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Recent reports on the effects of psychedelic-assisted therapies for mood disorders
and addiction, as well as the effects of psychedelics in the treatment of cluster
headache, have demonstrated promising therapeutic results. In addition, the beneficial
effects appear to persist well after limited exposure to the drugs, making them
particularly appealing as treatments for chronic neuropsychiatric and headache
disorders. Understanding the basis of the long-lasting effects, however, will be critical
for the continued use and development of this drug class. Several mechanisms,
including biological and psychological ones, have been suggested to explain the long-
lasting effects of psychedelics. Actions on the neuroendocrine system are some such
mechanisms that warrant further investigation in the study of persisting psychedelic
effects. In this report, we review certain structural and functional neuroendocrinological
pathologies associated with neuropsychiatric disorders and cluster headache. We then
review the effects that psychedelic drugs have on those systems and provide preliminary
support for potential long-term effects. The circadian biology of cluster headache is
of particular relevance in this area. We also discuss methodologic considerations for
future investigations of neuroendocrine system involvement in the therapeutic benefits
of psychedelic drugs.

Keywords: psychedelics, hallucinogens, neuroendocrine, circadian rhythm, cluster headache, depression, PTSD,
substance use disorders

INTRODUCTION

In past decades, there has been a resurgence of interest in the therapeutic potential of classic
serotonergic psychedelic drugs, such as psilocybin, lysergic acid diethylamide (LSD), and N,N-
dimethyltryptamine (DMT), all compounds that bind and activate serotonin (5-hydoxytryptamine,
5-HT) 2A receptors. Psilocybin has been reported to treat depression and anxiety in cancer patients
(Grob et al., 2011; Gasser et al., 2015; Griffiths et al., 2016), obsessive-compulsive symptoms
(Moreno et al., 2006), and alcohol and tobacco addictions (Garcia-Romeu et al., 2014; Bogenschutz
et al., 2015; Johnson et al., 2017a,b), as well as enhance attitude, mood, and behavior (Griffiths
et al., 2008, 2011, 2016). In early studies, LSD has been shown to be effective in the treatment
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of alcoholism (Krebs and Johansen, 2012) and it improved
affect and sleep while reducing pain in cancer patients (Kast,
1967). More recently, LSD has been shown to improve
quality of life in patients with life-threatening disease (Gasser
et al., 2014, 2015). Surveys have also described relief from
cluster headache with LSD and psilocybin (Sewell et al., 2006;
Schindler et al., 2015). Ayahuasca, the botanical brew containing
DMT and a monoamine oxidase A inhibitor, produces an
antidepressant effect and reduces symptoms of panic and
hopelessness (Santos et al., 2007; Osório Fde et al., 2015;
Sanches et al., 2016). There are ongoing studies investigating
the effects of psychedelics in depression, drug and alcohol
addiction, and headache disorders (Ross, 2012; Carhart-Harris
et al., 2016). One of the most intriguing features of psychedelics’
therapeutic profile is the apparent persistence of therapeutic
effects after limited exposure, such measures as antidepressant
effects, cigarette smoking reduction/cessation (Grob et al., 2011;
Gasser et al., 2015; Griffiths et al., 2016; Johnson et al.,
2017a), and termination of cluster headache attacks (Sewell
et al., 2006; Schindler et al., 2015). While the mechanisms
of this ability to produce long-term effects are not fully
understood, neuroplastic (Vollenweider and Kometer, 2010),
genetic (Martin and Nichols, 2017), and psychological (Griffiths
et al., 2008), processes are some of those postulated to be
involved. The neuroendocrine system is another potential player
in the lasting effects of psychedelics after limited exposure,
particularly as the conditions shown to benefit from psychedelic
therapy have demonstrable neuroendocrine aberrations. In this
review, we describe certain structural and functional aspects of
the neuroendocrine pathologies in neuropsychiatric disorders
and cluster headache, as well as the effects that classic
serotonergic psychedelics have on these systems. A summary
of these descriptions can be found in Supplementary Table 1.
Where applicable, those associations with the most supportive
evidence for a persisting therapeutic effect will be discussed.
This review will also serve to unify existing theories for
the persisting effects of classic serotonergic psychedelics and
highlight methodological strategies for future research in this
area.

THEORIES FOR PERSISTING EFFECTS
OF CLASSIC SEROTONERGIC
PSYCHEDELICS

Pharmacology
Classic serotonergic psychedelics are those compounds that
bind and activate the 5-HT2A receptor and cause significant
alterations in sensorium and consciousness (Vollenweider et al.,
1998; Nichols, 2004, 2016; Preller et al., 2017). While other
drugs, such as 3,4-methylenedioxymethamphetamine (MDMA;
ecstasy), 1-9-tetrahydrocannabinol (1-9-THC), and ketamine,
are often included in the category of psychedelic drugs and may
have indirect effects on 5-HT2A receptors, their pharmacology
is nevertheless distinct. For the purposes of this discussion,
the pharmacologic definition of a 5-HT2A receptor agonist (or

partial agonist) with psychotropic effects will be used when
discussing psychedelics. The terms psychedelic and hallucinogen
will also be used interchangeably.

The pharmacology of psychedelics has long been considered
in their unique effects. The primary focus has involved the
5-HT2A receptor, as the binding affinity of psychedelics at this
receptor is strongly correlated to the typical human dose for
hallucinogenesis (Glennon et al., 1984; Sadzot et al., 1989). The
roles of specific intracellular 5-HT2A receptor components and
scaffolding proteins, such as ß-arrestin, have been considered
in identifying a marker for hallucinogenesis (Schmid et al.,
2008; Perez-Aguilar et al., 2014). The relative potencies and
efficacies at activating 5-HT2A-mediated phosphatidylinositol
(PI) hydrolysis and arachidonic acid (AA) release have also
been investigated, but were not found to predict hallucinogenic
potency or discriminate hallucinogenic from non-hallucinogenic
drugs (Kurrasch-Orbaugh et al., 2003; Moya et al., 2007).

