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Objectives: The use of value of information methods to inform trial design has been widely advocated but there have been few empirical applications of these methods and there is little evidence they
are widely used in decision making. This study considers the usefulness of value of information models in the context of a real clinical decision problem relating to alternative diagnostic strategies for
patients with a recent non-ST elevated myocardial infarction.
Methods: A pretrial economic model is constructed to consider the cost-effectiveness of two competing strategies: coronary angiography alone or in conjunction with fractional flow reserve
measurement. A closed-form solution to the expected benefits of information is used with optimal sample size estimated for a range of models reflecting increasingly realistic assumptions and
alternative decision contexts.
Results: Fractional flow reserve measurement is expected to be cost-effective with an incremental cost-effectiveness ratio of GBP 1,621, however, there is considerable uncertainty in this estimate and
consequently a large expected value to reducing this uncertainty via a trial. The recommended sample size is strongly affected by the reality of the assumptions of the expected value of information
(EVI) model and the decision context.
Conclusions: Value of information models can provide a simple and flexible approach to clinical trial design and are more consistent with the constraints and objectives of the healthcare system than
traditional frequentist approaches. However, the variation in sample size estimates demonstrates that it is essential that appropriate model parameters and decision contexts are used in their
application.
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Methods to estimate the cost-effectiveness of technologies
are well-established (1), and are now widely used to inform
adoption and reimbursement decisions internationally (2). In
England and Wales, the National Institute for Health and Clin-
ical Excellence (NICE) issues guidance to the National Health
Service and explicitly incorporates cost-effectiveness evidence
into its technology appraisal process (3). A similar role is per-
formed by the Scottish Medicines Consortium in Scotland (4).

These decisions are often taken in the absence of mature
evidence on the effectiveness and cost-effectiveness of tech-
nologies. Research prioritization is determined by informal
processes and trials are typically designed using frequentist
approaches, which select a sample size such that the smallest
clinically important difference can be determined at prespecified
levels of statistical significance and power. These approaches
may fail to convey all appropriate information to decision mak-
ers (5). By explicitly estimating the value of alternative research
designs and comparing these to the expected costs, expected
value of information (EVI) methods enable joint consideration
of adoption and research decisions in a way consistent with the
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objectives and constraints of the healthcare system (5;6). There
is a large theoretical literature surrounding these techniques (5–
10), but currently there is little evidence of their application in
decision making.

In this study, we consider the usefulness of value of infor-
mation methods to inform trial design in the context of a real
clinical decision problem, relating to alternative techniques for
the treatment of patients with a recent non-ST elevated my-
ocardial infarction (NSTEMI). First, we describe the clinical
decision problem and detail the construction of a pretrial eco-
nomic model to summarize the current evidence. We then use
the results from this model to consider the optimal design of
a trial using EVI methods. We begin with a minimal model
with simple but unrealistic assumptions then gradually intro-
duce more realistic assumptions, illustrating the flexibility of
EVI models and demonstrating the importance of the decision
context in the estimation of sample size. Finally, a critical dis-
cussion is offered on the current usefulness of these methods in
a real clinical setting based on this application.

Clinical Decision Problem
Coronary angiography is widely used to identify coronary
narrowings (stenoses) and identify patients who may benefit
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from coronary revascularization. However, because the coro-
nary angiogram is interpreted visually, judgments about steno-
sis severity are subjective, potentially leading to misdiagnosis
and incorrect treatment decisions which have prognostic im-
portance and resource implications. This problem is greatest
in patients with multiple coronary narrowings where there is a
need to distinguish between stenoses which do and do not cause
ischemia.

The measurement of fractional flow reserve (FFR) using
a coronary guidewire with a pressure sensor has the poten-
tial to improve diagnostic accuracy in coronary artery disease
(CAD) and is now an established technique in the invasive
management of people with stable CAD (11). Results from re-
cent studies in stable patients with long-term, chronic CAD
such as angina, highlighted the benefits of FFR measurement
to more accurately identify culprit lesions and guide stenting
with improved outcomes compared with the visual interpreta-
tion of the angiogram alone (12;13). Based on 1-year follow-up
in the FAME study, FFR measurement was found to generate
resource savings and promote improvements in health, and it
has been posited that this outcome most probably arose from
the large number of false positive patients who went on to re-
ceive percutaneous coronary intervention (PCI) unnecessarily
in the angiogram only group (12). Although these trial results
are not expected to be perfectly applicable to NSTEMI patients
who differ in important respects from the patients in these tri-
als, these results do suggest there is a potential for large clinical
utility from a wider adoption of FFR measurement in NSTEMI
patients.

