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Abstract: Background: Type 1 diabetes mellitus is a devastating disease
for which there is currently no cure, but only lifetime management. Islet
xenotransplantation is a promising technique for the restoration of
blood glucose control in patients with diabetes mellitus. The purpose of
this study was to explore the potential use of caprine (goat) islet cells as
xenogeneic grafts in the treatment for diabetes in a mouse model.
Methods: Caprine pancreases were harvested and transported to the
laboratory under conditions optimized to prevent ischemia. Islets were
isolated, purified, and tested for functionality. Caprine islets (2000 islet
equivalent) were transplanted beneath the kidney capsules of diabetic
BALB/c mice under thalidomide-induced immunosuppression. Blood
glucose and insulin levels of grafted mice were evaluated by glucometer
and enzyme-linked immunosorbent assay kit, respectively. The func-
tionality and quality of caprine pancreatic islet grafts were assessed by
intraperitoneal glucose tolerance tests.
Results: The viability of purified islet cells exceeded 90%. Recipient
mice exhibited normoglycemia (<11 mM glucose) for 30 days. In addi-
tion, weight gain negatively correlated with blood glucose level. The
findings verified diabetes reversal in caprine islet recipient mice. A signif-
icant drop in non-fasting blood glucose level (from 23.3 � 5.4 to
8.04 � 0.44 mM) and simultaneous increase in serum insulin level (from
0.01 � 0.001 to 0.56 � 0.17 lg/l) and body weights (from 23.64 � 0.31
to 25.85 � 0.34 g) were observed (P < 0.05). Immunohistochemical
analysis verified insulin production in the transplanted islets.
Conclusions: Purified caprine islets were demonstrated to successfully
sustain viability and functionality for controlling blood glucose levels in
an immunosuppressed mouse model of diabetes. These results suggest
the use of caprine islets as an addition to the supply of xenogeneic islets
for diabetes research.
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Introduction

In type 1 and some cases of type 2 diabetes, hyper-
glycemia is a consequence of b-cell mass deficiency
in the pancreas. Type 1 diabetes is a T-cell-medi-
ated autoimmune disease, which results from the
selective destruction of insulin-producing pancre-

atic islet b-cells. The b-cell destruction is believed
to be mediated through the actions of CD4 and
CD8 T lymphocytes, B lymphocytes, macrophages,
and dendritic cells [1]. Pancreas transplantation is
a way to reverse diabetes in patients with insulin-
dependent diabetes. However, transplantation of
isolated islets offers advantages over whole

174

Xenotransplantation 2014: 21: 174–182 © 2014 The Authors. Xenotransplantation Published by John Wiley & Sons A/S
doi: 10.1111/xen.12087

XENOTRANSPLANTATION



pancreas transplantation, such as surgical simplic-
ity and the ability to reduce the immunogenicity of
islets by immunoalteration or immunoisolation
protocols [2–4]. Pancreatic islet replacement could
potentially compensate for the lack of b-cells and
reverse the metabolic problems caused by
insulin-dependent diabetes mellitus in human and
animals [5]. In addition, islet transplantation could
prevent early damage caused by hyperglycemia
such as microangiopathic expansion [6].

Thalidomide (a-N-phthalimido glutarimide) is a
glutamic acid derivative that is used for the treat-
ment for various inflammatory and autoimmune
diseases such as multiple myeloma, leprosy, sys-
temic lupus erythematosus, and rheumatoid arthri-
tis [7,8]. Thalidomide inhibits tumor necrosis
factor-a in monocytes and macrophages and has
an immunomodulatory function [8–10]. New ana-
logs of thalidomide have been developed, which
exhibit low toxicity and enhanced potency in
blocking cytokine production [11]. Thalidomide
has also been shown to suppress IjB kinase activ-
ity in T lymphocytes, which results in reduced
nuclear factor-jB activation [7]. Chen et al. [12]
used thalidomide as an alternative immunomodu-
latory drug in islet xenotransplantation into immu-
nocompetent mice to protect the islet grafts from
microvascular injury and improve their survival
and function.