The density of 5-HT2A receptors can be manipulated
to measure changes in the response to hallucinogens. For
instance, repeated daily administration of the phenethylamine
hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI;
1.0 mg/kg i.p. daily × 8 days) in rats (McKenna et al., 1989)
and rabbits (3 µmol/kg s.c. daily × 8 days) (Schindler et al.,
2012) leads to a reduction in cortical 5-HT2A receptor density
by about 50%. Serotonin2A receptor reduction is accompanied
by significant attenuations in 5-HT-elicited PI hydrolysis
signaling (Conn and Sanders-Bush, 1986; Ivins and Molinoff,
1991), as well as hallucinogen-elicited behaviors, such as
head movements in rodents and rabbits (Leysen et al., 1989;
Schindler et al., 2012; Moreno et al., 2013). In rats, chronic
administration (daily for 8 days) of either LSD (60 µg/kg s.c.)
or DOI (1.0 mg/kg s.c.) attenuated the locomotor inhibition
induced by either drug (Krebs and Geyer, 1994). Similarly in
rabbits, chronic administration of DOI (3 µmol/kg s.c. daily for
8 days) significantly decreased the head bob response to either
DOI (3 µmol/kg s.c.) or LSD (30 nmol/kg s.c.) (Schindler et al.,
2012). Such cross-tolerance was also shown in cats when a single
dose of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-
aminopropane (DOM; 4 mg/kg), LSD (0.2 mg/kg), or mescaline
(50 mg/kg) attenuated DOM-elicited behaviors 24 h later
(Wallach et al., 1974). In humans, tolerance, or tachyphylaxis,
to a psychedelic’s effects occurs within about 3 days of daily
exposure (Cholden et al., 1955; Belleville et al., 1956; Angrist
et al., 1974); sensitivity returns in about as many days (Belleville
et al., 1956). Unlike other psychedelics, however, DMT does not
readily induce tolerance, which may be due to its short half-life
or other yet unidentified factors (Strassman, 1996; Strassman
et al., 1996). For instance, human subjects who received closely
spaced repeated administrations (four doses at 30-min intervals)
of intravenous DMT (0.3 mg/kg) failed to demonstrate tolerance
to the psychedelic effects of the drug (Strassman et al., 1996).
The ability of psychedelics to induce tolerance is relevant in the
consideration of their use as therapeutic agents (i.e., identifying
the appropriate intervals between doses).

The pharmacologic effects of limited or infrequent exposure
to a psychedelic have not been extensively investigated, though
they are sometimes reported in chronic administration studies.
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One group found that single administrations of LSD or DOI in
rats did not affect cortical 5-HT2A receptor density at low doses
(0.13 and 1.0 mg/kg i.p., respectively), but did so at high doses
(0.65 and 7.0 mg/kg i.p., respectively) (Buckholtz et al., 1988,
1990). DOM reduced cortical 5-HT2A receptor density in rats
after 2 doses (2.5 mg/kg s.c.) spaced 8 h apart (Leysen et al.,
1989). In mice, a single dose of DOI (2.5 mg/kg i.p.) resulted
in a significant increase in DOI-elicited head twitches out to 6
days, suggesting a super-sensitivity of the behavior (Darmani
et al., 1992). Species differences are important to consider here.
For one, genetic differences between mouse and human 5-
HT2A receptor genes distinguish pharmacologic interactions
with ligands (Canal et al., 2013). Furthermore, the binding
properties of a number of serotonergic drugs in rabbits is more
similar to those in humans than rats (Aloyo and Harvey, 2000).
Additional studies examining the effects of single or intermittent
(e.g., once weekly) dosing of psychedelics that include multiple
measures (e.g., receptor density, behavior) taken at extended time
points (e.g., out to a week or more) could help identify the
pharmacologic substrate for persisting therapeutic effects.

In addition to the 5-HT2A receptor, psychedelics have
appreciable activity at other serotonergic receptors, such as
serotonin2C (5-HT2C) and serotonin1A (5-HT1A) receptors.
The 5-HT2C receptor is involved in anxiety, dopaminergic
neurotransmission, regulation of body weight, and addiction
(Nichols and Nichols, 2008; Vengeliene et al., 2015; Canal and
Murnane, 2017). Importantly, 5-HT2C receptors have been
implicated in the lack of addictive properties of the hallucinogen
drug class (Canal and Murnane, 2017). The serotonin1A
receptor has been associated with neurogenesis, neuroprotection,
depression, anxiety, dopaminergic neurotransmission,
thermoregulation, and endocrine function (López et al.,
1998; Nichols and Nichols, 2008). In animal studies, 5-HT1A
receptor inhibition has been found to block various effects of
psychedelics, such as drug stimulus cues (Winter et al., 2000;
Fantegrossi et al., 2008) and locomotor activity reduction
(Krebs-Thomson et al., 2006; Halberstadt et al., 2011). Across
drugs, the importance of 5-HT1A receptor activation may differ,
however (Nichols, 2016). For example, in rats, the drug stimulus
cue of psilocybin was not affected by 5-HT1A receptor blockade
(Winter et al., 2007), though the LSD cue was found to be
modulated by 5-HT1A receptor activation (Reissig et al., 2005).
In humans, 5-HT1A receptor blockade with pindolol (30 mg
p.o.) enhanced the effects of a sub-hallucinogenic dose of DMT
(0.1 mg/kg i.v.) in humans (Strassman, 1996). In addition to its
5-HT1A receptor inhibition, pindolol may enhance the effects
of drugs through adrenergic inhibition (Schindler et al., 2013).
The role of 5-HT1A receptor activation in neurogenesis has
been associated with the therapeutic effects of antidepressants
(Fricker et al., 2005; Samuels et al., 2015). In mice, a single low
dose injection of psilocybin (0.1 mg/kg i.p.) tended to stimulate
hippocampal neurogenesis 2 weeks after injection, though a
high dose (1.0 mg/kg i.p.) inhibited it (Catlow et al., 2013).
This dose effect may stem from counteractions mediated by
5-HT2A receptors (Klempin et al., 2010). Another receptor
involved in hippocampal neurogenesis is sigma-1. Activation
of sigma-1 receptors is similarly associated with a reduction in

depressive behaviors in mice (Moriguchi et al., 2013, 2015). The
sigma-1 receptor has also been associated with psychotropic drug
effects (Su et al., 1988; Jansen et al., 1990; Ruscher et al., 2011).
Ultimately, the actions at any one receptor cannot explain either
the acute or persisting effects of these drugs. Additional systems
associated with the action of psychedelics are dopaminergic,
glutamatergic, and GABAergic systems (Vollenweider and
Kometer, 2010; Nichols, 2016; Martin and Nichols, 2017).