METHODS

Economic Model
An economic model was constructed to reflect the predominant
treatment and prognostic pathways of individuals with a recent
NSTEMI who are at intermediate-high risk of further vascu-
lar events and are amenable to revascularization. The treatment
options considered are coronary angiography alone (CA) and
coronary angiography supported by FFR measurement (PW).
Costs are expressed in GBP at a 2010 price base and benefits
are expressed in quality-adjusted life-years (QALYs). A patient
lifetime time horizon was used and costs and benefits were dis-
counted at an annual rate of 3.5 percent based on NICE guidance
(3). The model was probabilistic in that all input parameters
were entered as probability distributions to reflect the uncer-
tainty in the estimates of the population means. Monte Carlo
simulation was used to propagate this uncertainty through the
model.

In stage 1 of the model, individuals are allocated to index
treatments based on the interpretation of the results of the di-
agnostic technologies and other complex criteria (e.g., medical
history) by cardiologists. Four treatment options common to
both treatment strategies are available: patients may be revas-

cularized using PCI or a coronary artery bypass graft (CABG),
a decision may be deferred until the results of further tests are
available (DEFER) or medical therapy alone may be prescribed.
In all cases, a common medical therapy package is assumed
(see Table 1). PW is expected to change the distribution of in-
dex treatments by reducing diagnostic uncertainty. Odds ratios
are applied separately to the probabilities of revascularization,
PCI conditional on revascularization and DEFER conditional
on no revascularization. In addition, the relative cost of PCI is
allowed to differ between strategies, reflecting possible differ-
ences in average PCI procedures.

Individuals are at risk of further events, including death,
myocardial infarction, stroke and revascularization (stage 2).
These are combined into a single composite major adverse car-
diac event (14) outcome, which is assumed independent of the
index treatment. The relative effect of FFR measurement on
the risk of a MACE is restricted to 1-year based on the results
of the FAME trial (12), expert opinion and model calibration.
There is a utility decrement associated with a MACE and an
additional loss of QALYs due to the risk of death in year 1. This
1-year treatment effect is extrapolated to a lifetime time horizon
by modeling life expectancies conditional on the presence of a
MACE event in the first year. A common cost and QALY tariff
is applied to all additional years of death. Medical therapy is
assumed to be received linearly over time for as long as the
individual remains alive.

Baseline probabilities of the index treatments and of a
MACE were estimated from data between 1st April 2006 and
31st May 2009 in the Scottish Cardiac Revascularisation Reg-
ister (SCRR), which contains detailed information on all coro-
nary angiograms, PCIs and CABGs in Scotland. Means and
standard deviations for the costs of the index PCIs and CABGs
and a MACE were estimated by combining detailed data from
the SCRR with NHS Reference costs 2009–10 (15). The data
are limited in several respects, including difficulties in attribut-
ing index treatments to individuals and the absence of important
exclusion criteria, such that using the study size to estimate stan-
dard errors would underestimate the uncertainty in the derived
estimates. Implicit sample sizes were used to better reflect the
inherent uncertainty in the estimation of the above parameters.
The costs of the DEFER option were estimated by assuming
an average of four outpatient attendances, one hospital atten-
dance, and one diagnostic test based on expert recommendation
(C.B.).