A known obstacle to islet transplantation ther-
apy is the shortage of human donor pancreases.
The use of non-human islets can be a solution to
this, and some research teams have developed por-
cine islet preparation protocols [13,14]. However,
the fragility of adult porcine islets is a concern;
they can be easily fragmented during isolation and
purification, a less noticeable occurrence in islets
from other species [15–18]. The fragility of porcine
islets can also lead to loss during culture, immuno-
alteration procedures, cryopreservation, and bank-
ing [19,20].

The pancreatic gland of goats is readily obtain-
able, and islets isolated from caprine pancreases
were less fragmented as determined by comparison
of islet size in intact pancreas sections and isolated
islets [21]. To our knowledge, this is the first study
to evaluate the potential use of caprine islets for
islet transplantation therapy in diabetes. This study
assessed the in vivo function of caprine pancreatic
islet grafts in streptozotocin (STZ) -induced dia-
betic immunosuppressed mice, following the in
vitro evaluation and characterization of the viability
and function of the isolated islets. The in vivo find-
ings supported the use of caprine islets for diabetes
reversal in STZ-induced diabetic murine models.

Materials and methods

Preparation of islets

Islets from five male Kajang goats pancreata were
used. The means of the donor characteristics were
as follows: age 12 � 2 months, weight 16 � 3 kg,
pancreas weight 22.6 � 1.3 g. Caprine pancreases
were collected from a slaughterhouse and trans-
ferred to the laboratory with care to minimize
ischemic time (10 min if warm and 90 min if cold).
Isolation and purification of islets were carried out
as described previously [21]. Briefly, the caprine
islets were isolated by collagenase XI-S then being
purified/selected by Ficoll density gradients and
wire mesh. Viability and functionality of the iso-
lated islets were assessed by dithizone (DTZ) stain-
ing, fluorescein diacetate and propidium iodide
(FDA-PI) staining, and the glucose-stimulated
insulin secretion test. In vitro DTZ and FDA-PI
staining were conducted on purified caprine islets
to evaluate purity, viability, and apoptosis using
the scoring system devised by Karaoz et al. [22]. In
brief, purified islets were placed into 1 of 5 catego-
ries according to the percentage of viable cells (esti-
mated from green/red staining). Isolated islets with
a purity of >90% and a viability of ≥95% were con-
sidered as qualified for xenotransplantation. The
glucose-stimulated insulin secretion test was used
to assess the functionality of islets exposed to differ-
ent concentrations of glucose. The islet equivalent
(IEQ) of islet preparations was determined with the
Ricordi Algorithm, and 2000 IEQ were placed into
separate petri dishes for transfer to recipients.

The animal care and use committee of the fac-
ulty of veterinary medicine at the Universiti Putra,
Malaysia, approved the animal research proposal,
under the AUP number 10R102/June 2010–May
2011.

Diabetes induction with streptozotocin

Diabetes was induced in BALB/c mice with an
STZ (Sigma-Aldrich, St. Louis, MO, USA) solu-
tion prepared immediately prior to injection. One
high-dose STZ injection (200 mg/kg) was adminis-
trated intraperitoneally (i.p.) to each mouse, which
had been fasted for at least 4 h prior to injection
[23,24]. The blood glucose level of each mouse was
measured with Accu-Chek Performa test strips and
meter (Roche, Indianapolis, IN, USA) twice a day.
Hyperglycemic mice (>18 mM glucose) were tar-
geted for urine glucose evaluation using Accu-
Chek Diabur-Test 5000 strips (Roche, Mannheim,
Germany). A urinary glucose-positive test (glucose
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level � 278 mM) was considered as the verification
of diabetes in STZ-induced mice.