Genetics
Single doses of LSD and DOI induce a number of immediate
early genes in various regions of rodent brain, including
cortex, amygdala, nucleus accumbens, and striatum (Nichols
and Sanders-Bush, 2002; Martin and Nichols, 2017). These
various genes have been implicated in memory and synaptic
plasticity and most remain active for several hours following
drug treatment, which may initiate the processes involved with
longer term phenotypic changes (Nichols and Sanders-Bush,
2002; Martin and Nichols, 2017). The induction of some genes,
such as c-fos and Arc, is non-specific and seen with other
serotonergic drug groups, such as antidepressants (González-
Maeso et al., 2003; Gaska et al., 2012) and 5-HT2A receptor
antagonist antipsychotics (Verma et al., 2006; Collins et al., 2014).
The induction of egr-1, egr-2, and period 1 genes was previously
described as hallucinogen-specific as the effect was seen in mouse
somatosensory cortex 1 h after LSD (0.24 mg/kg i.p.) and DOI
(2 mg/kg i.p.) injection, but not lisuride (0.4 mg/kg i.p.) injection
(González-Maeso et al., 2003). Gene induction likely depends
on the model being used, however (Martin and Nichols, 2017).
For example, egr-2 expression was increased in rat cortical tissue
cultures after LSD (10 µM), but not lisuride (10 µM), treatment
(González-Maeso et al., 2007), though in a human study, LSD
(100 µg p.o.) failed to alter expression of egr-1, -2, or -3 in
peripheral blood at 1.5 or 24 h after ingestion (Dolder et al.,
2017). Thus, while gene activation studies offer a valuable means
to identifying long-term effects, results should be interpreted with
careful consideration.

Epigenetics
Another possibility is that psychedelics may produce long
lasting changes through epigenetic mechanisms. Decades ago,
psychoactive doses of intravenously administered LSD were
shown to rapidly increase histone acetylation in rabbit brain
tissue (Brown and Liew, 1975). In contrast, another early
experiment showed that neither LSD nor the phenethylamine
hallucinogen, 3,4,5-trimethoxyphenethylamine (mescaline),
inhibited interactions between nucleic acids and histone
(Andersen et al., 1974). Although studies of the epigenetic
effects of psychedelic drugs are extremely limited, future
investigations may seek to focus on those components identified
in related conditions. For instance, animal models of anxiety
and depression have implicated methylation of the promoter in
the serotonin transporter gene, SLC64A, and activity of histone
deacetylase 6 (Holloway and Gonzalez-Maeso, 2015). Epigenetic
modification of the glucocorticoid receptor gene, NR3C1, has
also been associated with conditions of stress, (Moisiadis and
Matthews, 2014b).
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Psychological Processes
The psychedelic experience itself has been suggested as a
potentially beneficial or transformative therapeutic force with
lasting effects. When administered under supportive conditions,
psilocybin and LSD have been shown to result in peak experiences
with substantial and sustained personal meaning and spiritual
significance (Griffiths et al., 2006, 2008, 2011; Garcia-Romeu
et al., 2014; Schmid and Liechti, 2017). Recent clinical trials
of psychedelic drugs in the treatment of psychiatric disorders
have demonstrated a correlation between the occurrence of
such peak experiences and therapeutic benefits (Griffiths et al.,
2011; Garcia-Romeu et al., 2014; Bogenschutz et al., 2015). The
mechanisms by which peak experiences lead to these benefits are
currently not well understood. If traumatic events are capable
of causing epigenetic modifications within brain regions that
influence behavior (Mathews and Janusek, 2011), as well as
persistent structural and functional changes in limbic (Hull,
2002) and neuroendocrine systems (Najarian and Fairbanks,
1996; Yehuda et al., 1996; Raison and Miller, 2003) as observed
in post-traumatic stress disorder (PTSD), then it is plausible
that powerful positive or cathartic experiences, such as some
psychedelic-occasioned peak experiences, “may function as a
salient, discrete event producing inverse PTSD-like effects – that
is, persisting changes in behavior (and presumably the brain)
associated with lasting benefit” (Garcia-Romeu et al., 2014). While
admittedly speculative, a powerful event holding significant
salience could lead to epigenetic changes (Provencal et al., 2012;
Black et al., 2013; Kaliman et al., 2014) or have effects on limbic
circuitry that in turn alter neuroendocrine function, potentially
reversing previously dysregulated systems caused by acute or
chronic stress. This could help explain how psychedelic-assisted
therapies not only have persisting effects, but why they may
have therapeutic potential across a range of neuropsychiatric
disorders.

Psychedelics have also been described as “meaning-response
magnifiers” (Hartogsohn, 2016), serving to enhance the effects
of placebo and set and setting. Indeed, LSD (40–80 µg i.v.) was
found to enhance suggestibility in human subjects as measured
by the creative imagery scale (Carhart-Harris et al., 2015). The
subjective effects of LSD (2 µg/kg p.o.) have also been equated to
those produced by hypnotic therapy, the combination resulting
in more pronounced alterations in consciousness (Levine et al.,
1963; Levine and Ludwig, 1965). The significance of such
factors as intention, expectancy, preparation, and social setting
in treatment outcomes is well recognized (Klosterhalfen and
Enck, 2008; Hartogsohn, 2016). The placebo effect has also
been discussed in the context of pain and reward circuitry
(Klosterhalfen and Enck, 2008). A role for oxytocin has also been
proposed (Enck and Klosterhalfen, 2009). As reviewed elsewhere
(Zinberg, 1986; Eisner, 1997; Nichols, 2016), set and setting are
well-known to influence the response to psychedelics. Studerus
et al. (2012) studied the influence of several predictor variables
on the acute response to psilocybin in pooled data from 23
controlled experimental studies involving 261 healthy volunteers
who had participated in 409 psilocybin administrations. They
confirmed that non-pharmacological factors play an important
role in the effects of psilocybin (Studerus et al., 2012).

Thus, high emotional excitability (set) and the experimental
situation of undergoing positron emission tomography (PET)
imaging (setting) most strongly predicted unpleasant and/or
anxious reactions to psilocybin (Studerus et al., 2012). The
interplay of psychedelics with a subject’s and the environment’s
influence adds another facet to their potential therapeutic
repertoire.

NEUROENDOCRINE ANATOMY AND
FUNCTIONAL IMAGING

The hypothalamus produces neuropeptides that regulate various
biologic functions. The posterior hypothalamus, comprised of
the paraventricular and supraoptic nuclei, produces oxytocin and
vasopressin (or antidiuretic hormone), which are transported
via the infundibulum to the posterior pituitary to be released
into the blood. The anterior and lateral portions of the
hypothalamus, comprised of several nuclei, produce such
neuropeptides as corticotropin releasing hormone (CRH) and
thyrotropin releasing hormone, which are released into the
anterior pituitary to stimulate release of their respective
hormones. Some such anterior pituitary hormones include
adrenocorticotropic hormone (ACTH), thyroid stimulating
hormone, prolactin, and orexin. Many biological functions are
influenced by the neuroendocrine system and consequently,
altered neuroendocrine function has association with a broad
range of disorders.

