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Abstract

Introduction: Behavioral and psychological symptoms of dementia (BPSD) signal dis-

tress or unmet needs and present a risk to people with dementia and their caregivers.

Variability in the expression of these symptoms is a barrier to the performance of

digital biomarkers. The aim of this study was to use wearable multimodal sensors to

developpersonalizedmachine learningmodels capableof detecting individual patterns

of BPSD.

Methods:Older adults with dementia and BPSD (n= 17) on a dementia care unit wore

a wristband during waking hours for up to 8 weeks. The wristband captured motion

(accelerometer) and physiological indicators (blood volume pulse, electrodermal activ-

ity, and skin temperature). Agitation or aggression events were tracked, and research

staff reviewed videos to precisely annotate the sensor data. Personalized machine

learning models were developed using 1-minute intervals and classifying the presence

of behavioral symptoms, and behavioral symptoms by type (motor agitation, verbal

aggression, or physical aggression).

Results:Behavioral eventswere rare, representing 3.4%of the total data. Personalized

models classified behavioral symptoms with a median area under the receiver oper-

ating curve (AUC) of 0.87 (range 0.64–0.95). The relative importance of the different

sensor features to the predictivemodels varied both by individual and behavior type.

Discussion: Patterns of sensor data associated with BPSD are highly individualized,

and future studies of the digital phenotyping of these behaviors would benefit from

personalization.
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1 INTRODUCTION

People living with dementia can experience behavioral and psycholog-

ical symptoms of dementia (BPSD). These symptoms are related to the

neuropsychiatric manifestations of their disease, can arise in the con-

text of unmet needs, and are influenced by interactions with the envi-

ronment and caregivers.1 While motor agitation and verbal or physical

aggression are commonly used categories to describe these behaviors,

the specific expression of these behaviors varies greatly depending on

the individual.2,3 The clinical significance of these symptoms is tied to

the distress they cause to people with dementia and their caregivers,

the risk that they can present to the safety of the individual and those

around them, and their impact on the health-care system.4,5

With advances in wearable technologies, there has been interest in

developing digital biomarkers of behavioral symptoms using data col-

lected from a variety of wearable sensors.6,7 To date, most studies in

this area have focused on using wearables to assess the severity of

symptoms by summarizing wearable data over periods from days to

months and finding correlations with observational rating scales.8–10

For example, studies have found a moderate correlation between

activity levels (accelerometers) and clinical measures of wandering

or agitation,11–15 and some association between sensor measures of

stress (electrodermal activity, galvanic skin response) and ratings of

agitation.16 These studies havebeen limitedby small sample sizes, brief

periods of data collection (< 1 month), and reliance on observational

clinical rating scales withmoderate reliability.6

The next frontier is the use of wearable sensor data to develop algo-

rithms that can detect the onset and presence of the behaviors in real

time.17 This has been termed digital phenotyping, or the moment-by-

moment quantification of the individual-level human phenotype in situ

using data from personal digital devices.18 The value of a digital phe-

notype for behavioral symptoms in dementia lies in its uses for clini-

cal care and research for monitoring symptoms over time and support-

ing intervention and treatment.19 As a first step toward this goal, we

have previously demonstrated that wearable sensor data can be used

to detect behavioral symptoms minute-to-minute with an area under

the receiver operating curve (AUC) of 0.82 and that incorporating data

from multiple sensors improves algorithm performance over a single

sensor.20 While these algorithms achieved a fair performance in clas-

sifying the presence of agitation, there were several important limi-

tations. These generic models combined the sensor data from all par-

ticipants and combined all subtypes of behaviors under the label of

“agitation”: these generic models thus are missing important informa-

tion about the individual expression of behaviors. Given the large inter-

individual differences in the expression of BPSD, the digital biomark-

ers for these symptoms are also likely to be heterogeneous, as are the

biomarkers for different types of behaviors.

Toward an understanding of inter-individual differences in the dig-

ital biomarkers of agitation, the aims of this study are to: (1) develop

personalized models able to detect the presence or absence of behav-

ioral symptoms, (2) examine behavioral symptom–specific personal-

ized models, and (3) explore which sensor features are most important

for modeling agitation within individuals and for specific behaviors. To

RESEARCH INCONTEXT

1. Systematic Review: There are few systematic studies

that examine the accuracy of digital biomarkers for

detecting behavioral symptoms. The most commonly

examined behaviors are motor agitation or apathy and

use a single sensor (accelerometer). Sensor data are often

summarized over days to weeks and across individuals,

and correlated with clinical scales rather than directly

observed behaviors. These limitations have impacted the

accuracy of digital biomarker studies thus far and are an

important barrier to advances in this field.