Male BALB/c mice were divided into five experi-
mental groups: normal control (NC, n = 5), STZ-
induced diabetic (DC, n = 5) mice, diabetic graft
recipients that were immunosuppressed with tha-
lidomide (GDT, n = 10), diabetic graft recipients
that were not immunosuppressed (GD, n = 5), and
diabetic mice with sham grafts (phosphate-buffered
saline [PBS] injected) that were immunosuppressed
(SDT, n = 5). Mice were housed for over 1 month
in clean and sterile individual cages with sterile
bedding and unlimited access to sterile water and
food.

Diabetes induction assessment

Blood glucose levels were measured daily in STZ-
induced diabetic mice. Mice with non-fasting
blood glucose levels higher than 18 mM for five
consecutive days and a positive urinary glucose test
were considered diabetic (Table 1).

Immunosuppressive drug treatment of mice prior and after islet

xenotransplantation

Thalidomide is immunosuppressive at a dose of
200 mg/kg body weight [25]. Thalidomide was dis-
solved in dimethylsulfoxide (DMSO) and injected
i.p. in treated mice (islet recipients, sham controls)
daily. Thalidomide treatment was begun at least 3–
5 days before islet transplantation and continued
until the end of the experiments.

Islet xenotransplantation procedure

Recipient mice (body weight, 23–25 g) were anes-
thetized with a cocktail of ketamine and diazepam
(100 and 5 mg/kg, respectively) [26]. The left sides
of the mice were shaved, and a small incision was
made to access the kidneys. The kidney was located
by touch through the skin of the anesthetized
mouse. Caprine islets were transferred beneath the
kidney capsule through tubing, and the incision at
the kidney capsule was cauterized and cleaned with
an antibiotic-soaked cotton swab. The peritoneal
wall incision was sutured and wound clips were
applied at the dermal layer [27,28].

Islet graft monitoring

Non-fasting blood glucose levels post-transplanta-
tion were measured four times a week; body
weights and urinary glucose were measured twice a
week. The blood glucose level of each mouse was
measured using an Accu-Chek glucometer (Accu-
Chek Performa; Roche) as described above,
starting 1 day after transplant for 4 weeks. Urine
glucose was determined using Accu-Chek Diabur-
Test 5000 strips (Roche).

Intraperitoneal glucose tolerance test

Two weeks after transplantation, recipient mice
and control groups were subjected to intraperito-
neal glucose tolerance tests (IPGTT). One bolus of
glucose (2 g/kg body weight) was injected i.p. after
a 16-h fast. Tail vein blood samples were collected
at 0, 15, 30, 60, and 120 min post-glucose loading.
Blood glucose levels were measured as described.
Blood samples with glucose levels ≥30 mM were
diluted with blood from non-diabetic mice, remea-
sured, and the blood glucose recalculated [29,30].

Histological procedures on islet grafts

Thirty days after transplantation, the islet-grafted
kidneys were retrieved and rinsed with PBS. After
fixing in Bouin’s solution and embedding in paraf-
fin, serial sections of 4 lm thickness were cut by
microtome and spread on glass slides. Tissue sec-
tions were deparaffinized, washed twice with PBS
for 3 min each and then transferred to 0.1% tryp-
sin in PBS to retrieve antigens for 15 min at 37 °C.
Slides were then washed in PBS twice, for 3 min
each. Slides were blocked with a dual endogenous
enzyme block for 10 min, washed twice with PBS,
and incubated with rabbit monoclonal anti-sheep
insulin antibody (1 : 2000 in blocking buffer; Ab-
cam, Cambridge, UK) at 4 °C in a humidified
atmosphere overnight. The slides were washed
twice in PBS. Peroxidase-conjugated goat anti-rab-
bit antibody (EnvisionTM system + horseradish
peroxidase (HRP) DAB + Rb/Mo Kit; DAKO,
Glostrup, Denmark) was added and allowed to
react for 30 min at room temperature. The slides
were washed twice and 3-30-diaminobenzidine tetr-
ahydrochloride (DAB) substrate solution was

Table 1. Experimental mice biodata

Number Sex Age (week) Weight (g) STZ (mg/kg) Blood glucose (mM/l) before STZ Blood glucose (mM/l) after STZ

25 Male 7 24.14 � 0.94 200 7.1 � 0.83 23.3 � 5.4

Body weight, STZ induction dosage, and blood glucose level before STZ injection at the beginning of experiment and after STZ injection before islets transplantation. All data
are showed in mean � SE.

