimal

than a heterogeneous one. However, while a homogeneous response could be advantageous during pathogenesis, it might not be so in

a different environmental setting where wild type strains use the QS system for a different purpose.
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QS-REGULATED PHENOTYPES IN NATURA

The scientific community is aware of AHLQSphenotypic heterogeneity, as several research articles and other endeavors employing single cell

techniques have evidenced, and even more so because sometimes QS heterogeneity is apparent even when strains are grown in a classic

laboratory setting.26,27,29 However, we think that there is still a strong general tendency to study QS in the context of homogeneity via a

cell-density-dependent response in rather stable environments and/or in bacteria that colonize specific environments as described above

for V. fischeri and P. aeruginosa. This might also be due to the methodology traditionally used when studying the QS response. Very often

target gene expression is quantified using laboratory techniques that yield an estimate for the expression of the entire population, which is

then normalized per cell number. Suchmethods can often fail to detect small groups of individual cells with higher-than-average gene expres-

sion. Additionally, when determining QS regulons, an approach that compares differential transcription of QS ‘‘active’’ and ‘‘inactive’’ (e.g.,

mutants in QS genes) cells is most often employed. To determine the QS regulon a cut-off fold value in expression will be chosen. Pheno-

typically heterogeneous QS responses will more likely fall below this threshold and remain undetected or disregarded as artifacts, unlike

a phenotypically homogeneous response. Nevertheless, phenotypic heterogeneity is sometimes considered, acknowledged, and given

importance by hypothesizing its biological significance. For example, observed phenotypic heterogeneity was hypothesized to play a role

in ‘‘bet hedging’’ in Listeria monocytogenes,43 Pseudomonas syringae44 and Xanthomonas campestris.44 Observed phenotypic heterogene-

ity in V. harveyi45,46 and Bacillus subtilis47 was postulated to play a role in division of labor. Bettenworth et al. discussed the above examples of

phenotypic heterogeneity in length.27 Collective decision making was hypothesized to explain observed heterogeneities in B. subtilis and

S. meliloti20,48 and the latter function of phenotypic heterogeneity was further corroborated by mathematical modeling.49 One could,

most likely, find even more examples in the scientific literature, where observed phenotypic heterogeneity was properly addressed. We,

nevertheless, propose that an even more dramatic shift away from the homogenized QS response dogma is warranted. This is mostly

because, as already presented before, many wild type bacterial isolates are not necessarily under selective pressures that shaped them to

exhibit increasingly phenotypically homogeneous responses; therefore, a synchronized and phenotypically homogeneous response should

not be considered a default feature of QS. We therefore speculate that most wild type strains, unless ‘‘domesticated’’, will probably tend to

exhibit a higher degree of QS-driven phenotypic heterogeneity. We also argue that the importance of QS-driven phenotypic heterogeneity

and other unusual QS configurations have been overlooked and need to be given more attention while also considering their appropriate

ecological context. Additionally, the potential alternative roles of QS communication need to be explored even further.
THE PURPOSE OF PHENOTYPIC HETEROGENEITY IN NATURA

There are several known examples of phenotypic heterogeneity in bacteria.27 Specific environments shapingQS regulation in naturawill often

feature several different selective pressures. A group of specialized and cooperating bacteria is likely to be more successful in such environ-

ments; division of labor allows specialization and optimization for a particular task (e.g., optimizing its metabolomic flux). Some phenotypes

benefit the entire community or are necessary to guard from competitors. They might also however have non-specific, detrimental effects on

the individual bacterium producing them, so it would make sense to designate a ‘‘warrior caste’’ of bacteria that produces those for the

greater good of the community. Consequently, it might not always be necessary that all cells of a population engage a specific adaptive

phenotype, thereby also saving on the metabolic cost. Especially when the environmental pressure to which the adaptive phenotype is

needed displays instability. QS-regulated phenotypes might also regulate individualistic behavior; Cárcamo-Oyarce et al.,50 have shown

that QS triggers the exit from biofilms in Pseudomonas putida. In this case, bacteria could be viewed as cells that are designated to further

explore and colonize other environments. Such ‘‘bacterial pioneers’’ might then find suitable ecological niches, potentially saving their spe-

