
The Rockefeller University Press   $30.00
J. Cell Biol. Vol. 192 No. 6  929–937
www.jcb.org/cgi/doi/10.1083/jcb.201010106 JCB 929

JCB: Report

M. Hanazawa and M. Yonetani contributed equally to this paper.
Correspondence to Asako Sugimoto: asugimoto@m.tohoku.ac.jp
M. Hanazawa’s present address is National Museum of Emerging Science and 
Innovation, Koto-ku, Tokyo, 135-0064 Japan.
Abbreviation used in this paper: PABP, poly(A) binding protein.

Introduction
In many organisms, germ cells have electron-dense cytoplasmic 
organelles, generally referred to as “germ granules,” which are 
believed to play roles in germ cell specification and differentia-
tion (Eddy, 1975; Saffman and Lasko, 1999). They are large 
RNA-enriched nonmembranous organelles, and historically 
called by diverse names such as P granules in Caenorhabditis 
elegans, polar granules in Drosophila, and germinal granules in 
Xenopus (Eddy, 1975). In animals in which the germline is pre-
formed (including the above three organisms), germ granules 
are maternally inherited by the fertilized egg and then specifi-
cally segregated to the germ lineage during early embryogene-
sis. Germ granules contain specific mRNAs and proteins, some 
of which are conserved among species (e.g., Drosophila Vasa 
[Hay et al., 1988a,b; Lasko and Ashburner, 1988] and its homo-
logues [Raz, 2000]), but many appear to be species specific. 
Despite the evolutionary divergence of their molecular compo-
sition, the majority of the protein components of germ granules 
are implicated in various aspects of RNA metabolism, which 
has led to the prediction that the common biochemical function 

of germ granules is to regulate the translation efficiency and/or 
stability of mRNAs in the germline (Seydoux and Braun, 2006; 
Strome and Lehmann, 2007).

In Caenorhabditis elegans, germ granules are called  
P granules, and some of the specific mRNAs and 40 protein 
components (mostly RNA-binding proteins) of P granules have 
been identified (Strome, 2005). Among them, GLH-1–4 (Dro-
sophila Vasa homologues; with DEAD-box helicase motifs; 
Gruidl et al., 1996; Kuznicki et al., 2000), PGL-1 and PGL-3 
(C. elegans–specific germ granule components; each with an 
RGG box [multiple Arg-Gly-Gly repeats]; Kawasaki et al., 1998, 
2004), and DEPS-1 (Spike et al., 2008) are the only known 
components that exclusively localize to P granules at all devel-
opmental stages; other components localize to P granules tran-
siently, and many of them are present in somatic lineages as 
well (Strome, 2005). Although many P-granule components have 
been identified, how the granules are assembled (and disassem-
bled in somatic cells) is not well understood.

Here we established an assay to analyze the granule-forming 
ability of P-granule components using cultured mammalian 
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GLH-1 and GLH-3, were dispersed in the cytoplasm. PGL-1 and 
PGL-3 are paralogues with 77% amino acid similarity and they 
interact directly with each other (Kawasaki et al., 2004). When 
coexpressed in CHO cells, they colocalized in the same granules 
(Fig. 1 D), suggesting that both of these PGL proteins partici-
pate in globular granule assembly. Granule formation by PGL-3 
was confirmed in four other mammalian cell lines (NIH3T3, 
HeLa, MDCK, and HEK293; unpublished data). We refer to 
granules formed by PGL-1 and/or PGL-3 as “PGL granules.”

To examine whether PGL proteins can form granules in  
C. elegans cells in the absence of germ cell–specific factors, 
PGL-1 and PGL-3 were individually expressed in C. elegans 
somatic cells. In embryonic somatic cells (PGLs expressed via 
the pes-10 promoter; Seydoux and Fire, 1994) as well as in 
adult pharyngeal cells (PGLs expressed via the myo-2 promoter; 
Okkema et al., 1993), GFP::PGL-1 and GFP::PGL-3 formed 
cytoplasmic granules (Fig. 1, E and F; and unpublished data). 
In contrast, GFP and GFP::GLH-1 were dispersed in the cyto-
plasm, and no granules were detected (Fig. 1, G and H; and un-
published data). Thus, consistent with the results obtained with 
CHO cells, PGL proteins, but not GLH-1, have the ability to 
form granules autonomously in the absence of other germline-
specific factors in C. elegans.