The odds ratios applied to the index treatment probabili-
ties were estimated using data from a retrospective study as-
sessing how FFR measurement affects clinical decisions (16).
Briefly, three cardiologists each examined the angiogram re-
sults of 100 retrospective real patients and made a hypothetical
recommendation based on their observations. FFR results were
then revealed and the cardiologists were asked to state a new
hypothetical treatment recommendation. The relative effect for
the MACE probability at 1-year was taken from the FAME trial
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Table 1. Data Inputs in Economic Model

Mean Standard error Implicit sample size Distribution Source

Baseline treatment probabilities
Revascularization 0.80 0.06 50 Beta SCRR
PCI conditional on revascularization 0.85 0.05 50 Beta SCRR
DEFER conditional on no revascularization 0.40 0.09 30 Beta SCRR

Baseline 1-yr MACE probability 0.20 0.06 50 Beta SCRR
Probability death conditional on MACE in year 1 0.06 – – Deterministic SCRR
Life expectancy conditional on death in year 1 (yrs) 0.36 – – Deterministic SCRR
Unit Costs (GBP)

Index PCI 3410 208 50 Normal SCRR & NHS reference costs
Index CABG 10180 520 50 Normal SCRR & NHS reference costs
DEFER 7622 48 50 Normal NHS reference costs & expert opinion (CB)
MACE 4400 622 50 Normal SCRR & NHS reference costs
Pressure Wire (PW) 400 – – Deterministic St Jude’s Medical Centre
Adenosine (drug used with PW) 30 – – Deterministic BNF 62
Medical Management year 1a 510 – – Deterministic BNF 62
Medical Management years 2+b 153 – – Deterministic BNF 62
Long term annual cost 390 55 50 Normal SCRR & NHS reference costs

No. of pressure wires 1.3 0.60 100 Normal FAME
Additional life expectancies (discounted)

No MACE 8.8 2.20 10 Normal NICE guidelines CG94
MACE 5.3 1.30 10 Normal NICE guidelines CG94

Quality-adjusted life-years
Baseline 0.80 0.09 19 Beta Palmer et al. (2005)(24)
Utility decrement with MACE (year 1) 0.05 0.04 20 Beta Palmer et al. (2005)

Treatment distribution – odds ratios
Revascularisation 0.88 0.33 48 Lognormal Retrospective data
PCI conditional on revascularisation 0.96 0.43 41 Lognormal Retrospective data
DEFER conditional on revascularisation 0.02 0.03 5 Lognormal Retrospective data

MACE 1-year odds ratio 0.67 0.34 16 Lognormal FAME
Relative price PCI in PW 1.00 0.2 10 Lognormal FAME

aAspirin (75mg), Bisoprolol (5mg), Ramipril (10mg), Simvastatin (40mg), Nitrate (20mg), Clopidogrel (90mg). All per day; bAs for year 1 but without Clopidogrel.

results (12). There are limits to the generalizability of the es-
timates from both sources. In particular, patients were selected
into the retrospective study based on the presence of diagnostic
uncertainty and so are not representative of NSTEMI patients
as a whole and the effect of FFR measurement in the FAME
study was based on a sample with stable CAD not NSTEMI. It
is, therefore, necessary to discount sample sizes to reflect the
additional uncertainty in these estimates.

Life expectancies at year 1 were taken from a previous
model in patients with unstable angina or NSTEMI, with sepa-
rate estimates for those who have a MACE in year 1 and those
who do not. A common QALY tariff and cost is applied to all
years after year 1. The cost consists of costs of further events,

calculated in the same manner as described above, and contin-
uing medical therapy (see Table 1).

We compare strategies according to the mean incremen-
tal net monetary benefit (INB) of PW compared with CA.
Net monetary benefit for treatment i is calculated as the mean
QALYs multiplied by the threshold value for a QALY, λ, minus
mean costs: NB i = λqi − ci , where i = CA or PW . The
threshold value should reflect the opportunity costs of imple-
mentation in the health service and a value of between GBP
20K and GBP 30K is commonly used in the United King-
dom. Incremental net monetary benefit (INB) is the differ-
ence in net monetary benefit (NMB) between the two strate-
gies: INB = NMBPW − NMBCA. In this case, if INB is
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Figure 1. Schematic of economic model.

positive, PW is the expected cost-effective alternative and if it
is negative, CA is the expected cost-effective strategy.

RESULTS

Economic Model
Owing to the additional cost of measuring FFR (GBP 550), PW
is expected to increase costs in year 1 by GBP 168 per-person
despite expected reductions in the index treatment costs (GBP
118) and costs of further events (GBP 264). By reducing the
expected MACE rate in year 1, PW is expected to increase
average life expectancy and consequently raise costs beyond
year 1 by GBP 65. Overall, PW is expected to increase lifetime
discounted costs by GBP 232 (SE GBP 527) per person.

