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Abstract: Acinetobacter baumannii is one of the most difficult-to-treat pathogens worldwide, due to
developed resistance. The aim of this study was to evaluate the use of widely prescribed antimi-
crobials and the respective resistance rates of A. baumannii, and to explore the relationship between
antimicrobial use and the emergence of A. baumannii resistance in a tertiary care hospital. Monthly
data on A. baumannii susceptibility rates and antimicrobial use, between January 2014 and December
2017, were analyzed using time series analysis (Autoregressive Integrated Moving Average (ARIMA)
models) and dynamic regression models. Temporal correlations between meropenem, cefepime,
and ciprofloxacin use and the corresponding rates of A. baumannii resistance were documented. The
results of ARIMA models showed statistically significant correlation between meropenem use and
the detection rate of meropenem-resistant A. baumannii with a lag of two months (p = 0.024). A
positive association, with one month lag, was identified between cefepime use and cefepime-resistant
A. baumannii (p = 0.028), as well as between ciprofloxacin use and its resistance (p < 0.001). The
dynamic regression models offered explanation of variance for the resistance rates (R2 > 0.60). The
magnitude of the effect on resistance for each antimicrobial agent differed significantly.

Keywords: acinetobacter; antibiotic resistance; time series analysis; dynamic regression models;
antimicrobial stewardship; meropenem; cefepime; ciprofloxacin

1. Introduction

Acinetobacter species are Gram-negative bacteria associated with bacteremia and
hospital-acquired pneumonia, including ventilator-associated pneumonia, surgical site
infection, secondary meningitis, and urinary tract infections [1–3]. Acinetobacter baumannii
has been reported as one of the most important and difficult-to-treat pathogens in the hos-
pital setting [4,5]. Moreover, the number of A. baumannii infections is steadily increasing,
while the optimal treatment of these infections has not yet been established [6]. The lack
of new antimicrobial agents against A. baumannii and its ability to accumulate multiple
antibiotic resistance genes has led to the current situation of multidrug-resistant (MDR) or
extensively drug-resistant Acinetobacter isolates [7–9]. Multidrug resistance is considered to
be non-susceptibility to at least one agent from three or more antibiotic classes that would
otherwise serve as clinically effective treatments and has become a significant cause of
increased morbidity and mortality in critically ill patients with severe sepsis [10,11].
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Previous use of carbapenems, third- and fourth-generation cephalosporins, and fluoro-
quinolones are independent risk factors for acquisition of MDR-Acinetobacter [12,13]. Since
carbapenems, especially meropenem, are frequently administered to treat A. baumannii,
carbapenem-resistant A. baumannii (CRAB) strains have become a major therapeutic chal-
lenge in recent years [4,14,15]. CRAB is one of the critical priority pathogens on the World
Health Organization priority list for antibiotic-resistant bacteria, which require effective
drug development [16]. Cephalosporins could be another option for the treatment of A.
baumannii, but cephalosporins are not usually considered suitable for the treatment of A.
baumannii infections due to widespread high resistance rates [4]. High nosocomial A. bau-
mannii resistance has also been observed for fluoroquinolones (e.g., ciprofloxacin) [17–19].
Recently, Butler et al. published a detailed study on the treatment options for MDR A.
baumannii infections [20]. Despite the large number of studies on A. baumannii resistance,
there are few data on the correlation between hospital antimicrobial use and resistance de-
velopment, information that is critical for the development of an antimicrobial stewardship
program (ASP) [21–23].

Numerous methods have been applied to investigate the above correlation; however,
time series models and relevant analyzes, such as Autoregressive Integrated Moving
Average models (ARIMA), dynamic regression models, are recognized as valuable tools
for modeling antibiotic use-related resistance [24]. These methods offer the possibility of
considering the influence of the timing of an intervention on this relationship, ensuring
that the possible cause of antibiotic use precedes the effect of antibiotic resistance. These
mathematical models also analyze the behavior of the dependent variable (antimicrobial
resistance) as a function of its prior value, trends, and steep changes in the recent past.