These results raised the possibility that PGL proteins serve 
as a scaffold for P-granule formation in C. elegans. To test this 
possibility, we next examined whether PGL granules recruit 
other known P-granule components in CHO cells. PGL gran-
ules were stained positively by the DNA/RNA-specific dye, 
SYTOX, and this staining disappeared when the fixed cells were 
pretreated with ribonuclease A (RNase A; Fig. 2, A and B), sug-
gesting that PGL granules contain RNA. In addition, endog
enous poly(A)-binding protein (PABP), which normally localizes 
throughout the cytoplasm (Fig. 2 C), was also enriched in PGL 

cells and somatic C. elegans cells. We show that PGL proteins 
autonomously form cytoplasmic granules in heterologous cells, 
and that RNA and some protein components are recruited to 
granules in a manner dependent on the RGG box. In contrast, GLH 
proteins do not exhibit autonomous granule formation ability. 
Our findings demonstrated that PGL proteins play a crucial role 
as scaffolds in the assembly of P granules in C. elegans.

Results and discussion
To identify the components that play a major role in P-granule 
assembly, each component of P granules was examined for its 
ability to form granules in cultured mammalian cells in which no 
other C. elegans proteins were present. 14 P-granule components 
were used for this study: four were constitutive P-granule com-
ponents—PGL-1 (Kawasaki et al., 1998), PGL-3 (Kawasaki  
et al., 2004), GLH-1 (Gruidl et al., 1996), and GLH-3 (Kuznicki 
et al., 2000)—and ten were transient components: MEX-1 
(Guedes and Priess, 1997), MEX-3 (Draper et al., 1996), POS-1 
(Tabara et al., 1999), OMA-1 (Detwiler et al., 2001; Shimada  
et al., 2002), OMA-2 (Detwiler et al., 2001; Shimada et al., 
2002), SPN-4 (Ogura et al., 2003), GLD-1 (Jones et al., 1996), 
GLD-3 (Eckmann et al., 2002), CGH-1 (Navarro et al., 2001), 
and IFE-1 (Amiri et al., 2001; Table I).

Although the majority (12/14) of the P-granule compo-
nents were scattered in the cytoplasm or formed amorphous ag-
gregates of diverse shapes with unclear boundaries, GST-tagged 
PGL-1 and PGL-3 formed globular granules—either spherical 
or ellipsoidal shape with clear boundaries, reminiscent of  
P granules—in the cytoplasm of CHO cells (Fig. 1, A–C; Table I; 
and Fig. S1). Granules were detected in 92% (46/50) and 100% 
(50/50) of the GST::PGL-1– and GST::PGL-3–positive cells, re-
spectively. Notably, two other constitutive P-granule components, 

Table I.  Percentage of CHO cells with granules containing the indicated P-granule components

P-granule  
component

Localization to  
P granules

Motifs aFormation of  
amorphous aggregates

bFormation of  
globular granules

cColocalization 
with PGL-3 granules

% % %
PGL-3 Constitutive RGG box 4 96 N.A.
PGL-1 Constitutive RGG box 10 82 100
GLH-1 Constitutive DEAD box, 4 CCHC fingers 2 0 4
GLH-3 Constitutive DEAD box, 2 CCHC fingers 4 0 20
MEX-1 Transient 2 CCCH fingers 20 0 100
MEX-3 Transient 2 KH domains 4 0 92
POS-1 Transient 2 CCCH fingers 50 0 82
OMA-1 Transient 2 CCCH fingers 8 0 90
OMA-2 Transient 2 CCCH fingers 10 0 92
SPN-4 Transient RNP motif 8 0 98
GLD-1 Transient KH domain 10 0 92
CGH-1 Transient DEAD box 16 0 80
GLD-3 Transient KH-related domains 4 0 16
IFE-1 Transient Translation initiation factor 4E 0 0 6