STZ, streptozotocin.
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added and incubated for 10 min. The reaction was
stopped by washing the slides with distilled water.
The slides were counterstained with hematoxylin.

Statistical analysis

All data are presented as means � SEM and ana-
lyzed using SPSS version 20.0 (IBM Corporation
Armonk, NY, USA). The Student’s t-test, one-way
ANOVA, and least significant difference tests were
used for statistical comparison between experimen-
tal and control groups. The significance level was
set at P < 0.05.

Results

In vitro viability and functionality of caprine islets

Under FDA/PI staining, viable islet cells
appeared green when examined under a fluores-
cent microscope, while dead and non-viable islets
appeared red. When using this method to assess
the quality of islets after the isolation procedure,
the viability of caprine islets was approximately
95% (Fig. 1). Caprine islets isolated from differ-
ent pancreas samples had a mean IEQ of
11 9073 � 17 814.

The purified islets responded to variations in
glucose concentration with a proportionate release
of insulin. High glucose (25 mM) stimulated greater
insulin secretion into the medium (0.90 � 0.21 lg/
l); lower glucose (1.67 mM) stimulated less insulin
secretion (0.54 � 0.15 lg/l; Fig. 2). This was con-
sidered evidence of functional b-cells.

In vivo functionality of caprine islet grafts

Before islet transplantation and at the end of the
experiment, the serum insulin levels of the grafted

mice were measured using an ultrasensitive mouse
insulin enzyme-linked immunosorbent assay kit
(Mercodia, Uppsala, Sweden). The insulin level of
the grafted mice (0.56 � 0.17 lg/l) was significantly
higher than the insulin level of the thalidomide-
injected mice before islet transplantation and that
of the diabetic ungrafted groups (0.01 � 0.001 lg/
l; Fig. 3). This observation demonstrated that
caprine islet grafts were functional and able
to secrete insulin in response to glucose in
STZ-induced diabetic immunosuppressed BALB/c
mice.

A rapid rejection was noted in the grafted mice
that were not treated with thalidomide, and blood
glucose values increased dramatically in 2–4 days
(Fig. 4). Some died of severe diabetes with blood
glucose values exceeding 30 mM. In contrast, the
thalidomide-treated grafted mice exhibited eugly-
cemia for the 30 days of observation.

Blood glucose levels (non-fasting) were moni-
tored four times per week in experimental and con-
trol groups until the end of the experiment. As
shown in Fig. 4, mean blood glucose levels were
significantly different between groups: grafted dia-
betic thalidomide-treated mice (GDT) and normal
control mice (NC) versus sham-grafted diabetic
thalidomide-treated mice (SDT) and diabetic con-
trol mice (DC), and also within the grafted diabetic
group (GD). Figure 4 shows the mean blood glu-
cose levels of all groups (GDT, n = 10), GD
(n = 5), SDT (n = 5), DC (n = 5), and NC (n = 5)
over 1 month. Normoglycemia (≤10 mM glucose)
was achieved at 3–5 days after transplantation and
was maintained for the observation period of
30 days in the GDT group. Mean blood glucose
levels were 6.8 and 9.7 mM for the NC and GDT
groups, respectively, and 28.1 and 29.3 mM for the
SDT and DC groups, respectively. However, in the
GD group, the mean blood glucose level decreased

Fig. 1. Cell viability assessment. Fluorescein diacetate and propidium iodide (FDA/PI) staining was performed for determination of
cell viability in normal pancreatic islet. The small bright spots in the fluorescent micrographs correspond to the intense red staining
of PI-positive (dead) cells (A). The widely stained green regions are related to the FDA-stained (live) cells (B). Merged images of PI
and FDA staining (C), (scale bars = 50 lm).
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until day 4 after transplant (to 11.18 mM), but sub-
sequently increased (to 31.2 mM), which was diag-
nosed as islet graft rejection. The mean blood

glucose level in the GDT group was about 67%
lower than in the SDT and DC groups (P < 0.05).