The hypothalamus contains those receptors activated by
psychedelics, including 5-HT2A (Appel et al., 1990; Zhang et al.,
2004; Shi et al., 2008), 5-HT2C (Marazziti et al., 1999), 5-HT1A
(Albert et al., 1990; Zhang et al., 2004; Moser et al., 2010; Dos
Santos et al., 2015), dopamine (Mukherjee et al., 1999; Okubo
et al., 1999), and sigma-1 (McLean and Weber, 1988) receptors
(or mRNA). An early study demonstrated that acute injection of
LSD (50 µg/kg i.p.) in rats increased “neurosecretory materials” in
the excised posterior pituitary (Biswas and Ghosh, 1975). More
recently, DOI (1 mg/kg s.c.) has been shown to induce serum
increases of oxytocin, prolactin, ACTH, and corticosterone in
rats, an effect blocked by either subcutaneous (Van de Kar et al.,
2001) or intraparaventricular (blocked all except corticosterone)
(Zhang et al., 2002) injection of 5-HT2A antagonist MDL100,907.
Serotonin2A receptor binding in the paraventricular nucleus
(PVN) of rats was decreased after repeated daily injections of
DOI (1 mg/kg i.p. daily for 4 or 7 days), an effect accompanied
by reduced DOI-induced serum oxytocin and ACTH levels
(Shi et al., 2008). Interneurons and afferent fibers are likely to
be involved with the neuroendocrine effects of psychedelics as
well (Willins et al., 1997; Mackowiak et al., 1999; Van de Kar
et al., 2001; Gresch et al., 2002). Indeed, cortical, subcortical,
limbic, and brainstem inputs are involved with neuroendocrine
regulation (Jorgensen, 2007; King and Liberzon, 2009). For
example, serum cortisol increases in rhesus monkeys exposed
to stress were associated with increased subgenual prefrontal
cortex metabolism as measured by F-18-fluorodeoxyglucose
(FDG) PET imaging (Jahn et al., 2010). In Vietnam combat
veterans undergoing trauma recall, serum ACTH increases were

Frontiers in Pharmacology | www.frontiersin.org 4 March 2018 | Volume 9 | Article 177

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00177 February 27, 2018 Time: 15:52 # 5

Schindler et al. Neuroendocrine Associations of Classic Psychedelics

associated with increased cerebral blood flow in the right insula
and decreased activation of medial prefrontal cortex measured
by [15O] H2O PET (King et al., 2009). In contrast, the so-called
ACTH non-responders in this study activated medial prefrontal
cortex and deactivated amygdala and hippocampus (King et al.,
2009). Increased hypothalamic glucose metabolism has also
been identified in depressed patients presented negative stimuli
(Holsen et al., 2013; Im et al., 2016).

Functional brain imaging has shown that the inferior region
of the posterior hypothalamus is activated during cluster attacks
(May and Goadsby, 2001; Cohen and Goadsby, 2006). Cluster
attacks are the paroxysms of cluster headache, a disorder
characterized by episodes of unilateral retro-orbital pain so severe
the disorder is coined “suicide headache” (Horton, 1952). In
addition to activation, the volume of posterior hypothalamic gray
matter is increased in cluster headache patients compared to
healthy controls and appears slightly lateralized to the side of
attacks (May et al., 1999). The posterior hypothalamus is also
the target of deep brain stimulation (DBS) in the most refractory
cases of cluster headache (Bartsch et al., 2009). It has been
proposed that chronic stimulation of the posterior hypothalamus
prevents activation, thus modulating activation of the trigeminal
complex, resulting in pain relief (Leone et al., 2006; Bartsch
et al., 2009). Indeed, after 1 month of posterior hypothalamic
DBS activation in refractory cluster headache patients, sublingual
nitroglycerin failed to trigger a cluster attack (n = 3) (Schoenen
et al., 2005). Imaging has also served to identify pituitary lesions
manifesting as a cluster headache syndrome, that improves or
resolves with treatment of the particular lesion (Favier et al.,
2007a,b).

Psychedelics produce measurable effects in the brain that
may speak to their role in treating disease. In a review of
neuroimaging studies, psychedelics are understood to generally
increase prefrontal and limbic activity and decrease amygdala and
default mode network activity, a combination that could serve
to enhance interoception and cognition while blunting anxiety,
fear, and rumination (Dos Santos et al., 2016). Vollenweider
et al. (1997) reported that psilocybin (∼0.35 mg/kg p.o.)
increased glucose metabolism in the brains of healthy human
volunteers, increases in cortical regions being greater than those
in subcortical regions (e.g., putamen). Similarly, in another
human PET imaging study, psilocybin (0.2 mg/kg p.o.) increased
the cortical/subcortical ratio of metabolism (on the right side)
(Gouzoulis-Mayfrank et al., 1999a). This study specifically found
decreased metabolism in subcortical regions relative to placebo
(Gouzoulis-Mayfrank et al., 1999a). Another group found
decreased amygdalar reactivity in healthy volunteers after oral
psilocybin (0.16 mg/kg) ingestion (Kraehenmann et al., 2015).
As measured by single photon emission tomography (SPECT),
oral ayahuasca (2.2 mL/kg solution containing 0.8 mg/mL DMT)
increased cerebral blood flow in the left nucleus accumbens,
right insula, and left subgenual area, regions associated with
mood regulation (Sanches et al., 2016). Intravenous LSD (75 µg
i.v.) increased connectivity in frontal, parietal, and temporal
cortices and bilateral thalami (Tagliazucchi et al., 2016). Taken
together, these investigations may inform the neurobiological
underpinnings of the therapeutic potential of psychedelics to

treat depression, anxiety, and drug addiction (Dos Santos et al.,
2016). One study specifically described decreased hypothalamic
blood flow, as measured by arterial spin labeling and blood-
oxygen level-dependent (BOLD) methods, after intravenous
administration of psilocybin (2 mg) in healthy humans, which
may hold relevance for treatment in cluster headache, although
all brain regions of interest were found to have decreased blood
flow in this particular study (Carhart-Harris et al., 2012).

Regarding cluster headache, it remains unknown how brief
psychedelic exposure could affect the activation threshold
of the hypothalamus or other relevant brain regions. The
traditional dosing regimen for terminating cluster periods or
inducing remission in chronic cluster headache is two to three
doses, approximately 5 days apart, of psilocybin-containing
mushrooms, LSD, or other psychedelics (Schindler et al.,
2015; Andersson et al., 2017). How this traditional dosing
regimen affects posterior hypothalamic anatomy and function
is unknown, but could be investigated further with functional
imaging, including a challenge of nitroglycerin (May et al., 1998)
or another attack trigger, such as ethanol.