aPercentage of cells in which the expressed GST-tagged P-granule components formed amorphous aggregates.
bPercentage of cells in which the expressed GST-tagged P-granule components formed globular granules.
cPercentage of cells in which the expressed GST-tagged P-granule components colocalized with the granules formed by 6xHis-tagged PGL-3.
50 cells were randomly selected in each expression experiment, and the number of the cells forming granules was counted. In the coexpression experiments, we 
counted cells with granules that contained both PGL-3 and the corresponding component. N.A., not applicable.

http://www.jcb.org/cgi/content/full/jcb.201010106/DC1
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PGL proteins autonomously form RNP granules that contain  
endogenous RNA, PABP, and certain coexpressed C. elegans 
P-granule components.

To test whether the PGL proteins serve as the scaffold for 
P-granule assembly in C. elegans, we depleted the PGL proteins 
from early C. elegans embryos via a combination of genetic 
mutations and RNAi, and then examined the localization of 
other P-granule components. In wild-type early embryos, POS-1 
and MEX-3 (both transient P-granule components) are dis-
persed in the cytoplasm of somatic cells, whereas in the germ 
lineage they form granules that predominantly colocalize with 
PGL proteins, with some diffuse signal still detectable in the 
cytoplasm (Fig. 3, B and D; Draper et al., 1996; Ogura et al., 
2003). In pgl-1(RNAi);pgl-3(RNAi) embryos in which both 
PGL-1 and PGL-3 were undetectable, granules formed by 
POS-1 were vastly decreased compared with wild-type em-
bryos (Fig. 3 C; number of granules of >1.5-µm diameter in 

granules (Fig. 2 D). Furthermore, when coexpressed with 
PGL-3, 8 of 12 P granule components showed substantial co
localization with the granules formed by PGL-3 (Table I and  
Fig. S2). For example, when MEX-3 was expressed by itself or co
expressed with LacZ, it was generally dispersed in the cytoplasm 
(Fig. 1 B). When MEX-3 was coexpressed with PGL-3, how-
ever, 92% (46/50) of the cells had PGL granules that contained 
MEX-3 (Table I and Fig. 2 E). GLD-3, and the constitutive  
P-granule components GLH-1 and GLH-3, were recruited to PGL 
granules in <25% of cells (Table I, Fig. 2 F, and Fig. S2). More 
efficient recruitment of GLH-1 and GLH-3 to PGL granules is  
observed in C. elegans intestinal cells, perhaps revealing an  
effect of cell origin or type on this association (Updike et al., 
2011). IFE-1 was recruited to PGL granules only when they 
contained PGL-1 (Fig. S2), consistent with previous reports 
that PGL-1, but not PGL-3, directly binds to IFE-1 (Amiri  
et al., 2001; Kawasaki et al., 2004). Thus, in mammalian cells, 

Figure 1.  PGL proteins autonomously form globular granules. (A–D) Immunofluorescence images of CHO cells expressing C. elegans P-granule compo-
nents. (A) GST::PGL-3, (B) GST::MEX-3, (C) GST::GLH-1, (D) coexpression of PGL-3::6×His and GST::PGL-1. (E–H) Transgenic C. elegans expressing GFP-
tagged proteins. (E and F) GFP::PGL-3 ectopically expressed via the pes-10 (E) or myo-2 (F) promoter. (G and H) GFP::GLH-1 ectopically expressed via the 
pes-10 (G) or myo-2 (H) promoter. (E and G) An 50-cell embryo. (F and H) Adult pharynx. Bars, 10 µm.