Considering the above, the aim of this study was to use monthly hospital data to
investigate the resistance rates of A. baumannii and the use of three broad-spectrum antimi-
crobial agents over a period of four years. In addition, the correlation of the above data
was investigated by using time series analysis (ARIMA) and dynamic regression models.

2. Results

A. baumannii isolates were tested for susceptibility to all available antimicrobial agents
and Clinical & Laboratory Standards Institute (CLSI) criteria were applied [25]. The evolu-
tion of mean yearly antimicrobial use expressed as DDD/100 patient days from January
2014 to December 2017 is shown in Table 1. It was observed that meropenem had the highest
mean consumption of the antibiotics studied and its use increased significantly from 2014
to 2017. In addition, ciprofloxacin and the β-lactam combination piperacillin/tazobactam
exhibited high levels of consumption per year, while imipenem use decreased gradually
between 2014 and 2016 and eventually was practically annihilated in 2017.

Table 1. Mean monthly antimicrobial consumption data1 estimated between January 2014 and
December 2017.

Antimicrobial Agent
Year

2014 2015 2016 2017

Imipenem 1.29 1.10 0.41 0.02
Meropenem 4.28 8.49 7.77 6.42
Ceftazidime 0.51 0.31 0.62 0.48

Cefepime 0.88 2.75 1.69 2.08
Ciprofloxacin 4.41 4.89 4.86 4.44

Piperacillin/Tazobactam 3.59 3.88 4.45 3.84
Tigecyclin 0.91 1.72 2.08 2.69

1 Mean monthly use in Defined Daily Doses (DDD) [26] per 100 Patient Days (PD).

According to our data, a large number of A. baumannii strains were found to be
multi-drug resistant, considering five classes of antibiotics that may be used against this
pathogen (cephalosporins, fluoroquinolones, carbapenems, polymyxins and combinations
of β-lactam/β-lactamase inhibitor). In particular, 15% of isolates were found to be resistant
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to all five classes, 42% were resistant to four classes, and 30% were resistant to three
classes. Consequently, only 5.5% of the strains were sensitive to all the aforementioned
antimicrobial classes. These findings are in accordance with previously reported data
concerning the alarming resistance rates and resistance trends over time (1996–2017) of A.
baumannii in Greek hospitals [27,28]. The distribution of isolates in terms of the biological
sample and the hospital department is presented in Table 2.

Table 2. Distribution of A. baumannii isolates gathered during the four-year study.

Per Specimen Percent of Isolates Per Department Percent of Isolates

Blood 14.63% Medical wards 52.44%
Urine 15.24% Surgical wards 25%

Broncho-Alveolar Lavage 21.95% Intensive Care Units 16.46%
Sputum 14.63% Oncology/Hematological wards 4.88%
Trauma 11.59% Mixed medical/surgical ward 1.22%
Other 21.95%

Time series analysis and transfer function models were applied to all antimicrobial
agents. The only antimicrobials that presented a correlation between their use with their A.
baumannii resistance pattern were meropenem, cefepime, and ciprofloxacin (Tables 3–5).
No correlation between prior antimicrobial use and pathogen resistance rates was revealed
for tigecycline, piperacillin/tazobactam, imipenem, and ceftazidime (Table A1).

Table 3. Autoregressive Integrated Moving Average (ARIMA) models for meropenem-resistant
A. baumannii (A) and meropenem use (B). Dynamic regression model for the association between
meropenem-resistant A. baumannii and hospital meropenem use (C).