cies from extinction. Even if the potential benefit is high, going ‘‘all-in’’ and opting for an exodus is likely suboptimal. On the other hand,

sacrificing a few bacteria has no significant consequences for the population. QS could therefore enable the allocation of a sub-population

of bacteria that will be able to respond to a non-constant, unpredictable, and/or chaotic environmental selective pressure27 thus enabling bet-

hedging. Future research endeavors should be encouraged to place bacteria in an appropriate ecological context, identify the relevant

selective pressure, and include the testing of hypotheses that mechanistically explain if and how QS architectures, which deviate from the

cell-density switch dogma, present a fitness benefit to the bacterial population. Generalizing QS should be avoided, even if the system is

mechanistically similar, it might serve completely different purpose according to the ecological niche of the strain.
SOCIOMICROBIOLOGY OF PHENOTYPIC HETEROGENEITY

A small subpopulation of cells that exhibits a QS-regulated phenotype via the production of ‘‘public goods’’ that are beneficial to the entire

bacterial population (as opposed to being beneficial only to the cell producing it) can be considered ‘‘altruistic’’ because it invests resources to

maximize the chances of survival of the entire bacterial population. This could be construed as paradoxical according to the ‘‘Prisoner’s

Dilemma/The Tragedy of The Commons’’ thought experiment. ‘‘Selfish’’ cells should, in the long run, overgrow cooperating ones, because

they are better off in terms of fitness by not paying the price of cooperation,51 and this can lead to a populational collapse.52,53 The ‘‘The Trag-

edy of The Commons’’’ could therefore be used as an argument against extreme societal division of labor in bacteria. There are several exam-

ples, where QS-regulated adaptive phenotypes are exploitable by cheaters in a laboratory environment. Important experimental work on

P. aeruginosa for example makes it evident that a large population of cooperating individuals that produces a secreted proteases is required

for the population to sustain itself.54–57 Such experiments, we argue, should still not be interpreted as counterevidence for the possibility of

cooperation and division of labor in natura. In the case of P. aeruginosa specifically55,57 where protein is the only food source, and where
iScience 26, 108000, October 20, 2023 3
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bacteria proliferate to high cell densities,QS systemswhich regulate cooperative behavior needed for survival, will indeedbe selected to func-

tion in away that ensures a sufficiently highpopulationof cooperating individuals, otherwise, the population collapses andbecomesextinct. In

such cases, a sufficiently high population of cooperating individuals is ensured by the introduction of policing,metabolic prudency, and group

selection.52 Some examples of policing include cheater cyanide susceptibility in P. aeruginosa58 or theQS control of type VI secretion systems

in Burkholderia thailandensis.59 However, some AHL QS systems, especially the ones that are found in wild type bacterial isolates, might still

function differently, and exhibit a high degree of phenotypic heterogeneity without conflictingwith the ‘‘Prisoner’s Dilemma’’ since they could

perform a dramatically different function. In natura, if e.g., P. aeruginosawere to occupy an ecological niche where protein is not the only food

source, its presence sporadic, and not as essential for growth, it could be wasteful to over-commit to the energy investment of protease pro-

duction.Notdegradingprotein in suchenvironmentsmight not necessarily result in apopulational collapse.A small subpopulationof cells that

produces proteases could be enough to degrade protein into available food and provide the population with a small energy boost that would

nevertheless help the bacterial population. If it does not, the upkeep energy is still met some other way and nothing dramatic happens to the

bacterial population. Admittedly, determining a base upkeep cost in natura is not straightforward. In theory, QS could regulate phenotypic

differentiation to a degree, where the regulated phenotype can nevertheless still sustain or be of benefit to a sub-population. Other sub-pop-

ulations would then reciprocate, by manifesting some other phenotype, again beneficial to the species as a whole.