HYPOTHALAMUS–PITUITARY–ADRENAL
(HPA) AXIS

In the well-described hypothalamus–pituitary–adrenal (HPA)
axis, CRH from the anterior hypothalamus stimulates the
release of ACTH from the anterior pituitary, which in turn
acts in the adrenal gland to stimulate the release of such
hormones as cortisol (corticosterone in rodents), aldosterone,
and adrenaline (norepinephrine). With widespread actions, the
HPA axis is best known for its roles in stress, metabolism,
and inflammation (Silverman and Sternberg, 2012; Lemche
et al., 2016). Manipulation of this system, even short-term,
can have lasting effects. For instance, antenatal glucocorticoid
exposure in humans has been associated with structural brain
abnormalities, behavioral disturbances, and affective disorders
from infancy to adulthood (Moisiadis and Matthews, 2014a).
Childhood trauma (Lee et al., 2014) and repeated stressful life
events in adulthood (Rutters et al., 2015) also increase the
risk for metabolic syndrome. Epigenetic modification of the
glucocorticoid receptor gene, NR3C1, has been documented in
such conditions as maternal stress, childhood maltreatment, and
war trauma (Ramo-Fernández et al., 2015). Moreover, these
epigenetic, as well as behavioral and physiologic changes are
reported to persist into subsequent generations (Moisiadis and
Matthews, 2014b; Ramo-Fernández et al., 2015).

In otherwise healthy individuals with depressive symptoms,
HPA axis abnormalities have also been identified, such as
elevated basal cortisol levels (Halbreich et al., 1985) and
abnormal responses to the dexamethasone suppression test
(Carroll, 1982; Beck-Friis et al., 1985; Rubin et al., 1987), which
normalize with treatment (Holsboer et al., 1982). Long-term
exposure to prednisone, which mimics the biological effects of
hypercortisolism in depression, is also associated with depressive
symptoms (Patten and Barbui, 2004). In contrast to depression,
individuals with PTSD show lowered baseline cortisol levels and
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greater cortisol suppression following a dexamethasone challenge
(Najarian and Fairbanks, 1996; Yehuda et al., 1996; Raison
and Miller, 2003). This is hypothesized to be secondary to the
persistent intrusion of prior trauma leading to a repetition of
the physiological stress response, thus altering (sensitizing) HPA
functioning (Najarian and Fairbanks, 1996). In alcoholic patients,
basal cortisol levels may vary depending on the amount of alcohol
consumed (Boschloo et al., 2011). In abstinence, serum cortisol
and serum and cerebrospinal fluid levels of ACTH did not differ
among controls and alcoholics, though ACTH release induced by
ovine CRH was suppressed in early abstinence (between 1 and 3
weeks) (Adinoff et al., 1990). In cluster headache, cortisol levels
are increased during cluster periods, an effect that appears to
be independent of headache pain or lack of sleep (Chazot et al.,
1984; Leone and Bussone, 1993; Leone et al., 1995). Short term
systemic glucocorticoid therapy is used in the treatment of cluster
headache (Leone et al., 2017). There is also evidence for lasting
effectiveness (weeks duration) after suboccipital steroid injection
in cluster headache (Robbins et al., 2016; Leone et al., 2017).

Serotonin, as well as DOI, has been reported to stimulate
CRH release from explanted rat hypothalami, containing the
PVN, in a dose-dependent, inverted-U manner (Calogero et al.,
1989). DOI and the related phenethylamine hallucinogen 1-(2,5-
dimethoxy-4-bromophenyl)-2-aminopropane (DOB) both dose-
dependently raised serum levels of ACTH and corticosterone
in rats (Alper, 1990; Calogero et al., 1990; Owens et al., 1991;
Hemrick-Luecke and Evans, 2002; Mikkelsen et al., 2004). ACTH
and cortisol increases have also been found in humans after oral
ingestion of LSD (Schmid et al., 2015a; Strajhar et al., 2016),
psilocybin (Hasler et al., 2004), and ayahuasca (Dos Santos et al.,
2012), as well as intravenous administration of DMT (Strassman
and Qualls, 1994). Hormone increases are not specific to
serotonergic psychedelics, however. Other psychotropic agents,
such as MDMA (Gouzoulis-Mayfrank et al., 1999b; Seibert et al.,
2014; Schmid et al., 2015b) and 1-9-THC (Biswas and Ghosh,
1975; Mitra et al., 1977), also stimulate hormone production
and release. Investigating functional outcomes (i.e., response to
dexamethasone suppression) and epigenetic effects (i.e., NR3C1)
after treatment may reveal additional therapeutic actions that are
more specific to serotonergic psychedelics.

OXYTOCIN

Oxytocin is a neuropeptide that plays a central role in social
functions, particularly the attachment process, but also sexual
behavior, maternal behavior, affiliation, and social memory (Insel,
1992; Insel, 1997; Van de Kar et al., 2001; Knobloch et al., 2012).
Administration of oxytocin has anxiolytic and anti-depressive
effects in rodents (Arletti and Bertolini, 1987; Neumann et al.,
1999; Blume et al., 2008). While there have been mixed results
about oxytocin levels in depression, certain oxytocin receptor
single nucleotide polymorphisms (SNPs) have been associated
with unipolar depression (Costa et al., 2009) and could be
a mediator of selective serotonin reuptake inhibitor (SSRI)
response (Uvnäs-Moberg et al., 1999). Oxytocin is also likely
involved in the pathophysiology of PTSD and there is reason

to believe it could be helpful in its treatment, particularly given
its role in stress responsiveness, fear conditioning, and social
functioning, all of which are impacted by PTSD (Van de Kar et al.,
2001; Olff et al., 2010). Post-mortem examination of patients
with alcohol disorder showed reduced oxytocin mRNA levels
as compared to controls (Lee et al., 2017). In turn, intranasal
oxytocin has been shown to reduce withdrawal symptoms in
alcoholic patients (Pedersen et al., 2013). Oxytocin is further
implicated in pain processing; oxytocin receptors are localized on
trigeminal ganglion neurons, which directly implicates headache
and facial pain disorders (Tzabazis et al., 2016). There is also
support for therapeutic activity of oxytocin in migraine headache
(Phillips et al., 2006; Serva et al., 2012; Tzabazis et al., 2016), which
theoretically could extend to cluster and other headache types.

DOI (2.5 mg/kg i.p.) acutely increased oxytocin levels in rats,
an effect shown to be 5-HT2A receptor mediated (Van de Kar
et al., 2001). LSD (200 µg p.o.) also raised serum oxytocin levels in
humans at 3 h (Schmid et al., 2015a). This stimulation of oxytocin
by psychedelics could have implications for psychotherapy, as
the administration of oxytocin during psychotherapy leads to
changes in individual and dynamic factors in depressed patients
(MacDonald et al., 2013) and in patients with PTSD (Koch
et al., 2014). The proposed role of oxytocin in generating those
elements required for placebo response (i.e., social interaction)
supports the hormone’s potential function in a broad range
of conditions (Enck and Klosterhalfen, 2009); cluster headache
is included in this consideration, given the placebo effect of
approximately 15% in prophylactic medication trials (Russell,
1979; Steiner et al., 1997; Leone et al., 2000; El Amrani et al., 2002;
Hakim, 2011).