http://www.jcb.org/cgi/content/full/jcb.201010106/DC1
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Localization of GLH proteins was also affected by deple-
tion of PGL proteins. In wild-type embryos, GLH-1 almost 
completely colocalizes with PGL granules (Fig. 3 F; Gruidl  
et al., 1996). When both PGL-1 and PGL-3 were depleted, how-
ever, GLH-1 was dispersed in the cytoplasm of both germline 
and somatic embryonic cells (Fig. 3 G), suggesting that PGL 
proteins are essential for GLH-1 to be incorporated into granu-
lar structures. GLH-1 and GLH-4 have partially redundant 
functions that are necessary for PGL proteins to form granular 

P2 cell [mean ± SD]: wild type, 40.0 ± 10.0 [n = 8];  
pgl-1(RNAi);pgl-3(RNAi), 12.4 ± 3.5 [n = 7]). Granules formed 
by GEP::MEX-3 were also significantly decreased (Fig. 3 E; 
wild type, 48.3 ± 9.0 [n = 4]; pgl-1(RNAi);pgl-3(RNAi), 13.8 ± 3.6  
[n = 6]). We speculate that the POS-1– or MEX-3–containing 
granules in the absence of PGL proteins are different types of 
RNP granules, such as P bodies (Gallo et al., 2008). These re-
sults support the model that PGL granules recruit other compo-
nents to assemble P granules.

Figure 2.  PGL proteins recruit other P-granule 
components in CHO cells. (A and B) SYTOX 
staining of DNA and RNA as shown without 
(A) or with (B) ribonuclease A treatment.  
(C–F) Immunofluorescence images of CHO 
cells. (C) Endogenous poly(A)-binding protein 
(PABP) in a cell not expressing PGL-3. (D) A 
cell expressing PGL-3::6×His; PGL-3::6×His, 
and endogenous PABP is shown. (E) A cell co-
expressing PGL-3::6×His and GST::MEX-3.  
(F) a cell coexpressing PGL-3::6×His and GST::
GLH-1. Bar, 10 µm.
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RGG box that acts as an RNA-binding domain (Godin and  
Varani, 2007). PGL-3 lacking the RGG box (PGL-3RGG; 
lacking amino acid residues 633–693) formed globular granules 
approximately the same size as those formed by the full-length 
PGL-3 (Fig. 4, B and C). Endogenous RNA, however, was un-
detectable in the granules formed by PGL-3RGG (unpublished 
data), and endogenous PABP and other coexpressed P-granule 
components (MEX-1, MEX-3, POS-1, OMA-1, OMA-2, SPN-4, 
GLD-1, and CGH-1) were not present in the granules (Fig. 4 C 
and Fig. S3). These results indicate that the RGG box of PGL-3 
is dispensable for the formation of globular granules but neces-
sary to capture and incorporate RNA and RNA-binding proteins 
into the granules.

Although PGL-3(1–318) did not form globular granules 
on its own (Fig. 4 D), when coexpressed with the full-length 
PGL-3, PGL-3(1–318) colocalized with granules formed by the 

structures in the C. elegans adult germline (Kawasaki et al., 
1998; Kuznicki et al., 2000). We confirmed this in early em-
bryos; in glh-1(RNAi) glh-4(gk225) embryos in which both 
GLH-1 and GLH-4 were undetectable, PGL-3 was dispersed in 
both somatic and germline cytoplasm, and cytoplasmic gran-
ules smaller than wild-type P granules were detected through-
out embryos (Fig. 3 H). These results demonstrate that PGL and 
GLH proteins are mutually required to form granular structures 
and indicate that, although PGL proteins have the ability to self-
aggregate, GLH proteins are essential in the early germline to 
maintain the multicomponent granular structures formed by 
PGL proteins.