Estimate Model Parameter Standard Error p-Value

A. A. baumannii resistance
ar1 −0.517 0.118 0.000
ar2 −0.578 0.114 <0.001
AIC 186.93
R2 0.531

B. Meropenem use (in DDD/100 PD)
ar1 −0.831 0.122 <0.001
ar2 −0.637 0.144 <0.001
ar3 −0.569 0.117 <0.001
AIC 242.91
R2 0.638

C. Impact of meropenem use on A. baumannii resistance
ar1 −0.564 0.126 <0.001
ar2 −0.610 0.124 <0.001

mer2 0.130 0.057 0.024
AIC 166.25
R2 0.626

Key: AIC, the estimated Akaike Information Criterion value for the model; ar1, autoregression term with a lag of
one month of the ARIMA model; ar2, autoregressive component with lag equal to two months of the ARIMA
model; ar3, autoregressive component with lag equal to three months of the ARIMA model; mer2, meropenem
use of two months with lag time of two months; R2, the coefficient of determination of the model; DDD, Defined
Daily Dose; PD, Patient days.
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Table 4. ARIMA models for cefepime-resistant A. baumannii (A) and cefepime use (B). Dynamic
regression model for the association between cefepime-resistant A. baumannii and hospital cefepime
use (C).

Estimate Model Parameter Standard Error p-Value

A. A. baumannii resistance
ar1 −0.677 0.129 <0.001
ar2 −0.710 0.122 <0.001
AIC 100.56
R2 0.580

B. Cefepime use (in DDD/100 PD)
ar1 −0.463 0.137 <0.001
ar2 −0.466 0.133 <0.001
AIC 139.03
R2 0.619

C. Impact of cefepime use on A. baumannii resistance
ar1 −0.576 0.210 0.006
ar2 −0.559 0.222 0.011
cef1 0.865 0.395 0.028
AIC 85.53
R2 0.660

Key: AIC, the estimated Akaike Information Criterion value for the model; ar1, autoregression term with a lag of
one month of the ARIMA model; ar2, autoregressive component with lag equal to two months of the ARIMA
model; cef1, cefepime use of one month with lag time of one month; R2, the coefficient of determination of the
model, DDD, Defined Daily Dose; PD, Patient days.

Table 5. ARIMA models for ciprofloxacin-resistant A. baumannii (A) and ciprofloxacin use (B).
Dynamic regression model for the association between ciprofloxacin-resistant A. baumannii and
hospital ciprofloxacin use (C).

Estimate Model Parameter Standard Error p-Value

A. A. baumannii resistance
ma1 −0.900 0.181 <0.001
AIC 99.38
R2 0.486

B. Ciprofloxacin use (in DDD/100 PD)
ar1 −0.527 0.147 <0.001
ar3 −0.299 0.152 0.004
AIC 77.76
R2 0.550

C. Impact of ciprofloxacin use on A. baumannii resistance
cip1 0.733 0.081 <0.001
AIC 77.52
R2 0.617

Key: AIC, the estimated Akaike Information Criterion value for the model; ar1, autoregression term with a lag of
one month of the ARIMA model; ar3, autoregressive component with lag equal to three months of the ARIMA
model; ma1, moving average component with lag equal to one month of the ARIMA model; cip1, ciprofloxacin
use of one month with lag time of one month; R2, the coefficient of determination of the model; DDD, Defined
Daily Dose; PD, Patient days.

2.1. Meropenem

Between January 2014 and December 2017, the observed mean detection rate of
meropenem-resistant A. baumannii was 1.89 isolates per month; Figure 1a shows the
meropenem Minimum Inhibitory Concentration (MIC) distribution of strains collected
during the study period.
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fer function (Table 3C). Examination of the cross-correlation function of the residuals of 
the two previous ARIMA models showed only one significant correlation with lag of 2 
months. Therefore, two-month lags in the meropenem use time series were introduced in 
the transfer function model. The R2 of the transfer function model was 0.626 and the AIC 
was 166.25. The transfer function model could also be presented by the following equa-
tion: 
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from A. baumannii blood isolates during the four-year period of the study.