Expected discounted QALYs are greater with PW by 0.012
in year 1, and by 0.132 beyond 1 year, implying an overall
expected increase in discounted QALYs of 0.143 (SE 0.203).
The incremental net monetary benefit is increasing in λ and for
λ = GBP 30,000 is GBP 4,069 ( = 30,000 × 0.143–232). For
λ = GBP 20,000, INB = GBP 2,635. As illustrated in Figure 2,
the mean estimate is subject to substantial uncertainty, with a
standard deviation of GBP 6,233. The probability that PW is
cost-effective is increasing in λ and for λ = GBP 20,000 is 0.75
and for λ = GBP 30,000 is 0.77.

Value of Information
Expected value of information methods explicitly compare ex-
pected costs of trialing with the expected benefits and have

Figure 2. Cost-effectiveness scatter plot.

the potential to inform research prioritization and trial design
in a way consistent with the constraints and objectives of the
healthcare system. The optimal trial design is chosen such that
the expected net gain (ENG), that is the difference between
expected benefits and expected costs, is maximized.

Most applied research using value of information meth-
ods has focused on estimating the value of perfect information
(EVPI), that is, the value of completely eliminating decision
uncertainty (6). In the case study considered, although PW is
expected to be cost-effective, due to the uncertainty in this esti-
mate, there is a probability of 0.23 given current evidence that,
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in fact, CA is cost-effective. If it is the case that CA is actually
cost-effective and PW is adopted, then a loss is imposed equal to
the true INB of CA relative to PW. The EVPI for a representative
individual is the sum of the losses when CA is cost-effective
weighted by the corresponding probabilities. EVPI provides an
upper bound to the amount a decision maker should be willing
to pay to eliminate decision uncertainty but is constrained in its
ability to inform trial design because it does not consider the
costs of trialing or the extent to which trials are actually able to
reduce decision uncertainty. Trials are expected to reduce uncer-
tainty in per-patient INB with the level of uncertainty expected
to fall with increases in sample size. The individual expected
value of sample information (EVSI) is the expected reduction
in per-patient EVPI or opportunity loss pre- and post-trial, and
can be estimated for a range of trial designs. As the sample size
increases, the per-patient EVSI approaches per-patient EVPI.
Here we use an analytic solution to the estimation of EVPI and
EVSI which uses estimates of the mean INB, its variance and
the between patient variance in the net benefit, estimated from
the pretrial model (10). The between-patient variance in net
benefit was estimated from the model output by scaling up the
observed variance in net benefit using an implicit sample size
of 20. In this case study, EVPI for a representative individual is
estimated to be GBP 964.

The expected value of information to the population is es-
timated by multiplying the expected value for an individual
by the population expected to benefit. If the information was
available immediately this would be every incident patient for
as long as the technology was useful. The annual incidence of
eligible individuals was estimated to be 20,000 based on the
application of the trial exclusion criteria to BNF myocardial
statistics for the United Kingdom (17). The time horizon of the
technology is assumed to be 10 years, reflecting possible future
changes in technology, prices, and information (18). Over this
time horizon, there would be 200,000 potential recipients of the
information in the United Kingdom, which combined with the
individual EVPI gives a population EVPI of GBP 193 m with-
out discounting. For a 30-year time horizon, this would increase
to 600,000 potential beneficiaries and the population EVPI to
GBP 578 m.

The total costs of trialing are the sum of fixed costs (FC)
of trialing, which are independent of sample size, and variable
costs (VC), which represent costs of recruiting each patient.
Based on trial planner advice we estimate the FC of trialing
to be GBP 225,000 and a variable cost of GBP 200 associated
with recruitment. Total costs for a trial of size n per-arm are,
therefore, GBP 225,000 + 200 × 2n.

We consider a UK decision context where the decision-
maker’s problem is a choice between adopting PW, the technol-
ogy expected to be cost-effective, now or delaying the adoption
decision and undertaking a trial with a sample size to be speci-
fied (8). Initially we begin with the unrealistic assumption that
all incident patients are recruited to the trial and that the infor-

mation becomes available immediately after the trial concludes,
such that the benefits of information accrue to all patients out-
side the trial. In this model, ENG is maximized at a sample size
per-arm of 9,632 providing an expected GBP 121 m net gain.