To understand the molecular mechanism by which PGL 
proteins mediate RNP granule formation, we performed a 
structure–function analysis of PGL-3 in CHO cells (Fig. 4 A). The 
only recognizable motif in PGL-1 and PGL-3 is a C-terminal 

Figure 3.  PGL proteins function as the scaffold for 
P-granule assembly. (A) Schematic representation of 
a 4-cell stage C. elegans embryo. (B–H) Immunofluo-
rescence images of 4-cell stage C. elegans embryos. 
Maximum projections of confocal Z-series images that 
cover whole embryos are shown. In each image, the 
protein that was detected is indicated. Bar, 10 µm.  
(B, D, and F) Control wild-type embryos. (C, E, and G) 
pgl-1(RNAi);pgl-3(RNAi) or pgl-1(RNAi);pgl-3(bn104, 
RNAi) embryos. (H) glh-1(RNAi);glh-4(gk225) embryo. 
PGLs: both PGL-1 and PGL-3 detected by the mixtures 
of monoclonal antibodies KT3 (anti-PGL-3) and KT4 
(anti-PGL-1). GFP::PGL-3RGG and GFP::MEX-3 were 
detected by anti-GFP. POS-1 and GLH-1 were detected 
by anti-POS-1 and anti-GLH-1, respectively.

http://www.jcb.org/cgi/content/full/jcb.201010106/DC1
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Next, to investigate the importance of the RGG box for 
recruitment of other P-granule components in C. elegans em-
bryos, GFP::PGL-3 or GFP::PGL-3RGG was expressed in the 
absence of endogenous PGL-1 and PGL-3 (pgl-1(RNAi);pgl-
3(bn104)) in the early embryos, and we examined colocaliza-
tion of GFP::PGL-3 or GFP::PGL-3RGG with a transient 
P-granule component, POS-1. GFP::PGL-3 formed granules in 
the germ line cells and these granules contained POS-1 (Fig. 4 H). 
GFP::PGL-3RGG also formed granules in germ line cells, but 
these granules did not contain POS-1 (Fig. 4 I). As in pgl-1;pgl-3 
embryos (Fig. 3, C and E), POS-1–containing granules were 
significantly decreased, and they did not contain GFP::PGL-
3RGG (Fig. 4 I). These results further confirmed the finding in 
CHO cells that the RGG box of PGL-3 is dispensable for gran-
ule formation but essential for recruitment of other P-granule 
components (presumably RNPs) in C. elegans.

Our results reveal that PGL-3 proteins have two distinct 
regions for RNP granule assembly: one for globular granule as-
sembly via self-interaction, and the RGG box for recruiting 
RNA and RNA-binding proteins (Fig. 4 A). Because RGG 
boxes of various proteins have been shown to bind RNA with 
low sequence preference (Godin and Varani, 2007), PGL proteins 

full-length PGL-3 (Fig. 4 F), suggesting that this fragment contains 
a region for self-interaction. On the other hand, PGL-3(160-319) 
did not form globular granules (Fig. 4 E) and was not recruited to 
the granules formed by full-length PGL-3 (Fig. 4 G). It has 
been shown that PGL-1 directly interacts with PGL-1 and PGL-3 
in vitro (Kawasaki et al., 2004). Thus, it is likely that residues 
160–319 of PGL-3 comprise a region essential for self-interaction 
of PGL proteins.

We next tested whether the domains identified using 
mammalian cells have the predicted functions in C. elegans 
embryos. First, truncated PGL-3 proteins tagged with GFP 
were maternally expressed in wild-type worms (i.e., contain-
ing endogenous PGL-1 and PGL-3), and their localization was 
examined during early embryogenesis. As expected, PGL-3 
RGG and PGL-3(1–318) exhibited granular structures in 
germline cells (Fig. 4, J and K; and unpublished data), sug-
gesting that these truncated proteins and endogenous wild-
type PGL proteins jointly formed granules. PGL-3(160-319) 
was not incorporated into P granules and was dispersed in the 
cytoplasm of both germline and somatic cells in the early em-
bryos (Fig. 4 L), consistent with the results from the CHO 
cell experiments.