The monthly mean use of meropenem was 6.74 Defined Daily Doses (DDDs) per
100 Patient Days (PDs). Smoothed data of meropenem use and meropenem-resistant A.
baumannii are depicted in Figure 2a.
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The ARIMA models and their corresponding parameters are shown in Table 3A,B for
the meropenem-resistant A. baumannii and meropenem consumption series, respectively.
Prior to these models, time series became stationary through differencing. Two significant
autoregressive terms of orders (lags) of 1 and 2 months were identified for meropenem
resistance. The coefficient of determination (R2) was 0.531 and the Akaike Information
Criterion (AIC) was 186.73. In addition, three significant autoregressive terms of orders of
1, 2, and 3 months were identified for meropenem use; the R2 was 0.638 and the AIC was
242.91. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots
of both model residuals confirmed that the series residuals corresponded to white noise.

To investigate a possible relationship between meropenem-resistant A. baumannii
detection rate and meropenem use, we built a dynamic regression model via the linear
transfer function (Table 3C). Examination of the cross-correlation function of the residuals
of the two previous ARIMA models showed only one significant correlation with lag of 2
months. Therefore, two-month lags in the meropenem use time series were introduced in
the transfer function model. The R2 of the transfer function model was 0.626 and the AIC
was 166.25. The transfer function model could also be presented by the following equation:

R(t) = −0.564 R(t − 1) − 0.61 R(t − 2) + 0.13 U(t − 2) + e(t) (1)

where R is the detection rate of meropenem resistance observed at t months, U is the
hospital meropenem use, and e(t) represents the residual error.
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2.2. Cefepime

The mean monthly detection rate of cefepime-resistant A. baumannii was 2.37 iso-
lates during the study period. The observed mean monthly cefepime consumption was
1.85 DDD/100 patient days. The distribution of MICs of cefepime is shown in Figure 1b.
Smoothed data on cefepime use and cefepime-resistant A. baumannii are shown in Figure 2b.

Table 4 shows ARIMA and transfer function models for estimating the detection rate
of cefepime resistance among A. baumannii isolates. The series were stationary in variance
and mean after log transformation and simple differencing. Specifically, Table 4A shows
an ARIMA model for cefepime resistance rate among A. baumannii that identified two
significant autoregressive terms of order of 1 and 2 months. The AIC value was 100.56 and
the R2 was 0.58. The ARIMA model of cefepime use included two significant autoregressive
terms of order of 1 and 2 months (Table 4B). In this case, the AIC was 139.03 and the R2

was 0.619. ACF and PACF plots verified that the series residuals for the above models
corresponded to white noise.

The influence of cefepime use in cefepime-resistant A. baumannii was analyzed using
dynamic regression models, i.e., using the transfer function (Table 4C). A lag of one
month was identified from the cross-correlation function between the residuals of the two
previous ARIMA models. Accordingly, we introduced a one-month lag of cefepime use
in the transfer function model and two significant autoregressive terms of order of 1 and
2 months of the residuals. The R2 was 0.66 and the AIC was 85.53.

2.3. Ciprofloxacin

The monthly mean of ciprofloxacin-resistant A. baumannii isolates was 3.16 isolates
and the mean of ciprofloxacin use was 4.65 DDDs/100 patient days during the study period.
Figure 1c presents the distribution of ciprofloxacin MICs and Figure 2c shows smoothed
monthly series of ciprofloxacin use and ciprofloxacin-resistant A. baumannii.

ARIMA and transfer function models were built to estimate the detection rate of
ciprofloxacin resistance among A. baumannii isolates (Table 5).

The series were first differentiated to achieve stationarity. The ARIMA model of
ciprofloxacin resistance rate of A. baumannii showed a significant first order moving average
term (Table 5A). The AIC value was 99.38 and the R2 was 0.486. In addition, the identified
model of the ciprofloxacin use series contained two significant autoregressive terms of order
of 1 and 3 months (Table 5B). In this case, the AIC was 77.76 and the R2 was 0.55. Combining
the above models, we developed a dynamic regression model of the ciprofloxacin-resistant
A. baumannii detection rate and ciprofloxacin use by introducing a lag of 1 month in the
ciprofloxacin use series (Table 5C). This lag was found by cross-correlating the residuals of
the ARIMA models for ciprofloxacin use and resistance. The R2 was 0.617 and the AIC was
77.52.