Relaxing this assumption such that only a proportion of
incident patients are recruited to the trial, increases the length
of a trial of given size, and reduces the population EVSI for
all sample sizes because fewer patients are now able to benefit
from the information. Consequently, the optimal sample size
is reduced. With 50 percent recruitment, the optimal size is
reduced to 6,883 per-arm with an ENG of GBP 109 m. At a
recruitment rate of 5 percent, as expected by trial planners, n =
1,767 with a maximum ENG of GBP 47 m. Modeling time for
patient follow-up (1 year) and analysis of the data (6 months)
further increases the length of a trial independent of sample size,
reducing further the number of potential beneficiaries from the
information and so leads to a further, albeit relatively small,
reduction in optimal sample size to n = 1,593 with an ENG
of GBP 35 m. Figure 3a plots each of the total costs, expected
population EVSI and ENG as a function of the sample size per-
arm. Financial costs of the trial are very low relative to the scale
of benefit and have little influence on optimal sample size. For n
below 1,593, the expected benefits from additional recruitment
outweigh the expected costs, and for n above 1,593, the costs
exceed the benefits. No improvement in ENG is possible at a
sample size per-arm of 1,593.

While the trial is ongoing, the patients not in the trial, or in
the trial but randomized to CA, do not receive the technology
expected to maximize net benefit. By not receiving PW, they
have forgone the opportunity to benefit by an amount equal to the
expected INB. We, therefore, expand the cost function to include
these opportunity costs (OC). Now, additional recruitment, by
lengthening a trial, imposes a substantially greater cost resulting
from these forgone benefits (7). In this case study, the scale of
the OCs is so large relative to the scale of benefit that the optimal
decision becomes not to trial but instead to simply adopt PW.
As presented in Figure 3b, the ENG is negative for any positive
n.

In the framework considered thus far, it has been assumed
that all patients and providers adopt the technology chosen by
the decision maker. However, the extent to which adoption de-
cisions are implemented in practice can be variable (19). Non-
adherence to decision-maker recommendations by patients and
healthcare professionals may be caused by a variety of factors
including knowledge, attitude and chance (18). Nevertheless,
implementation can, at least in part, be expected to depend on
the strength of evidence for the INB, and previous studies have
modeled implementation as a function of the strength of evi-
dence to allow for the estimation of optimal sample size (9;20).
In particular, a sliding step function is used in which implemen-
tation depends on the standardized INB, that is, the mean INB
divided by its standard deviation (9). Modeling the relationship
between evidence and implementation in this way, increases the
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Figure 3. Graphical representation of value of information models.

value of information at all sample sizes because now additional
recruitment is not only expected to reduce uncertainty in the
adoption decision but also to improve the implementation of
PW. Furthermore, in our case study because 2.3 percent of pa-
tients currently receive PW, based on evidence from the SCRR,
then even in the absence of further research the OC is slightly
reduced for all sample sizes.

Based on the current observed implementation rate of 2.3
percent and the standardized INB estimated from the model, one
additional point on the step function is required for the imple-
mentation function to be completely specified. We set this point
assuming that implementation is perfect if the standardized net
benefit is such that the null hypothesis that the INB ≤0 can be
rejected at the 5 percent level. As can be observed graphically in
Figure 3c, for n below 216, the costs of trialing exceed the ben-
efits and so the ENG is negative and no trial is preferable. For
sample sizes per-arm between 216 and 1,207, trialing is again
optimal. ENG is maximized at a sample size of 626 per-arm,
delivering an ENG of GBP 52 m. For n greater than 1,207, the
expected costs of trialing again exceed the benefits and no trial
is preferable.