Conclusion

There is a strong need to shift the study of QS to amore appropriate ecological context where the conditions under which we propagate, and

study QS resemble more closely those in natura. This perspective aims to re-envision the way we understand QS cell-cell communication in

bacteria and revive research in this field by redirecting it toward the exploration of its ecological and socio-microbiological relevance, as

already envisioned by Whiteley et al.60 QS is under considerable underemphasized additional regulation which in their natural habitat, could

enable other behaviors, including bacterial phenotypic differentiation and specialization, ultimately allowing a higher degree of societal

organization and collective decision-making.QS could be considered as amolecularmechanism that helps determine and establish the ‘‘bac-

terial societal vocation’’. By understanding more about signaling mechanisms that do not function as we would expect and their genetic/mo-

lecular configurations, we can also assume more about the environmental selective pressures, which shaped them in the first place, because

we argue that QS systems in natura have a purpose in overcoming them. A teleological understanding of QS systems will provide us with

testable hypotheses, will guide us toward a deeper understanding of cell-cell signaling, and will provide a strong basis for further translational

research enabling easier exploitation and, most of all, understanding of bacteria in natura.
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21. Schäper, S., Krol, E., Skotnicka, D., Kaever, V.,
Hilker, R., Søgaard-Andersen, L., and Becker,
A. (2016). Cyclic Di-GMP Regulates Multiple
Cellular Functions in the Symbiotic
Alphaproteobacterium Sinorhizobium
meliloti. J. Bacteriol. 198, 521–535. https://
doi.org/10.1128/JB.00795-15.

22. Lin Chua, S., Liu, Y., Li, Y., Jun Ting, H., Kohli,
G.S., Cai, Z., Suwanchaikasem, P., Kau Kit
Goh, K., Pin Ng, S., Tolker-Nielsen, T., et al.
(2017). Reduced Intracellular c-di-GMP
Content Increases Expression of Quorum
Sensing-Regulated Genes in Pseudomonas
aeruginosa. Front. Cell. Infect. Microbiol. 7,
451. https://doi.org/10.3389/fcimb.2017.
00451.

23. Venturi, V., Rampioni, G., Pongor, S., and
Leoni, L. (2011). The virtue of temperance:
built-in negative regulators of quorum
sensing in Pseudomonas. Mol. Microbiol. 82,
1060–1070.

24. Mattiuzzo, M., Bertani, I., Ferluga, S., Cabrio,
L., Bigirimana, J., Guarnaccia, C., Pongor, S.,
Maraite, H., and Venturi, V. (2011). The plant
pathogen Pseudomonas fuscovaginae
contains two conserved quorum sensing
systems involved in virulence and negatively
regulated by RsaL and the novel regulator
RsaM. Environ. Microbiol. 13, 145–162.
https://doi.org/10.1111/j.1462-2920.2010.
02316.x.

25. Smith, P., and Schuster, M. (2022).
Antiactivators prevent self-sensing in
Pseudomonas aeruginosa quorum sensing.
Proc. Natl. Acad. Sci. USA 119, 2201242119.

26. Grote, J., Krysciak, D., and Streit, W.R. (2015).
Phenotypic heterogeneity, a phenomenon
that may explain why quorum sensing does
not always result in truly homogenous cell
behavior. Appl. Environ. Microbiol. 81,
5280–5289.

27. Bettenworth, V., Steinfeld, B., Duin, H.,
Petersen, K., Streit, W.R., Bischofs, I., and
Becker, A. (2019). Phenotypic heterogeneity
in bacterial quorum sensing systems. J. Mol.
Biol. 431, 4530–4546.

28. Kærn, M., Elston, T.C., Blake, W.J., and
Collins, J.J. (2005). Stochasticity in gene
expression: from theories to phenotypes.
Nat. Rev. Genet. 6, 451–464. https://doi.org/
10.1038/nrg1615.

29. Ackermann, M. (2015). A functional
perspective on phenotypic heterogeneity in
microorganisms. Nat. Rev. Microbiol. 13,
497–508. https://doi.org/10.1038/
nrmicro3491.

30. Youk, H., and Lim, W.A. (2014). Secreting and
Sensing the Same Molecule Allows Cells to
Achieve Versatile Social Behaviors. Science
343, 1242782. https://doi.org/10.1126/
science.1242782.

31. Hense, B.A., Kuttler, C., Müller, J., Rothballer,
M., Hartmann, A., and Kreft, J.-U. (2007). Does
efficiency sensing unify diffusion and quorum
sensing? Nat. Rev. Microbiol. 5, 230–239.
https://doi.org/10.1038/nrmicro1600.

32. Grandclément, C., Tannières, M., Moréra, S.,
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