Furthermore, in Figure 3 we can observe the possible impact of a 0.5 DDD/100 patient
days on each of the antimicrobial agents. In the case of meropenem, the reduction is
approximately 7.5% and could probably be achieved by 3% reduction in the detection rate.
On the contrary, for ciprofloxacin the same reduction would mean a 10.75% decrease in use
that could result in a significant resistance decrease (11.7%).
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3. Discussion

In recent years, A. baumannii has developed resistance to virtually all known an-
tibiotics [4,7]. Combination therapies of high-dose, long-term infusions of sulbactam,
meropenem, ceftazidime/avibactam, and meropenem/varobactam with polymyxins,
minocycline, aminoglycosides, and fosfomycin are being considered for the treatment of
MDR A. baumannii infections [20,29,30]. Taconelli et al. proposed a priority list for research
and development of new antibiotics for antibiotic-resistant bacteria and concluded that
CRAB is a critical priority pathogen [16]. As a result, efforts must be made to maintain
the susceptibility of this pathogen to currently available antimicrobials, especially ASPs.
Although data on the correlation between antimicrobial use and resistance rates are
required for effective work by ASP, we still have limited relevant data on A. baumannii.

In this study, ARIMA and transfer function models were identified to estimate the
correlations between the detection rate of resistant A. baumannii isolates, previous resistance
rates, and previous antimicrobial use. Our study provided significant results for three
broad-spectrum antimicrobials, i.e., meropenem, ciprofloxacin, and cefepime. We identified
an ARIMA model for the detection rate of meropenem-resistant A. baumannii; the rate was
negatively related to the detection rate of the same resistance observed one and two months
ago (Table 3A). The R2 was 0.531, meaning that 53% of the variance in this resistance series
is anticipated by the model. Similarly, the ARIMA model for meropenem use showed a
negative relationship with the same use series before one, two, and three months (Table 3B),
where the R2 of the model was 0.638. Then, the influence of meropenem use in meropenem-
resistant A. baumannii was analyzed using a dynamic regression model; according to it,
the current rate of meropenem resistance was negatively related to resistance one and two
months before and positively related to meropenem use two months before (Table 3C).
An increase of 1 DDD/100 patient days for meropenem two months prior results in an
increase of 0.13 in the meropenem resistance rate after accounting for meropenem use. In
addition, ARIMA and transfer function models were estimated for the detection rate of
cefepime resistance among A. baumannii isolates. These rates were negatively associated
with the same rate one and two months ago (Table 4A), and the R2 of the model was 0.58.
Cefepime use was also associated with the same use one and two months ago (Table 4B),
and the R2 of the model was 0.619. The dynamic regression model implied that the current
rate of cefepime resistance was negatively associated with resistance one and two months
ago and positively associated with cefepime use one month ago (Table 4C). An increase of
1 DDD/100 patient days for cefepime two months prior results in an increase of 0.856 in
the cefepime detection rate of resistant isolates after accounting for cefepime use. Finally,
an ARIMA model for ciprofloxacin-resistant A. baumannii showed a negative association
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with the same series one month earlier (Table 5A). Ciprofloxacin use was negatively related
to the same use one and three months ago and the coefficient of determination, R2, was
0.55 (Table 5B). The dynamic regression model showed that an increase in ciprofloxacin
use by 1 DDD/100 patient days corresponded with an increase in the detection rate of
ciprofloxacin-resistant isolates by 0.73 (Table 5C). These results are consistent with similar
literature reports also indicating time delays between antimicrobial use and increased
resistance [31–33]. For four other broad-spectrum antibiotics studied, i.e., tigecycline,
piperacillin/tazobactam, imipenem, and ceftazidime, no correlation was found between
antimicrobial use and corresponding resistance (Table A1).