2. Interpretation: Using a multisensor wearable device we

can accurately detect behavioral symptoms minute-to-

minute. Personalization significantly improves the accu-

racy of themodel to detect behavioral symptoms. Feature

ranking is valuable to demonstrate the variability across

individuals.

3. Future Directions: Our findings lend optimism to the

search for digital biomarkers for behavioral symptoms in

dementia and will help drive future studies in this area

toward tuning or active learning to improve the person-

alization of machine learningmodels.

achieve this, we used wearable multimodal sensor data collected from

people with dementia with BPSD admitted to a tertiary dementia care

unit to develop and evaluate personalized models that classify each

minute as “agitation” or “non-agitation” behavior. We then developed

separate personalized models for each of three categories of behavior

(motor agitation, verbal aggression, physical aggression), and examined

themost important features in each of thesemodels.

2 METHODS

2.1 Study overview

An overview of the study is provided in Figure 1. The study took place

on theSpecializedDementiaUnit (SDU) atTorontoRehabilitation Insti-

tute (TRI), University Health Network, Toronto, Ontario, Canada, and

was approved by the designated research ethics boards at University

Health Network and Ryerson University, Toronto, Ontario, Canada.

Details about the study and setting can be found in Ye et al.21

2.2 Study participants

Participants were 20 older adults admitted to the SDU from long-term

carehomes for the assessment and treatment ofBPSD in the context of

advanced dementia. Inclusion criteria were age greater than 55 years
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F IGURE 1 Study overview. BVP, blood volume pulse; EDA, electrodermal activity

old, diagnosis of dementia, andhistoryof agitationor aggressivebehav-

iors. Consent was provided by the substitute decision-makers in all

cases, and individuals were withdrawn from the study if they showed

dissent to wearing the device. Data collection was stopped when one

of these conditions was met: no behavioral symptoms documented for

1week, repeated removal of thewristband, on discharge from the unit,

or after 2months of data collection.

2.3 Data collection

The wearable device used was the Empatica E4 (Empatica)22 which

collects motion data (through accelerometer [ACC]) and physiolog-

ical indicators (blood volume pulse [BVP], electrodermal activity

[EDA], and skin temperature [TEMP]). The Empatica E4 device has

previously been evaluated in stress detection studies among other

applications.23–26 TheE4wasapplied to thedominantwrist eachmorn-

ing after the individual received their morning care (usually between

0700 and 1000), and was removed when preparing for bed at night

(usually between1700and2000),whichwas necessary for daily device

charging and data download. Fifteen video cameras were installed

throughout the SDU-TRI in the common areas, such as hallways, dining,

and recreational areas.21

Nursing staff were provided training on the documentation of

behavioral events, and asked to note the start and end times, the loca-

tion, and the context behind the event. Each event was marked with a

green sticker in the margin of the chart. Research staff would review

the charts weekly and gather information about each event. The video

recordings corresponding to 30 minutes before and after the charted

period of agitation were then watched by clinical research staff to

fine-tune the start and end times of the events and to gather further

descriptive informationabout theevent. Finally, thedescriptionof each

event was used to divide them into one of three categories (motor agi-

tation, verbal aggression, or physical aggression) using the definitions

as provided by the Behavioral Supports Ontario Dementia Observa-

tionSystem (BSO-DOS).27,28 If at anypoint during theevent, an aggres-

sive act such as hitting, pushing, or kicking was noted, the entire event

was categorized as physical aggression. Where there was a combina-

tion of verbal aggression and motor agitation, the event was catego-

rized based on the behavior that was predominant. To be included in

an analysis by behavior category, a participant needed to have at least

two agitation events in the given category. Any data which fell outside

of an labeled agitation event was categorized as non-agitation, and this

could include the participant at rest, engaged in activity, or walking.