For model 3c, the sensitivty of the sample size estimates
to the economic model was considered through the mean and
variance of the INB. A 50 percent increase in the mean INB
reduces decision uncertainty and renders no trial optimal. A
50 percent reduction in the mean INB increases n to 705. A
50 percent increase in the variance leads to an optimal sample
size of 590 per-arm, while under a 50 percent decrease, deci-

sion uncertainty has been reduced and trialling is not optimal.
Changes to the annual incidence of disease, and fixed and vari-
able costs had negligible impacts on the optimal sample size,
while changes to the time horizon of the technology and the ac-
crual rate have profound effects. For a 5-year time horizon, no
trial is optimal, and for a time horizon of 15 years a larger trial
with 889 patients per-arm is optimal. Halving the rate of accrual
to the trial renders no trial optimal, while a 50 percent increase
in accrual rate raises the optimal sample size per-arm to 1,222.

DISCUSSION
A pretrial model was constructed and used to consider the cost-
effectiveness of PW relative to CA, the value of a trial and
the optimal size of any such trial in the United Kingdom from a
societal decision-making perspective. PW is expected to be cost-
effective relative to CA, but there is considerable uncertainty
in this estimate and consequently substantial benefits from the
reduction of this uncertainty via a trial.

The optimal size of a trial has been shown to depend pro-
foundly on the decision context and associated assumptions
used to construct EVI models. We started from a set of unre-
alistic assumptions where all incident patients were assumed
to be recruited, no follow-up and analysis time or associated
opportunity costs of delay were allowed for and the decision
maker was able to perfectly dictate clinical practice. Relaxing
these assumptions to allow for recruitment and analysis time
reduced the optimal sample size, and explicitly modeling the
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opportunity costs of trialing rendered no trial optimal. Trialing
once again became optimal when imperfect implementation was
assumed and a relationship between strength of evidence and
implementation modeled. Currently, there is little evidence with
which to inform the shape of such a function and the choice is
somewhat arbitrary. EVI methods could benefit considerably
from further research to enable the shape of such functions to
be better specified.

This study has considered optimal trial design with value
of information methods within a single jurisdiction, here the
United Kingdom. However, the public information generated
from a trial in the United Kingdom would be expected to have
value in informing decision making in other jurisdictions, for
example, Canada or Australia. Therefore, the expected value
of the information from a UK perspective underestimates the
global expected value of the information generated and the size
of a globally optimal trial designed to inform local decisions
across such jurisdictions (21). Value of information methods
reflecting local decision contexts can be naturally extended to
optimal trial design across jurisdictions where co-operation be-
tween jurisdictions allows the additional advantages of global
trial design to be exploited. However, the successful application
of these methods requires overcoming the practical difficul-
ties associated with ensuring appropriate cooperation between
jurisdictions.

In this case-study, EVSI has been calculated using a closed
form solution which offers a flexible and relatively simple
method with which to consider trial design. Alternative meth-
ods include simulation techniques (22) which although con-
siderably more complex and computationally intensive than the
closed form solution possess several potential advantages. First,
the closed-form solution assumes a trial informs INB directly,
while trials, in reality, may collect information on only some
of the parameters that constitute the INB. Simulation methods
can restrict focus to subsets of parameters informed by a trial.
Second, the closed-form approach makes the assumption that
the INB is normally distributed. However, previous research
has found that the appeal to the central limit theorem outper-
forms bootstrapping where sample sizes are small and data are
skewed, while performing with the same asymptotic properties
when sample sizes are large (23).

EVI methods require the specification of a large number
of uncertain parameters compared with traditional frequen-
tist approaches and are in some instances sensitive to these
choices. However, many of these parameters, for example, the
lifetime of the technology or the extent to which clinical practice
will respond to evidence, are already implicit in funding deci-
sions. EVI models require decision makers to be explicit about
the assumptions used, improving the transparency of decision
making.

EVI methods offer an appealing alternative to traditional
frequentist methods for informing trial design and are more
consistent with the constraints and objectives of the healthcare

system. In addition they require decision makers to be explicit
about the assumptions informing their decisions. The closed-
form solution to the calculation of expected benefits offers a
flexible method with which to consider alternative decision-
making contexts. However, the real-world usefulness of these
methods depends on the extent to which decision contexts are
able to be realistically and practically represented. In this re-
spect, an important challenge remaining to enable robust ap-
plication of these methods is evidence for the relationship be-
tween trial evidence and implementation, where further research
would be valuable.
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