Figure 4.  PGL-3 has two distinct domains for self-interaction and recruitment of RNA and RNA-binding proteins. In each image, the protein that was 
detected is indicated. (A) Summary of the structure–function analysis of PGL proteins in CHO cells and C. elegans embryos. N.A., not applicable. N.D., 
not determined. *, 50% of cells formed small amorphous aggregates. (B–G) Immunofluorescence images of CHO cells. (B) A cell expressing GST::PGL-3; 
endogenous PABP was colocalized with GST::PGL-3 granules. (C) A cell expressing GST::PGL-3RGG; endogenous PABP was excluded from GST::PGL-
3RGG granules. (D) A cell expressing GST::PGL-3(1–318). (E) A cell expressing GST::PGL-3(160-319). (F) A cell coexpressing GST::PGL-3(1–318) and 
PGL-3::6×His; GST::PGL-3(1–318) were recruited to PGL-3::6×His granules. (G) A cell coexpressing GST::PGL-3(160-319) and PGL-3::6×His; GST::PGL-
3(160-319) were not recruited to PGL-3::6×His granules. (H and I) pgl-1(RNAi);pgl-3(bn104) 4-cell stage embryo expressing GFP::PGL-3 (H) or GFP::
PGL-3RGG (I), stained by anti-GFP and anti-POS-1. (J–L) Wild-type C. elegans 4-cell stage embryos expressing GFP-tagged PGL-3 variants, stained by 
anti-GFP and anti-PGL-1 (KT4 mAb). (J) GFP::PGL-3, (K) GFP::PGL-3(1–318), (L) GFP::PGL-3(160-319). Bars, 10 µm.
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the key components directing P-granule assembly/disassembly, 
and that GLH proteins may be involved in shifting the equilib-
rium toward granule assembly, possibly by lowering the satura-
tion point of free PGL proteins in the germ lineage.

An essential role for scaffolding proteins in RNP granule 
assembly has been reported. For example, in the case of forma-
tion of processing bodies (P-bodies, a class of cytoplasmic RNP 
granules) in yeast, a multi-step assembly mechanism was pro-
posed: initially, an individual mRNA associates with various 
proteins to form an mRNP, and then individual mRNPs form  
P-bodies via self-aggregation of a scaffolding protein(s)—Edc3p 
and/or Lsm4p (Decker et al., 2007). In Drosophila, Tudor pro-
tein is thought to function as a scaffold for germ granule (polar 
granule) assembly (Arkov et al., 2006). Because some germ 
plasm–specific proteins and RNAs can form small RNPs (“pre-
particles”) even in the absence of Tudor, it was proposed that 
the role of Tudor in germ plasm formation may be to bind these 
small RNPs and assemble them into a larger granule (Arkov  
et al., 2006). Thus, we propose that self-association of scaffold 
proteins that can bind to RNPs might be one of the general 
mechanisms by which large RNP granules are formed.

Materials and methods
Cloning and constructs of tagged P-granule components
The full-length coding region of each P-granule component was PCR ampli-
fied from the corresponding cDNA clones (from Y. Kohara, National Institute 

are likely to bind via the RGG box to diverse mRNAs and/or 
mRNA protein complexes (mRNPs) that contain transient  
protein components of P granules. As most of the transient 
P-granule components contain various types of RNA-binding 
motifs and all of the tested components in this study were ex-
cluded from granules formed by PGL-3RGG in CHO cells 
(Fig. S3), we speculate that this RNA-dependent recruitment is 
the major mechanism of incorporation of transient components 
into P granules. Because some RNA-binding proteins (e.g., 
GLH-1) were not recruited to PGL-3 granules, there seems to 
be some specificity for the recruitment of RNPs, but how it is 
achieved is currently unclear (some P-granule components, 
such as IFE-1, appear to be recruited to PGL granules by direct 
protein–protein interactions [Amiri et al., 2001]). These proper-
ties of PGL proteins raises a two-step model for P-granule for-
mation: in the first step, PGL proteins bind to various mRNPs 
through interaction with RGG boxes; in the second step, globu-
lar granules are formed by the self-interaction domain of PGL 
proteins (Fig. 5); the order of the two steps can be opposite.