2.4 Data processing and feature extraction

Agitation events are relatively infrequent compared to non-agitation,

thus the data included in this analysis was restricted to only include

days in which at least one agitation event took place and was able

to be fully labeled with start and end time (a total of 125 days of

data collection). We extracted 37 features from filtered sensor read-

ings after applying non-overlapping windows of 1-minute length. Cho-

sen features represent the most commonly used time and frequency-

domain characteristics of each sensor signal.20,29–36 The extracted fea-

tures are listed in Table S1 in supporting information along with their

definitions.
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2.5 Data analysis

Personalized models were developed to classify agitation versus non-

agitation minutes. To directly compare generic versus personalized

models, we analyzed our dataset using two different approaches. The

first was a leave-one-subject-out approach, where the model was

trained with data from all participants but one and tested on the last

participant. The second approach involvedusing the data fromonepar-

ticipant at a time, with half of the participant’s data used for training

and half for testing. We thus built two models for each participant—a

generic one based on the leave-one-subject-out approach and a per-

sonalized model. To compare these two approaches, for each partici-

pant, the models are tested on the same dataset. For example, the per-

sonalized model for participant 1 was trained on half of its data and

tested on the second half. The leave-one-subject-out model for partici-

pant 1 is trained on data from the other 16 participants (excluding par-

ticipant 1) and tested the same half of the data that was used for test-

ing of the personalized model. Personalized classification models were

also developed separately for each participant to classify non-agitation

versus each separate category of behavioral symptom.

In our previous study,20 we identified that the random forest (RF)

classifier with cost had the best performance among all tested clas-

sifiers; therefore, we chose to use it in this study to classify using 1-

minute data windows. The cost matrix was introduced into the RF

model to address data imbalance by assigning a higher cost to the clas-

sification of agitation event as non-agitation than the classification of

non-agitation as an agitation event.

Classifiers were built based on the 37 time and frequency-domain

features extracted from sensor data using window approach (non-

overlapping windows with 1-minute length) as described in Spasoje-

vic et al.20 Classifier parameters were tuned using internal two-fold

cross-validation on the training set. There were two parameters for RF

classifier—the number of trees with the range 10, 30, 50, 70, 90 and

the number of predictors with values in the range [f/5, 2f/5, 3f/5, 4f/5],

where f is the number of features in the feature set (f= 37). After inner

cross-validation, the selected parameterswere used to retrain the clas-

sifiers on the training set and performancewas evaluated based on test

set. We performed 2-fold cross-validation for all classifiers to evaluate

the data sets. AUCwas used as a performancemetric.

To examine the relative importance of different sensors and fea-

tures for agitation detection, we applied rankfeatures() function inMat-

lab that ranks features by class separability (agitation vs. non-agitation)

using different criteria to assess the significance of every feature for

separating two labeled groups. We used the “roc” criterion as a non-

parametric test due to non-normal distributed classes. This criterion

represents the area between the empirical receiver operating charac-

teristic curve and the random classifier slope. Feature rankingwas per-

formed for each mode,l which provided weights reflecting the feature

importance in the model. These weights were then normalized within

each category in the range of 0 to 1 (where 1 is the highest weighted

feature) bydividing allweights by themaximumweightwithin each cat-

egory.

TABLE 1 Description of participants and data

Total

N= 17

Demographics

Age (years), mean (SD) 78.9 (8.9)

Age (years), range 65–93

Sex (% female) 58.8%

Clinical characteristics

Clinical Dementia Rating score: number (%) 0: 0

1: 0

2: 3 (18%)

3: 14 (82%)

Neuropsychiatric Inventory total score, mean

(SD)

55.1 (23.7)

Neuropsychiatric Inventory agitation subscale,

mean (SD)

8.2 (4.4)

Neuropsychiatric Inventory aggression

subscale, mean (SD)

7.8 (3.7)

Neuropsychiatric Inventorymotor disturbance

subscale, mean (SD)

8.9 (3.9)

Data characteristics

Days of data included per participant, median

(interquartile range)

4 (2–11)

Hours of data per day included per participant,

median (interquartile range)

10.2 (8.8–11.3)

Labeled agitation events per participant,

median (IQR range)

9 (5–30)

Abbreviations: IQR, interquartile range; SD, standard deviation.

3 RESULTS

3.1 Description of participants and behaviors

Twenty participants consented to the study, but three did not exhibit

any behavioral events during the data collection period and were

excluded from this analysis. The included 17 participants’ demographic

details are listed in Table 1. Over the 125 days of data included in this

analysis, there were 305 fully labeled agitation events. The duration

of agitation events varied from 1 minute up to 3 hours, with a mean

duration of 14.9 ± 23.5 minutes and a median duration of 6 minutes

(interquartile range 2–20).