It is worth noting that in all three models, the introduction of prior antimicrobial use
significantly improved the models; the R2 increased to 0.6, meaning that more than 60%
of the variance in the detection rate of resistant strains can be predicted by the described
models. Figure 3 shows what a reduction of 0.5 DDD/100 PD would give for each of the
antimicrobial agents studied; in relation to meropenem, this reduction, which is about 7.5%,
could probably be achieved by an ASP but would give poor results, i.e., a 3% reduction in
the detection rate. In contrast, the same reduction for ciprofloxacin would correspond to
a 10.75% reduction in use, a still achievable target that could lead to a remarkable 11.7%
reduction in resistance. This observation is an indication that ASPs should be planned
based on local or regional epidemiological data, with pragmatic targets adapted to the
results of the respective prediction models.

One of the limitations of this study is that the findings, on the association between
antibiotic use and resistance, were examined on aggregate hospital data rather than at the
individual patient level. In addition, molecular data were not available for the study period
because genotypic testing is not routine in this hospital. Instead, data from phenotypic
testing were used to inform antimicrobial treatment decisions. The benefits of molecular
test information should be acknowledged, as this type of data would help in distinguishing
between the different sources of resistance, e.g., horizontal genetic transfer or acquired
resistance by mutation. The only limiting factor in the use of genotype data is its cost [34].
Despite the additional useful information that molecular data can provide, the phenotype
data used in this study are adequate to fulfill the purpose of this study, which is to quantify
the prior antimicrobial use and prior resistance rate on the observed resistance rate of
A. baumannii [35]. It should also be recognized that mathematical models, despite their
usefulness, have certain limitations, as they are based only on the mathematical properties
of the series and not on the dynamics of infectious disease transmission [36]. Therefore,
although the current results offered a reasonable level of reliability, future research may
incorporate genotype data to gain better insight into the process of resistance of hospital-
acquired infections.

Comparing our results with the literature, the complexity of the resistance phe-
nomenon becomes clear; for example, with regard to meropenem, the results of this
analysis are in agreement with previous studies, but no significant correlation of resistance
was found with ceftazidime, while a strong positive correlation was found with the use of
ciprofloxacin [23,37]. These observations contrast with the results of a recent study con-
ducted in Serbia [21]. In addition, no effect of the rather limited imipenem use on resistance
was found, which contrasts with the results of a Chinese study [38]. Such differences may
be attributed to methodological reasons or may be due to the different epidemiological
conditions in the hospital setting. Finally, another limitation of this study is that possible
cross-correlations were not examined, such as the effect of ciprofloxacin use on meropenem
resistance rates.

4. Materials and Methods
4.1. Clinical Setting

A retrospective study was performed from January 2014 to December 2017 in the
General Military Hospital of Athens, a tertiary care hospital with medical and surgical
wards as well as two Intensive Care Units (ICUs). This study research was approved
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by the hospital scientific committee. Informed consent was waived by the ethics review
board. As to the hospital restriction policy, all prescriptions for broad spectrum antibiotics
need composed endorsement by an infectious diseases specialist before administration;
no adjustment in the limitation strategy or other significant change occurred during the
investigation time frame.

4.2. Antibiotic Consumption

Monthly data of antimicrobial consumption were obtained for the study period from
the hospital pharmacy database and were converted into defined daily doses (DDD).
Antibiotic consumption was finally expressed as the number of defined daily doses/100
patient days according to the 2020 version of the ATC/DDD classification (World Health
Organization Collaborating Centre for Drug Statistics Methodology, ATC/DDD index
2020) [26].