A recent report showed that P granules in early C. elegans 
embryos are in dynamic equilibrium with their soluble compo-
nents, and a conceptual model was proposed in which assembly 
and disassembly of P granules are regulated by the concentra-
tion of soluble P-granule components and their saturation point, 
which would be lower in the germ lineage than in the soma 
(Brangwynne et al., 2009). Our data indicate that PGL proteins are 

Figure 5.  A two-step model of P-granule formation. (1) PGL proteins bind to diverse small mRNPs through RGG boxes. (2) PGL proteins self-aggregate 
through direct interaction between self-interaction domains. (3) P granules are assembled as large RNPs.
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before antibody staining by passing the slide through an acetone series  
(90, 70, 50, and 30%) at room temperature followed by transfer into PBS + 
0.5% (wt/vol) Tween 20 (PBST). For immunostaining, the slides were incubated 
for 1–2 h at room temperature in PBST containing 0.5% BSA + 0.5% skim 
milk. Endogenous PGL-3 was visualized with mAb KT3 (1:4 dilution; Takeda 
et al., 2008) or polyclonal rat or rabbit anti-PGL-3 (1:20,000, MBL; generated 
using His-tagged PGL-3 as antigen). Endogenous PGL-1 was visualized with 
mAb KT4 (1:4 dilution; Takeda et al., 2008), mAb K76 (1:500 dilution; Wood  
et al., 1984), or rabbit polyclonal anti-PGL-1 (1:10,000; MBL; generated  
using GST-tagged PGL-1 as antigen). Specificity of the PGL-3 antibodies and 
PGL-1 antibody generated in this study was confirmed by Western blotting and 
immunostaining of samples from wild type and pgl-3 or pgl-1 mutants. Anti-
GFP (1:200 dilution; MBL) was used to visualize GFP::MEX-3. Anti-GLH-1  
(Kawasaki et al., 2004) was used at 1:2,000 dilution. For secondary anti
bodies, goat anti–mouse IgG(H+L) Alexa Fluor 488 and 594, goat anti–rabbit 
IgG(H+L) Alexa Fluor 488 and 594, donkey anti–rat IgG(H+L) Alexa Fluor 
594, and goat anti–mouse IgM Alexa Fluor 594 (Invitrogen) were used. Sec-
ondary antibodies (1:100–1:200 dilution) were preadsorbed with C. elegans 
acetone powder and incubated for 1 h at room temperature. After final 
washes, each sample was mounted with VECTASHIELD (Vector Laboratories).

Microscopy
Immunofluorescence images of cultured cells and embryos were acquired 
with a DSU disk-scanning confocal microscope system (BX61; Olympus) 
with a 100× objective lens (U-PlanApo Oil Iris3-SP, 1.35 NA). For each 
cultured cell and embryo, Z-series images (0.5–1.0-µm steps) were ac-
quired and projected using a maximum intensity algorithm to produce a 
single integrated image using MetaMorph software (Molecular Devices). 
Images were processed with Photoshop (Adobe) software.

RNAi
RNAi was performed by the soaking method described previously (Maeda 
et al., 2001). In brief, L4 worms were soaked in dsRNA solution (2 µg/ml 
for each RNA species) for 24 h and then cultured on plates for 24 h at 
25°C. Adult worms were then cut open, and embryos were immunostained. 
dsRNA was transcribed in vitro from cDNA clones yk847b03 for pgl-1, 
yk1437a06 for pgl-3, and yk514b11 for glh-1.

Online supplemental material
Fig. S1 shows immunofluorescence images of CHO cells coexpress-
ing GST-tagged P-granule components and LacZ::6xHis. Fig. S2 shows  
immunofluorescence images of CHO cells coexpressing GST-tagged P-granule  
components and PGL-3::6xHis or PGL-1::6xHis and PGL-3::6xHis. Fig. S3  
shows immunofluorescence images of CHO cells coexpressing GST-
tagged P-granule components and 6xHis::PGL-3RGG. Table S1 lists 
the PCR templates and expression vectors used in this study. Online 
supplemental material is available at http://www.jcb.org/cgi/content/ 
full/jcb.201010106/DC1.
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