3.2 Personalized models: all agitation

Combining all events as “agitation,” 17 personalized models were built

to classify agitation minutes versus non-agitation minutes within each

individual participant. Model performance was variable across partici-

pants, with amedian AUC of 0.87, and a range of AUC values from 0.64

to 0.95 (Figure 2A). Compared to generic models, personalized mod-

els significantly outperformed the generic models for all but one
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F IGURE 2 Receiver operating characteristic (ROC) curves demonstrating the predictive power of the personalizedmodels by plotting the true
positive rate (sensitivity) versus false positive rate (1-specificity) at different thresholds for classifying agitation/non-agitation. Each curve
represents a different participant (see legend). The dashed gray line represents an ROC curve for a random classifier. ROC curves are shown for (A)
all agitation events, (B) motor agitation, (C) verbal aggression, and (D) physical aggression

participant (Figure 3). The mean absolute difference in AUC

score between the personalized and “leave-one-out” models was

0.28± 0.19.

3.3 Personalized models: behavior categories

Personalized models were built for each participant to distinguish

each separate category of behavior (motor, verbal, physical) and non-

agitation minutes. In total, there were 32 sets of data analyzed across

17 participants as not all participants had the minimum required two

behavioral events in each category (Table 2). The median AUC for the

motor agitation model was 0.90 (range 0.49–0.98), for verbal agita-

tion0.86 (0.53–0.98) and forphysical aggression0.82 (0.71–1.0). Three

personalized models across the three behavior categories had poor

performance (AUC < 0.7), all of which had small number of agitation

events on which to train the models (< 7 agitation events each), while

11models had AUC values> 0.9 (Figure 2B, C, D).

1 2 3 4 5 6 7 8 9 1011121314151617
Participant number

0.2

0.4

0.6

0.8

1

A
U

C
 v

al
ue

s

Leave one subject out
Personalized models

F IGURE 3 Comparison by participant of the performance of
personalizedmodels to generic leave-one-subject-out models for the
classification of agitationminutes versus non-agitationminutes. AUC,
area under the receiver operating characteristic curve
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TABLE 2 Number of non-agitation and agitation 1-minute windows by agitation type across participants

Participant

Non-agitation

minutes

Total agitation

minutes Motor Verbal Physical

Ratio

non-agitation:

agitation Participant

1 2470 2429 41 18 23 59:1

2 2004 1991 13 6 6 1 153:1

3 9977 9910 67 2 65 148:1

4 13393 13196 197 15 1 181 67:1

5 507 501 6 6 84:1

6 1944 1938 6 6 323:1

7 560 544 16 16 34:1

8 5619 5437 182 61 121 30:1

9 10485 10094 391 215 36 140 26:1

10 1138 1124 14 13 1 80:1

11 8868 8049 819 601 124 94 10:1

12 4245 3951 294 160 134 13:1

13 1463 1421 42 42 34:1

14 2821 2698 123 47 76 22:1

15 2858 2775 83 7 13 63 33:1

16 1338 1330 8 6 2 166:1

17 634 582 52 52 11:1

Total 70324 67970 2354 1083 440 831 29:1

3.4 Feature ranking

To determine which features and sensors were important markers for

agitation behaviors, feature ranking was performed for each person-

alized model. The relative weight of each feature in each personalized

model is shown visually in heatmaps in Figure 4 and numerically in the

supporting information. There was considerable variability between

participants in themost important sensor features for classifying agita-

tion versus non-agitation (Figure 4A). Looking across participants, the

accelerometer features were most heavily weighted, in particular the

mean, minimum, and standard deviation of the ACC signal, as well as

the spectral entropy of the ACC signal. Phasic EDA measures, maxi-

mum heart rate, and mean temperature were also weighted as impor-

tant in a subset of participants. Examining thedifferences betweenpar-

ticipants in the top 10 most heavily weighted features, participants

appeared in two groupings: 8 participants had a median of 6 (range 5–

8) ACC features in the top 10, while in the remaining 9 participants,

therewas amedian of 1 (range0–2)ACC features in their top10. These

nine participants had a combination of EDA features (median 3, range

1–6), BVP features (median 4, range 3–7), and TEMP features (median

1, range 0–2) in their top 10.