The mean body weights of the NC and GDT
groups increased continuously for 4 weeks after
transplantation. However, the mean body weight
of the DC group started to decline at week 1 and
was significantly (P < 0.001) lower than that of the
NC group from 1 to 4 weeks after STZ administra-
tion (Fig. 5). Correlation analysis showed that
body weight was negatively correlated with blood
glucose levels in the GDT group (r = �0.582).
Body weight was also negatively correlated with
blood glucose levels in the DC and SDT groups
(Fig. 5). Water intake in the DC and GD groups
increased profoundly (not shown here).

Caprine islet recipients showed improved glucose tolerance

Figure 6 shows the IPGTT profile of the GDT and
control groups. IPGTTs were performed on four
groups of mice at the second week after transplan-
tation (n = 5 per group). Mean fasted blood glu-
cose levels for the GDT, NC, SDT, and DC
groups were 8, 6.92, 29.42, and 32.28 mM, respec-
tively. The GDT and NC groups responded to the
glucose challenge in a similar fashion with mean
blood glucose levels peaking at 15 min and quickly
dropping to near baseline within 60 min. This
demonstrates that the islet grafts preserved their
capacity to regulate blood glucose levels (Fig. 6).

The mean fasted blood glucose levels for the
GDT, NC, SDT, and DC groups were 12.4, 12.67,
42.8, and 40.9 mM, respectively. The mean values
for the GDT and NC groups were significantly
lower than those for the SDT and DC groups
(P < 0.001) at 120 min.

Islet xenograft histology

Histological examination of islet grafts removed
from the GDT group at day 30 showed that some
caprine islets were remained viable. Immunostain-
ing of islet graft sections from the GDT group was
positive for insulin (Fig. 7). The insulin-positive
cells represent a small fraction of islets graft.

Discussion

The major obstacle to successful xenotransplanta-
tion is the immunological incompatibility between
donor and recipient. In the present study, we found
that the transplantation of isolated and purified
caprine islets, in combination with thalidomide
treatment, reversed diabetes in STZ-induced dia-
betic BALB/c mice as evidenced by increased
serum insulin and restoration of euglycemia. These

Fig. 3. Insulin secretion of diabetic mice. Insulin levels in dia-
betic control mice without islet graft, diabetic mice before islet
transplantation (“A” and “B” columns) and also after islet
transplantation (“C” column). All data represent the
means � SEM, and significance was tested using ANOVA
with LSD post hoc test, n = 10 mice. (P < 0.05).

Fig. 2. In vitro insulin secretion of caprine islets in response to
glucose challenge. The three replicates of 100 purified islets
from each batch of islet isolation were exposed to 25 mM (high
glucose) for 1 h and, respectively, to 1.67 mM glucose (low glu-
cose) for another hour. Values are means � SEM. Cultured
islets showed a good response for insulin secretion to different
glucose concentrations.
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results are consistent with other studies indicating
the efficacy of thalidomide treatment in preventing
islet graft rejection, improving graft function and
survival in the recipient [12].

Caprine islet grafts in the immunosuppressed
group resulted in approximately similar non-fast-
ing blood glucose levels as in the normal control
mice which were near to glucose level in caprine
(3.2–8.2 mM). As previously reported, islet xeno-
transplantation in diabetic animal models estab-
lishes normoglycemia in the recipients to the point
that is normal for the donor instead of the recipient
[31,32]. The results of this study showed that cap-
rine islet grafts are capable of reversing diabetes
and normalizing blood glucose levels in the recipi-
ent’s body.