4.3. Microbiological Data

The results of susceptibility tests were obtained from the Clinical Microbiology Depart-
ment of the hospital for clinical A. baumannii isolates for the study period. Interpretation
of the results was performed according the CLSI criteria [25]. All clinical isolates of A.
baumannii from every biological sample from all wards and ICUs were included in the
analysis. The isolates with intermediate susceptibility were grouped with the resistant ones,
forming the non-susceptible group. Detection rate of resistance was examined per month
and was expressed as the number of multidrug-resistant A. baumannii isolates. Duplicate
isolates were defined on the basis of the patient identity and the antibiotic phenotype.

4.4. Data Analysis

Prior to statistical analysis, any patients’ recognizable information was changed into
anonymous information by the principal investigator of the study. A time series analysis of
the monthly detection rate of A. baumannii resistance isolates and the monthly consumption
of the respective broad-spectrum antimicrobials was performed. ARIMA models were
used to analyze the temporal behavior of each variable in relation to its previous values, its
trends, and any sudden changes. To identify an ARIMA model from the observed time
series, it was first investigated whether the time series was stationary using the Augmented
Dickey-Fuller test for Unit Roots. Then, the required assumptions of the Box and Jenkins
methods were checked [39]. From the autocorrelation function and partial autocorrelation
function, the appropriate order of the autoregressive and moving average terms of the
model was selected. The parameters of the identified model were estimated using the
maximum likelihood function or the unconditional least squares function. Goodness-of-fit
criteria were estimated, such as the Akaike information criterion and the coefficient of
determination, which corresponds to the percentage of variance in the observed time series
explained by the model. Diagnostic checks, statistical significance of the parameters, and
the ACF and PACF residuals of the model corresponded to white noise and were estimated
to select the appropriate model.

Once the basic ARIMA models were established, dynamic time series modeling
techniques were used to assess the relationships between antimicrobial use series
(DDD/100 patient days) and resistance series (detection of meropenem, cefepime, and
ciprofloxacin Acinetobacter resistance isolates per 1000 patient days). In particular, the
linear transfer function method proposed by Haugh (1976) was used to estimate these
relationships [25]. The cross-correlation function between the residuals of these ARIMA
models was calculated to identify the adequate lags in the antimicrobial use time series to
be further introduced into the transfer function model. Cross-correlation of the resistance
and use series was performed with lags of up to one year, and backward selection was
applied to eliminate non-significant correlations. If no correlations were found, no lag
order was selected. In addition, a diagnostic check, goodness-of-fit calculation, AIC, and
R2 were implemented. The above techniques were analyzed using R software version 3.6.1
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(the R project for statistical computing; http://www.r-project.org accessed on 15 April
2021).

5. Conclusions

In the present study, the association between the use of broad-spectrum antimicrobials
(meropenem, cefepime, and ciprofloxacin) and resistant A. baumannii isolates in a tertiary
hospital was investigated using time series analysis. Statistically significant associations
were found between the use of these antimicrobials (meropenem, cefepime, ciprofloxacin)
and corresponding resistance in A. baumannii. For each antimicrobial agent, a different
pattern of correlation with resistance was revealed in terms of time lag and magnitude
of effect. These results have important implications for strategies to contain resistance
and highlight the need for antimicrobial stewardship programs to adjust their targets in
accordance with locally developed predictive models.
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Appendix A

Table A1. The association in univariate time series analysis between antimicrobial use and the
corresponding antibiotic resistance of A. baumannii.

Antimicrobial Agent/Class Order 1 p-Value 2 AIC 3 R2 4

Imipenem 0 0.058 155.46 0.286
Ceftazidime 0 0.305 174.69 0.042

Piperacillin/Tazobactam 0 0.386 162.17 0.22
Tigecyclin 0 0.201 180.3 0.149

1 Delay before effect is observed (months).2 p-value for the association between antimicrobial use and A. baumannii
resistance of the ARIMA model.3 Akaike information criterion.4 Coefficient of determination of the model.
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