Examining the personalized models by behavior category, fea-

tures from across all four sensors were associated with motor agi-

tation including the standard deviation, mode, and entropy of the

EDA signal, possibly representing motion artifacts in the EDA signals

(Figure 4B). Interestingly, EDA features were weighted similarly to the

ACC movement features and BVP features, with participants having

a median of 3 (range 0–7) EDA features in their top 10, a median

of 2 (range 0–7) ACC features, and a median of 3 (range 0–7) of

BVP features. In six participants, the mean temperature was heavily

weighted, while themaximumheart rate was heavily weighted in three

participants.

Events consisting primarily of verbal aggression were most

strongly associated with BVP features including the maximum and

standard deviation of the heart rate, and the mean temperature

(Figure 4C), although there was considerable individual variabil-

ity in the feature pattern. For example, six of the eight partici-

pants with verbal aggression had few ACC features (median of

1, range 0–2), while two had at least seven ACC features in their

top 10.

Overall, the ACC features were most important for classifying

events involving physical aggression (Figure 4D), including the stan-

dard deviation and several Teager energy features of the signal. Across

all participants, there were a median of 6 (range 0–8) ACC features in

their top 10, although two groupings are again seen, with six partic-

ipants having a median of seven ACC features (range 5–8) and four

participants having a median of one (range 0–2). Those four partici-

pants with fewer ACC features had a predominance of BVP features

(median 6, range 4–8) such as heart rate variability and interquartile

range.
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F IGURE 4 Feature ranking for personalizedmodels for (A) all agitation events, (B) motor agitation, (C) verbal aggression, and (D) physical
aggression. Refer to legend for the label for each feature extracted from the accelerometer (ACC), electrodermal activity (EDA), blood volume
pulse (BVP), and temperature (TEMP) sensors

ACC 1 Teager EnergyMaximum BVP 18 Heart Rate Variability

2 Teager EnergyMinimum 19 Mean Inter-Beat-Interval

3 Teager EnergyMean 20 Power Spectral Density

4 Teager Energy Simple Square Integral 21 Spectral Energy Ratio

5 Mean 22 Tachogram Power Low

6 Minimum 23 Tachogram PowerMedium

7 Standard Deviation 24 Tachogram Power High

8 Inter-Quartile Range 25 Tachogram Energy Ratio

9 Spectral Entropy 26 Mean

10 DC Power 27 Maximum

EDA 11 TonicMax of the Signal Derivative 28 Minimum

12 TonicMode of the Signal 29 Standard Deviation

13 Phasic Area under the Signal 30 Inter-Quartile Range

14 Phasic Number of Peaks 31 Total Average Power

15 Standard Deviation 32 Spectral Entropy

16 Spectral Entropy 33 Energy

17 Entropy 34 DC power

TEMP 35 Slope Angle

36 Mean

37 Standard Deviation
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F IGURE 4 Continued

4 DISCUSSION

In this study, we make use of rigorously annotated multimodal sen-

sor data to detect episodes of agitation in people with dementia.

Rather than looking for common signals across all participants,wehave

developed models that are personalized based on the individual and

that are based upon the type of behavior being exhibited. Our results

demonstrate that it is possible to classify behaviors as agitated or not

agitated with fair to good performance in 1-minute windows. We have

confirmed that personalized models significantly improve upon the

performance of genericmodels. To further support the value of person-

alized and behavior-specific models, we confirm that the sensor fea-

tures weighted by the machine learning models varies both by individ-

ual and by type of behavior.

These findings are an important step to move beyond correlation

and toward predictive analytics for behavioral symptoms in demen-

tia. While there are discernable patterns in wearable sensor signals

moment to moment that are characteristic of agitated behaviors,

these patterns are largely individual. Unlike studies that have used

commercial-grade wearable devices with proprietary data processing

algorithms, we usedmachine learning to delve into a large and complex

raw sensor dataset in 1-minute time frames. This approach has the dual

advantages of making use of the full richness and detail of the data and

of improving signal recognition within the data.37–39 One limitation of
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this approach was that it required a research-grademultimodal sensor

devicewith a short battery life.Wewere thusunable toexaminebehav-

iors occurring at night. Wearable technologies are rapidly advancing

and affordable, clinical-grade multi-modal devices with advanced data

processing and synchronization capabilities and week-long battery life

are on the horizon.