The IPGTT profiles revealed the glucose respon-
siveness of the caprine islet grafts, findings that are
comparable to results obtained with islet cells
recovered from other mammalian species including
pigs, primates, and rodents [33–38]. In addition,
caprine islets elicited an insulin response under
both basal- and glucose-stimulated conditions, with
insulin levels equivalent to those obtained with
islets from other mammals such as pigs, cows, and
dogs, but less than those obtained with rodent islets
[39]. Rodent islets secrete much more insulin than
islets from human or porcine sources, either basally
or under glucose stimulation [40]. Caprine islet cells
are efficient insulin-producing cells, similar to
human and porcine islet cells, because they were
able to maintain euglycemia and glucose

Fig. 4. Caprine islet graft effect on
glycemic control in diabetic mice. Non-
fasting blood glucose levels of GDT
(n = 10), NC (n = 5), SDT (n = 5), DC
(n = 5) and GD (n = 5) groups over
experiment period. All data are
represented the means � SEM. GDT,
grafted diabetic thalidomide-treated mice;
NC, normal control mice; SDT, sham-
grafted diabetic thalidomide-treated mice;
DC, diabetic control mice; and GD,
grafted diabetic group. (“Died” represents
all mice).

Fig. 5. Mice body weight monitoring
during the experiment period. Changes in
body weight of the mice after
streptozotocin, thalidomide, and islets
transplantation treatments. All data
represent the mean values � SEM. GDT,
grafted diabetic thalidomide-treated mice;
NC, normal control mice; SDT, sham-
grafted diabetic thalidomide-treated mice;
DC, diabetic control mice; and GD,
grafted diabetic group. (“Died” represents
all mice).

179

In vivo evaluation of purified caprine islets



responsiveness in recipients. It has been found that
several thousand IEQ of the donor pancreas from
human, bovine, porcine, or caprine sources are
required to normalize blood glucose levels after
transplantation in STZ-induced diabetic mice
(assuming 1000–3000 islet cells/IEQ 9 >2000 IEQ/
transplant = >2.0–6.0 9 106 islet cells/transplant).
Normalizationofbloodglucosecanbeaccomplished
with fewer rodent islet cells (500 islets = 1.5 9 106)
or fish islet cells (1.75 9 106), because of better com-
patibilityofdonor isletsandrecipientsorhigher insu-
lincontentandsecretion [30].

In this study, the body weights of the mice were
about 25 g before injection of STZ, and a weekly
survival rate of >80% was observed in diabetic
mice until caprine islet transplantation. Body
weights are an essential consideration in STZ-
induced diabetic models. In this study, male mice

with a close range of body weights were used
because they have higher sensitivity to STZ induc-
tion than female mice [41,42].

One of the main reasons for performing this
preliminary study was that religious and cultural
factors in countries including Malaysia may favor
goats over pigs as xenograft donors. However,
potential limitations associated with the use of cap-
rine donors must be recognized. First, the mean
yield of 120 000 islets per adult goat is somewhat
lower than the reported yield of up to 360 000
islets obtained from adult pigs [13,43,44]. Second,
the efficacy of goat insulin in humans is not known.
The amino acid sequence of goat insulin differs
from that of human insulin at four residues, com-
pared with pig insulin which differs at only one.
However, bovine insulin, which differs at three of
the same four residues as goat insulin, has been
shown to control diabetes in humans [45]. Further-
more, should there be a problem with goat insulin,
it would be feasible to genetically modify goats [46]
to produce human insulin.

In conclusion, a single dose of STZ (200 mg/kg)
induced diabetes in BALB/c mice, and hyperglyce-
mia persisted until caprine islet transplantation.
An increase in body weight, in parallel with a
reduction in blood glucose levels (despite an
increase in food consumption), of recipient mice
signaled a reversal of diabetes.

In xenotransplantation, foreign tissues will
face rejection by the immune system of an immu-
nocompetent recipient individual. However, with
the tremendous advancement and progress in
immunosuppressive drugs, immunomodulation,
and tissue engineering, the maintenance of xeno-
transplanted islet survival is possible. Caprine spe-
cies may provide a new source of pancreatic islets
for transplantation in the future, if xenogeneic
compatibility is addressed. Genetic modification to
minimize xenogeneic rejection is also possible.
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