MELATONIN

Melatonin, a metabolite of serotonin, is produced in and
secreted from the pineal gland, which receives modulatory
input from the suprachiasmatic nucleus (SCN) of the anterior
hypothalamus. Melatonin is secreted in times of darkness and
has been extensively studied in circadian biology, serving as both
a marker for and modulator of biologic rhythms (Raghavendra
and Kulkarni, 2000; Lewy et al., 2006a). The role of melatonin in
affective disorders has also been discussed in light of circadian
disruption (Lewy, 2009). Serum melatonin levels and diurnal
variation are aberrant in subjects with active depression and
treatment with antidepressants modulate serum melatonin levels
(Beck-Friis et al., 1985; Souetre et al., 1989; Srinivasan et al.,
2006). A post-mortem study also showed reduced melatonin
receptor 1 immunoreactivity in the SCN of depressed patients
(Wu et al., 2013). In abstinent alcoholics, the nocturnal rise
in melatonin was reported to be delayed (Kuhlwein et al.,
2003). Melatonin levels are also low in cluster headache (Chazot
et al., 1984; Leone et al., 1995), including times outside of
cluster attack periods (Neeb et al., 2015), and the timing of
melatonin release was found to be phase advanced (Chazot
et al., 1984). Nightly melatonin (10 mg) has been shown to
reduce the mean number of cluster attacks and terminate the
cluster period in some patients (Leone et al., 1996). In addition,
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intravenous methylprednisolone (1,000 mg daily for 3 days)
reduced cluster attack burden, while also raising aberrantly low
levels of the melatonin metabolite, 6-sulfatoxymelatonin (Neeb
et al., 2015).

In vitro, mescaline (1 µmol/L) and to a lesser extent, LSD
(1 and 10 µmol/L) and psilocybin (10 and 100 µmol/L),
stimulated melatonin release from rat pineal tissue, (Shein et al.,
1971). In vivo, DOI (0.25–1.0 mg/kg i.p.) dose-dependently
increased pineal melatonin content in rats, an effect blocked by
pre-treatment with 5-HT2C antagonist, RS-102221 (2.5 mg/kg
i.p.), but not 5-HT2A antagonist, ketanserin (6 mg/kg i.p.)
(Steardo et al., 2000). In addition to serotonergic receptors
(Govitrapong et al., 1991; Kaminski et al., 1993), dopaminergic
(Kim et al., 2010; Gonzalez et al., 2012) and sigma-1 (Jansen
et al., 1990) receptors (or mRNA) have been identified in the
pineal gland. Psychedelics and melatonin have some opposing
effects—psychedelics induce arterial hypertension, hyperthermia,
anorexia, and HPA axis activation, whereas melatonin induces
arterial hypotension, hypothermia, hyperphagia, and HPA axis
suppression (Raghavendra and Kulkarni, 2000). Serving perhaps
as a form of feedback, DOI (0.5 mg/kg i.p.) blocked melatonin-
induced hypothermia, as well as serotonin release from the
hypothalamus, in rats (Lin and Chuang, 2002). In turn, the
suppression of food intake in rats induced by DOI (10 µg
i.c.v.) was blocked by melatonin in a dose-dependent manner
(1.5 and 3 mg/kg i.p.) (Raghavendra and Kulkarni, 2000).
Understanding the normal rhythm of melatonin production
and release is crucial for in vivo studies. For instance,
intravenous DMT (0.4 mg/kg) did not acutely alter daytime
serum melatonin levels in humans (Strassman and Qualls,
1994), but DOI (0.5 mg/kg i.p.) delayed the time of onset
of urinary 6-sulfatoxymelatonin excretion by approximately
2.5 h in rats (Kennaway and Moyer, 1999). Furthermore, the
delay in 6-sulfatoxymelatonin excretion induced by a single
dose of DOI (0.5 mg/kg s.c.) was sustained for 8 days
(Kennaway et al., 2001), illustrating the potential for long-
term effects and the value of taking extended measures. Given
that melatonin release was shown to be phase advanced in
cluster headache (Chazot et al., 1984), this effect of DOI in
rats may reveal part of mechanism by which psychedelics
provide relief for patients with the disorder. In healthy human
subjects, a single dose of the SSRI fluvoxamine (100 mg
p.o.) also delayed melatonin release by approximately 2 h
(Skene et al., 1994). The norepinephrine reuptake inhibitor,
desipramine (100 mg p.o.), phase advanced melatonin release
by 2–3 h, but it also increased 6-sulfatoxymelatonin excretion
over a 48-h period (Skene et al., 1994). In another human
study, the SSRI paroxetine (20 mg p.o.) and the anxiolytic
(and 5-HT1A partial agonist) ipsapirone (20 mg p.o.) failed
to alter serum melatonin levels over a 12-h period (Nathan
et al., 1996). Antidepressants and anxiolytics are not effective
in treating cluster headache and unlike psychedelics, single
doses are not expected to have therapeutic effect. Be it
melatonin or another hormone or marker, these studies do
demonstrate that importance of collecting data at multiple time
points for extended periods in order to best characterize the
effects.

CIRCADIAN RHYTHM/SLEEP

The SCN is the primary regulator of the circadian rhythm and
receives afferent signals from retinal ganglion cells, highlighting
the role of the environment (i.e., light) in the daily rhythm.
The role of serotonin in SCN entrainment has also been
described (Kronfeld-Schor and Einat, 2012). Disruption of the
circadian rhythm through environmental stress, toxic exposures,
or genetic mutation have been associated with various health
repercussions (Masri and Sassone-Corsi, 2013; Perreau-Lenz
and Spanagel, 2015). As an example, mice raised for the
first 3 weeks of life in 24-h light conditions were shown to
have increased CRH mRNA in the PVN and a depressive
phenotype (Coleman et al., 2016). Maternal mouse exposure
to a disrupted light-dark cycle led to signs of metabolic and
affective abnormalities, as well as genetic changes, out to second
and some third generation subjects (Zhang et al., 2017). In
these second generation mice, a reduction in mRNA transcript
levels of circadian clock genes (CLOCK, BMAL1, PER1, PER2)
in the SCN were also identified (Zhang et al., 2017). Numerous
animal studies have also shown that manipulation of clock genes
results in behavioral and metabolic disturbances (Tsang et al.,
2017). For instance, the manipulation of the clock genes, CLOCK
and PER2, affected self-administration of addictive substances
in rodents, though some gene associations are drug-specific
(Perreau-Lenz and Spanagel, 2015). Affective and addictive
conditions in humans have also been associated with clock
gene SNPs (Partonen, 2015; Perreau-Lenz and Spanagel, 2015;
Forde and Kalsi, 2017). The disrupted circadian rhythm is
further supported clinically, as symptoms of depression show
diurnal variation (Souetre et al., 1989) and sleep disturbance
is common in depressed individuals (Tsuno et al., 2005) and
those with alcohol use disorders (Kuhlwein et al., 2003; Brower,
2015).