Byusing interpretablemodels in this study, our results provide some

insights as to which features of the sensor data are most important in

predicting the presence of agitation. As expected, many of the most

strongly weighted features were related to movement. Physical activ-

ity in people with severe dementia has previously been shown to be

correlated with degree of agitation.40 However, any algorithms that

use motor activity alone to detect agitation risks either misclassifying

healthy physical activity, such as dancing, or pathologizing wandering

behaviors. Similarly, a focus on motor activity alone may miss other

types of agitation, such as verbal aggression, or agitation in people

with dementia who are non-ambulatory. There is also a need to tease

apart “non-agitation,” a category in this study which encompasses pos-

itive behaviors (social engagement, pleasurable activities), neuropsy-

chiatric symptoms such as apathy, and periods of rest or sleep. Iden-

tifying patterns consistent with these behaviors would allow us to go

beyond markers of agitation or distress to track positive engagement.

In this study, we have not specifically proposed a threshold or cut-off

for defining agitation or non-agitation. Striking a balance between the

sensitivity of the classification algorithm to correctly detect agitation

and the risk of false positives depends largely on the application of the

algorithmand an examination of the costs of false positives versus false

negatives.

Our findings suggest that features derived from multiple differ-

ent sensors are important for the development of digital biomark-

ers for behavioral symptoms. Vulnerability to stress is considered a

determinant of BPSD and expression of behavioral symptoms can be

conceptualized as a stress response.1 As such, digital biomarkers of

stress are also relevant in identifying and monitoring BPSD. Previ-

ous studies have demonstrated that electrodermal activity and heart

rate are reliable digital biomarkers of stress in young, healthy popu-

lations, and that there is a large inter-individual variability in expres-

sion of stress response.41 In people with dementia, studies have found

a correlation between heart rate and agitation,42 and electrodermal

activity and agitation.15,16 In further support of the need of multi-

modal sensors, we have previously shown that incorporating data from

several different sensors outperforms a single sensor for detecting

agitation.20

The development and clinical validation of algorithms to classify

behaviors are challenging and require that data be accurately anno-

tatedmoment tomoment as to thepresenceor absenceof thebehavior

of interest. An important strength of this study is awell-annotated sen-

sor dataset. Clinically important episodes of agitation were flagged by

staff and reviewed in videos to establish as best as possible the start

and end time. However, one limitation is that it is possible that agita-

tion events took place which were not captured on video or observed

by staff. Future work can make use of positive-unlabeled learning

algorithms,43 an approach inwhichmodels are trained on both positive

data (agitation events) and unlabeled data (combination of normal and

unreported agitation events) to address this limitation.

It is important to note that most of the poorly performing person-

alized models were due to an inadequate amount of agitation events

for training the supervised classification models. Even in this cohort

with severe BPSD, episodes of clinically important agitation are rela-

tively rare events. Given the degree of imbalance in the data between

agitation and normal events, future studies should consider alterna-

tives to supervised classification, such as theuseof unsupervised learn-

ing methods, such as anomaly detection and/or one-class classification

approaches.44,45 The small sample size in this study is an important lim-

itation. Our sample size was limited by the large data storage require-

ments for the videos and the resource-intensive annotation process.

Larger data sets are needed to validate and ensure the generalizabil-

ity of the algorithms. It is possible that generic models using a larger

dataset may approach the performance of personalized models. In this

study,modelswerebuilt using sensordata alone, butwe found thatpar-

ticipants could be grouped based on their patterns of sensor features

associated with agitation. There may be clinical or demographic vari-

ables, such as dementia subtype or severity, that distinguishes these

groups. Including these variables in the models would be expected to

help generic model performance. To address these issues, future large

studies are required in clinically well-characterized cohorts, and using

efficientmethods for labeling of the sensor data with behavioral symp-

toms in real time.

With the revolution in digital medicine underway comes the need

for appropriately validated digital biomarkers.46 There is increasing

recognition of the value of personalized metrics for health and well-

being based on longitudinal monitoring of symptoms. The most likely

clinical use of BPSD digital biomarkers is for n = 1 monitoring, such

as tracking symptoms or behaviors over time and in response to treat-

ment, thus there is a clear need for agitation detection algorithms to

be accuratewithin individuals over time.Our results support that there

are individualizedpatternsofdigital biomarkers for agitation indemen-

tia, and that to improve the accuracy of agitation detection algorithms,

future studies are needed to characterize these individual patterns.
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