The role of clock genes in cluster headache is also under
investigation, though varying results are found (Russell, 2004;
Fourier et al., 2017). Cluster headache is a particularly valuable
model for studying biological rhythms. Circadian disruption,
such as seasonal changes, shift work, and jet lag can trigger
headache attacks (Chazot et al., 1984; Dodick et al., 2003). There
is also a tendency for cluster periods to initiate or symptoms
to worsen in spring and fall (Manzoni et al., 1983; Lund
et al., 2017). Cluster attacks have the propensity to occur at
predictable times of day as well (Manzoni et al., 1983; Lund
et al., 2017), particularly during sleep and often during rapid eye
movement (REM) sleep (Kudrow et al., 1984; Sahota and Dexter,
1990; Dodick et al., 2003). Interestingly, the polysomnogram
of cluster headache patients (both inside or outside a cluster
period) may show decreased number and frequency of REM sleep
periods (Sahota and Dexter, 1990; Barloese et al., 2015), though
REM sleep abnormalities are not always reported (Vetrugno
et al., 2007). The alleviation of cluster headache symptoms
after posterior hypothalamic DBS implantation may also be
accompanied by changes in sleep quality and architecture,
though these changes are not always pleasant (e.g., frequent
overnight awakenings) (Vetrugno et al., 2007; Kovac et al.,
2014).
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In rats, LSD (1 mg/kg i.p.) postponed REM sleep onset
(Depoortere and Loew, 1971). In cats, this delay of REM onset
after LSD (25–800 µg/kg i.p.) was shown to occur in a dose-
dependent manner (Brooks, 1975). Total REM sleep duration was
also reduced after LSD in both rats (1 mg/kg i.p.) (Depoortere
and Loew, 1971) and cats (2 µg/kg and 20 µg/kg LSD i.p.)
(Hobson, 1964). This reduction in REM sleep duration after
LSD (3.75, 7.5, 15 µg/kg i.v.) was shown to occur in a dose-
dependent manner in cats (Kay and Martin, 1978). The non-
hallucinogenic congener of LSD, 2-bromo-LSD (BOL; 3 mg/kg
i.p.), also delayed REM sleep onset and reduced REM duration in
rats (Depoortere and Loew, 1972), though to a lesser degree than
LSD at the dose tested (Depoortere and Loew, 1971). In healthy
humans, low doses of LSD (6–40 µg p.o.) given approximately
at bedtime increased the duration of the first or second REM
period, abbreviated subsequent REM periods, and induced REM
bursts during slow wave sleep (Muzio et al., 1966). Another low
dose of LSD (25 µg s.c.) administered in a healthy subject at
bedtime advanced the first REM period and increased the ratio of
REM to slow wave sleep (Toyoda, 1964). In one human subject
under treatment for alcoholism, a high dose of LSD (300 µg
p.o.) given mid-day led to a delay in the first REM period, an
effect that persisted the following night (Green, 1965). Total
duration of REM, isolated bursts of REM, gross body movements,
and vocalizations, were increased in this patient the night of
LSD exposure and the following two nights (Green, 1965). In
another early study, sleep disturbances (grades of insomnia)
were reduced for approximately 10 days after cancer patients
took a single dose of LSD (100 µg, presumed to be oral) after
breakfast (Kast, 1967). While it is not possible to generalize
effects of LSD from this small number of subjects, the persisting
effects are particularly noted. Furthermore, that psychedelics
may delay the onset and reduce total duration of REM sleep
(Hobson, 1964; Depoortere and Loew, 1971; Brooks, 1975; Kay
and Martin, 1978) might suggest that one of their therapeutic
benefits in cluster headache stems from manipulation of the sleep
period during which attacks often occur. REM sleep duration
may already be reduced in some cluster headache patients,
however (Sahota and Dexter, 1990), and thus, psychedelics may
not simply correct abnormal sleep patterns, but act on other
related systems—through melatonin, for instance. In addition,
REM sleep suppression is not unique to psychedelics; SSRI and
tricyclic antidepressants, for instance, also acutely reduce REM
sleep duration (Kantor et al., 2016; McCarthy et al., 2016).
Distinctions in the effects of classic serotonergic psychedelics
and other drugs may, again, be appreciated with longer-term
monitoring of subjects.

In addition to taking repeated measures for an extended
period, future studies examining sleep, circadian cycle, or
other aspects of neuroendocrine function must also carefully
consider timing of drug administration. For instance, melatonin
administered at the end of the light phase, advanced the timing
of peak water and ethanol drinking in alcohol-treated rats,
but this shift was absent when melatonin was administered
at the beginning of the light phase (Vengeliene et al., 2015).
In humans, low doses of oral melatonin (0.225–0.3 mg/day)
taken for 3 weeks led to decreased measures of depression

in patients with seasonal affective disorder (SAD) when peak
melatonin levels were achieved in the afternoon/evening as
opposed to the morning (Lewy et al., 2006b). Given that most
SAD patients are phase-delayed in their circadian rhythm,
administering melatonin in the afternoon/evening (which causes
phase advance) is conceptually favorable (Lewy et al., 2006a).
Light therapy was also found to reduce depressed symptoms
in SAD when administered in the morning (6–8am, 2500
lux, 1 week duration) as opposed to the evening (7–9pm)
(Sack et al., 1990). Of note, this morning light therapy also
advanced the onset of melatonin production (Sack et al.,
1990). Time of day is also relevant in the consideration of
neuroimaging studies. For example, between morning and
evening, functional connectivity of the medial temporal lobe
in humans was shown to expand to involve neocortical
areas, suggesting a representation of memory consolidation
(Shannon et al., 2013). In other human subjects, between
morning and afternoon, default mode network connectivity
decreased, an effect that also correlated with diurnal decreases
in salivary cortisol levels (Hodkinson et al., 2014). In depressed
patients, evening mood improvements were associated with
increased metabolism in parietal and temporal cortices, basal
ganglia, and the cerebellum, possibly reflecting a normalization
required to preserve “emotional homeostasis” (Germain et al.,
2007).

Given the desire to monitor subjects through the duration of
psychotropic effects, studies investigating psychedelics in humans
often administer drug early in the day. Though limited, early
human studies showed that LSD produced differing effects on
REM sleep, though doses and times of drug administration
were quite variable (Toyoda, 1964; Green, 1965; Muzio et al.,
1966; Kast, 1967). Animal models have further demonstrated the
significance of the timing of administration of hallucinogenic
compounds, however. For instance, disruption of the locomotor
activity of house crickets was seen when LSD (5pg/g) was
administered (injected into the hemolymph) early in the light
phase, but not when administered late in the light phase
(Cymborowski, 1970). In addition, LSD had no acute effects
the day of injection, but reversed the locomotor rhythm of
the house crickets the following day (Cymborowski, 1970).
The hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-
DMT) (2–64 mg/kg i.p.) dose-dependently elicited head twitches
in mice, an effect that was maximal in the middle of the
light phase (Moser and Redfern, 1985). In contrast, another
group reported that 5-MeO-DMT (5 mg/kg i.v.) elicited
maximal head twitches in mice at the end of the dark period
(Singleton and Marsden, 1981). In rats, DOI dose-dependently
induced wet dog shakes, a response that peaked late in the
light phase after either subcutaneous or intracerebroventricular
injection (0.5 mg/kg) (Nagayama and Lu, 1996). In addition
to differences among species and routes of administration, the
methods of measuring time points must be considered in the
effects of psychedelics. For instance, as discussed previously,
a single subject dosed multiple times may develop tolerance
to a drug, whereas different subjects each dosed at a time
point of interest would better reflect the effects of a single
administration.
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DISCRIMINATING THE EFFECTS OF
PSYCHEDELICS

Psychedelics are best known for their ability to alter one’s
consciousness, which has afforded them both fame and
infamy. There are actions of classic serotonergic psychedelics
unrelated to hallucinogenesis, however. Indeed, various
systemic targets of psychedelics, such as heart rate and blood
pressure, are commonly measured alongside psychotropic
effects (Strassman and Qualls, 1994; Hasler et al., 2004;
Schmid et al., 2015a). Anti-inflammatory and anti-cancer
effects of psychedelics have also been described (Szabo, 2015).
Regarding the topic of this report, psychedelic drugs target
the anatomical and biochemical substrates of neuroendocrine
function. Both central and peripheral actions are involved.
For example, psychedelic-induced increases in corticosterone
have been shown to involve both peripheral (i.e., direct
adrenal) and central (i.e., ACTH-mediated) mechanisms
(Alper, 1990; Calogero et al., 1990; Owens et al., 1991).
While the peak psychotropic effects of oral LSD (200 µg)
(Schmid et al., 2015a; Strajhar et al., 2016), psilocybin
(315 µg/kg) (Hasler et al., 2004), and ayahuasca (oral DMT
portion 0.75 mg/kg) (Dos Santos et al., 2012) in humans
approximately coincide with maximal serum hormone
increases, a separation between these measures can also be
shown. For instance, low, though still psychoactive, doses
of psilocybin—from 45 µg/kg (p.o) (Hasler et al., 2004) to
200 µg/kg (p.o.) (Gouzoulis-Mayfrank et al., 1999b)—did not
significantly change the levels of various hormones, including
ACTH, cortisol, prolactin, thyroid stimulating hormone, and
growth hormone, at multiple time points out to 300 min.
Furthermore, when administered intravenously, DMT (0.2
and 0.4 mg/kg)-induced psychological effects peaked at 5 min,
the approximate time of peak ACTH and prolactin elevation
(5–10 min), but well preceding maximum cortisol levels
(15–30 min) (Strassman and Qualls, 1994). Four closely spaced
(30-min intervals) doses of intravenous DMT (0.3 mg/kg)
in humans led to tolerance of ACTH, cortisol, and prolactin
stimulation, but not the psychedelic effects of the drug,
(Strassman et al., 1996). This separation between psychotropic
and endocrine effects underscores the multiple actions of
psychedelics.

The delayed and/or sustained effects on sleep and melatonin
measured in both human (Green, 1965; Muzio et al., 1966; Kast,
1967) and non-human (Kennaway and Moyer, 1999; Kennaway
et al., 2001) animals are also examples of the separation
between psychotropic and other effects. That BOL, as well as
low doses of LSD, can affect sleep architecture in a similar
manner to psychoactive LSD doses lends further support to
actions independent of psychotropic effects (Muzio et al., 1966;
Depoortere and Loew, 1972). To be precise, oral BOL ingestion
in humans does not induce psychedelic effects (Richards et al.,
1958), although “flabby” or “light drunk” feelings have been
described (Karst et al., 2010). In one early case report, BOL
(0.5 mg p.o.) induced sensory perceptual changes, panic, and
cardiovascular and gastrointestinal activation in one subject
(Richards et al., 1958). The source and purity of BOL in

this case was not identified, however. Of note, the subject in
this early report had ingested BOL after the development of
a pounding headache, which was reduced in intensity from
moderate to mild (Richards et al., 1958). Anecdotally, patients
have reported lasting relief from cluster headache after ingesting
BOL (Schindler et al., 2015). In a case series, BOL (30 µg/kg
p.o.) was shown to reduce cluster attack burden in the same
3-dose regimen as for hallucinogenic psychedelics (Karst et al.,
2010). While the pharmacologic effects of BOL have not
been fully examined, the general consensus that it has greatly
reduced (or no) hallucinogenic properties, raises the question
as to the necessity of psychotropic effects in treatment with
classic serotonergic psychedelics. Indeed, sub-hallucinogenic
doses of psilocybin and LSD are also reported to provide relief
from cluster headache in some patients (Sewell et al., 2006;
Schindler et al., 2015). There are widespread anecdotal reports
of sub-hallucinogenic doses of psychedelics being beneficial in
a range of psychiatric illnesses via so-called “micro-dosing”
protocols as well, though clinical trials are lacking (Fadiman,
2011). The persisting effects of psychedelics in cluster headache
may be independent in origin from those in neuropsychiatric
disorders.

CONCLUSION

There is ongoing interest in the study of classical serotonergic
psychedelics in the fields of pharmacology, epi/genetics,
neuroimaging, and psychology. The neuroendocrine system
should be considered among the many potential targets for
lasting therapeutic benefit. In mood and substance use disorders,
HPA axis function is widely studied. The manipulation of
this system can have demonstrable long-term effects and
should be of interest in considering the additional non-
psychological effects of psychedelics in the treatment of
neuropsychiatric disease. In cluster headache, aberrations in
melatonin and circadian rhythm are topics of value in examining
the effects of psychedelics. With advancing understanding
of circadian biology (e.g., clock genes), psychedelics should
be actively considered in this process. Importantly, given
the associations with the neuroendocrine system, future
studies examining the effects of psychedelics must take into
account the timing and pattern of drug administration,
as well as frequency and duration of outcome measures.
Finally, though incomplete, existing evidence raises the
intriguing possibility that as a class, psychedelics could have
therapeutic effects independent from their hallucinogenic effects.
Pharmacologically similar, but non-hallucinogenic compounds,
such as BOL, should also be utilized in examining the role
of hallucinogenesis in the therapeutic effects of this drug
class.
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